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Random Variables

Real value outcome from an event, for example the outcome of rolling
a fair 6-sided die

Continuous random variables are assigned a value from a continuous
range, while discrete random variables are assigned a value from a
discrete range, which may or may not be infinitely large
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Expected value

Average value you will get when running an experiment of a random
variable

Calculated by summing up the product of each outcome’s value and
its probability

E[X ] =

∫ ∞

−∞
x Pr(x)dx

or
E[X ] =

∑
i

xi Pr(xi )
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Variance

For a random variable,

Var(X ) = E[(X − E[X ])2].
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Variance

Another useful form of variance can be derived from our definition for
random variables:

Var(X ) = E[(X − E[X ])2]

= E[X 2 − 2XE[X ] + (E[X ])2]

= E[X 2]− 2E[X ]E[X ] + (E[X ])2 by linearity of expectations

= E[X 2]− (E[X ])2

Justin Cheong Central Limit Theorem July 16, 2024 6 / 27



Moments

The kth moment of a random variable can be calculated with

E[X k ]

Moments are a way of characterizing a distribution, to the point
where if all moments of two distributions are equal, then the
distributions are identical
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Normal Distribution

Special type of curve that holds many useful properties in statistics,
often represented by N (µ, σ2)

All normal distributions have area 1 and follow the equation

f (x) =
1√
2πσ2

e−
(x−µ)2

2σ2 ,

A special type of normal distribution, the standard normal
distribution, has mean 0 and variance 1
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Standard Normal Distribution

x

y
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A Weak Central Limit Theorem

Central Limit Theorem

Given independent, identically distributed (i.i.d) random variables
X1,X2, . . . ,Xn with mean 0 and variance 1, as n → ∞,

X1 + X2 + . . .+ Xn√
n

→ N (0, 1).

Essentially, the distribution of a normalized sum of random variables will
approach the standard normal distribution as n → ∞.
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A Proof Using Moments

The kth moment of a standard normal variable is

E[Z k ] =
1√
2π

∫ ∞

−∞
xke−

1
2
x2dx

Using integration by parts, this can be simplified to
E[Z k ] = (k − 1)E[Z k−2].

Justin Cheong Central Limit Theorem July 16, 2024 11 / 27



A Proof Using Moments

The kth moment of a standard normal variable is

E[Z k ] =
1√
2π

∫ ∞

−∞
xke−

1
2
x2dx

Using integration by parts, this can be simplified to
E[Z k ] = (k − 1)E[Z k−2].

Justin Cheong Central Limit Theorem July 16, 2024 11 / 27



A Proof Using Moments

Therefore,

E[Z k ] =

{
(k − 1)(k − 3) . . . (2)E[Z 1] if k is odd,

(k − 1)(k − 3) . . . (1)E[Z 0] if k is even.

We know that E[Z 1] = 0 since Z has mean 0, and that E[Z 0] = E[1] = 1,
so

E[Z k ] =

{
(k − 1)(k − 3) . . . (2)(0) = 0 if k is odd,

(k − 1)(k − 3) . . . (1)(1) = (k − 1)!! if k is even.
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A Proof Using Moments (Greatly Summarized Part)

On the other hand, the kth moment of our sum is

E[(X1 + X2 + . . .+ Xn)
k ]

Through testing, we notice that as n → ∞, some moments diverge, so
instead we calculate X1+X2+...+Xn√

n
which will always converge

When distributing and then splitting into individual expected values, we
only want to care about terms that are comprised of squares of a random
variable
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A Proof Using Moments (Greatly Summarized Part)

Terms with a single power of a variable are 0 because of our mean
rule (E(X ) = 0)

Terms with 3 or more of a variable end up having less than k
2 unique

variables, leading to where n has degree less than k
2

Since we normalize by dividing by n
k
2 on both sides, as n → ∞, these

terms approach 0

That leaves terms with only squares of random variables, for example
E[X 2

i X
2
j ]
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A Proof Using Moments (Greatly Summarized Part)

This means odd moments are 0 and even moments are the number of
ways to pair partition k items

The number of ways to pair partition in a group of k is (k − 1)!!, so as
n → ∞,

X1 + X2 + . . .+ Xn√
n

→ N (0, 1).
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Other Central Limit Theorems

Other more applicable versions of the central limit theorem exist

For example, the Liapunov central limit theorem states that the
convergence to a normal distribution also applies to independent and
non-identically distributed variables under certain conditions
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Some Results

Fair dice are independent and identically distributed random variables, so
CLT will apply to them

Figure 1: The fair die (n=1)
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Some Results

Figure 2: n=2
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Some Results

Figure 3: n=3
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Some Results

Figure 4: n=10
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More Results

Figure 5: n=100

Justin Cheong Central Limit Theorem July 16, 2024 21 / 27



More Results

We may apply it to unfair dice too, as they are also independent and
identically distributed random variables

Figure 6: unfair die
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More Results

Figure 7: Convergence with unfair dice
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More Results

Figure 8: A different unfair die
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More Results

Figure 9: Convergence with different unfair dice
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Conclusions (Why is this important?)

The Central Limit Theorem is important because it allows
statisticians to assume distributions of large sums are normal

For example, if you were manufacturing bottles, when taking the
sums of bottle volumes for many different groups of bottles, those
sums will approximately fall into a normal distribution

This allows the use of more statistical tools because you know the
distribution is approximately normal
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Thanks for listening!
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