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1 Abstract

Assuming a basic knowledge of game theory and graph theory, this paper
discusses different versions of the Folk theorem in infinitely repeated games,
applied when players are very patient and consider future interactions heavily;
essentially when the discount factor approaches 1. This paper aims to provide a
concise understanding of how equilibria in the folk theorem can deliver virtually
any average payoff outcome that is achievable in a single-stage game.
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3 Introduction

The Folk Theorem gets its name from being a part of game theory’s oral
tradition or ”folk wisdom” long before it was recorded in print. In game theory,
folk theorems state that any outcome can be a Nash Equilibrium in an infinitely
repeated game as long as it provides a per-period payoff that is, on average,
greater than the minimum average payoff each player can secure by unilaterally
deviating from the cooperative agreement. In other words, The Folk Theorem
suggests that if the players are patient enough and far sighted (i.e. if the discount
factor δ → 1, then repeated interaction can result in a feasible and individually
rational perfect equilibrium This paper proves the existence of such equilibria
one step at a time, initially proving the existence of a nash equilibrium in a
one-time game, and building upon it by proving Freidman’s Theorem on the
existence of Nash equilibria in a repeated game, to provide readers with a basic
understanding. Then we prove the existence of perfect equilibria in two player
games, using the prisoner’s dilemma as an example throughout.
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5 The Model

I will begin this discussion by introducing the model of an infinitely repeated
game, stating and defining key terms used to understand the Folk Theorem. I
will do this using ‘The Prisoner’s Dilemma’ as an example of a strategic form
game. We will use this model to define what an infinitely repeated game is.

1, 1 −1, 2

2,−1 0, 0

cooperate(C) defect(D)

cooperate

defectP
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ye
r
1

Player 2

Fig 6.1 - The Prisoner’s Dilemma

The building block of an infinitely repeated game is called the stage game
(which is also known as the sub game), which is the game that is repeated. Let
G represent the game as a whole, and g denote the stage game. We define g as:

2



Definition 5.1. The stage game, g, in a strategic form consists of a triplet
g = (I, (Si)i∈I , (Ui)i∈I), where

1. I is the set of players (I = 1, . . . , n)

2. For each i ∈ I, Si is a Player i’s set of strategies, where S =
∏

i∈I Si is the
set of strategy profiles.

3. For each i ∈ I, Ui : S → R is the payoff (von-Neumann-Morgenstern
utility) function on the set of strategy profiles. Implicitly, it is as if we
had an outcome function g : S → A and a utility function g : S → R.
Then, for every s ∈ S, set Ui(s) = UI(g(s)). (In simpler terms, a payoff
function maps the n-tuple strategies s to real number values)

Remark 5.2. A denotes the set of action profiles, where ai ∈ Ai for player i.

It is important to note that:

1. We assume that the strategy spaces are compact sets and that the payoff
functions are continuous.

2. For all player(s) other than i, their strategy space(s) are denoted by S−i

(this is true for strategies, mixed strategies, payoff vectors, and other
components, which we will define later).

Definition 5.3. A mixed strategy σ is a strategy consisting of possible moves
and a probability distribution which corresponds to how frequently each move
is to be played.

This completes the knowledge we require about the components of a stage
game. We discuss the components, and ultimately, define an infinitely repeated
(IR) game below.

In an IR game, for all S, a ∈ S can be referred to as an outcome of G. G(T )
denotes the game that results when G is successively played T times (T is a
positive integer). For t = 1, 2, . . . , T , if at ∈ A denotes the outcome of the game
G(T ) at time t, player i’s payoff in G(T ) is given by:

1

T

T∑
t=1

Ui

(
at
)

(5.1)

In each period t = 0, 1, 2, . . ., players players simultaneously choose an ac-
tion ai ∈ Ai and the chosen action profile (a1, a2, a3, . . . , an) is observed by all
players. Additionally, offs. That is, if (a1(t), . . . , an(t)) is the vector of actions
played in period t. Then the player moves to period t+1 and the game continues
in the same manner. Each information set of each player i associated with a
finitely repeated game corresponded to a history of action profiles chosen in the
past. We can represent each information set of player i by a history:

h0 = (∅), h1 = (a0 := (a01, . . . , a
0
n), . . . , h

t = (a0, a1, . . . , at−1)
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We denote the set of all histories at time t as Ht. For example, if the stage
game is the prisoner’s dilemma, at period 1, there are 4 possible histories;

H1 = {(C0
1 , C

0
2 ), (C

0
1 , D

0
2), (D

0
1, C

0
2 ), (D

0
1, D

0
2)}.

Therefore, for time t, Ht consists of 4t possible histories.
We define strategies in IR games as:

Definition 5.4. A strategy for player i in the game G(∞) is a function s which
selects, for any history of play, an element of Ai. Formally, si = (s1i , s

2
i , . . . , s

T
i ),

where sti ∈ Ai and for t > 1, sti : A
t−1 → Ai.

An n-tuple of strategies, s, inductively defines an outcome path (a1(s), a2(s), . . . , aT (s))
of the gameG(T ) as follows: a1(s) = s1 and for t > 1, at(s) = st

(
a1(s), . . . , at−1(s)

)
It is denoted by the function:

si :
⋃
t≥0

Ht → Ai (5.2)

A strategy of incredible importance in this paper is the ‘Grim Trigger Strat-
egy’ (a strategy where you always cooperate until someone defects), which is
represented as the following:

si
(
ht
)
=

{
Ci if t = 0 or ht = (C,C, . . . , C)

Di otherwise
(5.3)

To determine the payoffs, we suppose the strategies s1, . . . , sn are played
which lead to an infinite sequence of action profiles a0, a1, . . . , at, at+1, . . ., there-
fore making the payoff of player i in a repeated game:

∞∑
t=0

δtui

(
at
)

(5.4)

where ‘δ’ is used to represent the discount factor, which is defined below.

Definition 5.5. In a game, a discount factor is a value 0 ≤ δ ≤ 1 used to
represent a player’s pure time preference.

Its interpretation corresponds to

δ = e−r∆ (5.5)

In the above equation, r denotes the rate of time preference and ∆ denotes
the length of the period. The discount factor can represent the probability of
the game terminating at the end of each period.

To compute payoffs in a repeated game, consider is the strategy profile
si(h

t) = Ci for all i = 1, 2 for all ht. In this case, player 1’s repeated game
is given by:
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∞∑
t=0

δt =
1

1− δ
(5.6)

Using the above information, we can finally define an infinitely repeated
game.

Definition 5.6. Given a stage game G, let (∞, δ) denote the infinitely repeated
game (IR)in which G is repeated infinitely and the players share a discount
factor. For each t, the outcomes of the t− 1 preceding plays of the stage game
are observed before the tth stage begins. Each player’s payoff in G(∞, δ) is the
present value of the player’s payoffs from the infinite sequence of stage games.

(in simpler terms, an IR game is a situation where players always believe
that the game extends one more period with high probability)

The notation and definitions presented above are adapted from Rubenstein
(1979) [8].

6 Key Concepts in Folk Theorems

Definition 6.1. In this paper, a Nash Equilibrium in a subgame is an action
profile a∗i (a∗i ∈ Ai) for player i, where, for all i ∈ N and si ̸= s∗i ,

ui

(
s∗i , s

∗
−i

)
≥ ui

(
si, s

∗
−i

)
(In other words, A Nash equilibrium is a strategy profile s∗i with the property

that no player i can do better by choosing a strategy different from s∗i , given
that every other player −i adheres to s∗−i)

(For reference, in the Prisoner’s Dilemma, the Nash Equilibrium is (D,D).

We now prove Nash’s equilibrium using definition 6.2, and after this, we will
explain how it applied to pure strategies [4].

Theorem 6.2. (Nash 1950) There exists a mixed Nash Equilibrium in all strate-
gic form games.

To prove this, we will apply Kakutani’s fixed point theorem to the players’
reaction correspondences, where the Nash equilibrium is the said fixed point.

Definition 6.3. Player i’s reaction correspondence ‘r’ maps each strategy pro-
file s to mixed strategies that maximise i’s payoff when −i plays s−i. In partic-
ular,

r(s−i) = argmaxsi∈Si
ui ( si, s−i)

Theorem 6.4. (Kakutani, 1938) In a non - empty, compact, and convex space,
under certain conditions, there will be a point within this space that gets mapped
by a special function to a set containing itself.
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A fixed point of r is a s such that s ∈ r(s), so that, for player i, si ∈ ri(s).
A fixed point of r is the Nash Equilibrium.

Therefore, to satisfy Kakutani’s fixed - point theorem for r : S → S in this
paper, we need to satisfy 4 conditions:

1. S is a compact, convex nonempty subset of a Euclidean space.

2. r(s) is non-empty for all s.

3. r(s) is convex for all s.

4. it has a closed graph (this is the same as upper - hemicontinuity)

Before we prove these conditions, consider the following definitions:

Definition 6.5. Convexity A set C ⊂ Rm is convex if for every x, y ∈ C
and λ ∈ [0, 1], λx + (1 − λ)y ∈ C. For vectors x0, . . . , xn and nonnegative
scalars λ0, . . . , λn satisfying

∑n
i=0 λi = 1, the vector

∑n
i=0 λix

i is called a convex
combination of x0, . . . , xn. For example, a cube is a convex set in R3; a bowl is
not.

Definition 6.6. n-simplex An n-simplex, denoted x0 · · ·xn, is the set of all
convex combinations of the affinely independent set of vectors

{
x0, . . . , xn

}
, i.e.

x0 · · ·xn =

{
n∑

i=0

λix
i : ∀i ∈ {0, . . . , n}, λi ≥ 0; and

n∑
i=0

λi = 1

}
.

Each xi is called a vertex of the simplex x0 · · ·xn and each k-simplex xi0 · · ·xik

is called a k-face of x0 · · ·xn, where i0, . . . , ik ∈ {0, . . . , n}.

We will now prove the existence of a Nash Equilibrium,

Proof. Condition 1: Each Si is a simplex of dimensions (the number of Si−1).
Each player’s payoff function is linear, and is therefore continuous in his own
mixed strategy, therefore, condition 1 is satisfied.

Condition 2: Continuous functions on compact sets attain maxima, hence
satisfying condition 2.

Condition 3: We prove this by contradiction. If r(s) were not convex, there
would be a s′ ∈ r(s), a s′′ ∈ r(s) and a λ ∈ (0, 1) such that λs′+(1−λ)s′′ /∈ r(s).
But for each player i,

ui(λs
′
i + (1− λ)s′′i , s−i) = λui(s

′
i, s−i + (1− λ)ui(s

′′
i , s−i

therefore, if s′i and s′′i are the best responses to s−i, then so is their average.
This contradicts the statement we made, therefore confirming statement 3.

Condition 4: We also prove this by contradiction. If violated, there is a
sequence

(sn, ϱn) → (s, ϱ), ϱn ∈ r(sn), ϱ /∈ r(s)
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Then, ϱi /∈ ri(s) for player i. Thus, there is an ε > 0 and a s′i such that
ui (s

′
i, s−i) > ui (ŝi, s−i) + 3ε. Considering that ui is continuous and (sn, ϱn) →

(s, ϱ), we have,

ui

(
s′i, s

n
−i

)
> ui (s

′
i, s−i)− ε > ui (ŝi, s−i) + 2ε > ui

(
ŝni , s

n
−i

)
+ ε.

Therefore, s′i does strictly better against sni than ϱni does, which contradicts

the claim ϱni ∈ ri(s
n). Thus, condition 4 is verified.

Definition 6.7. A minimax strategy is a decision rule used to minimize the
worst-case potential loss, where each player minimizes the maximum payoff
possible for the other. For player i, it is denoted by:(

M i
1, . . . ,M

s
i−1,M

i
i+1, . . . ,M

i
n

)
∈ argmin

s−j

max
si

Gi (si, s−i) .

[9]

Definition 6.8. v is player i’s reservation value, where we refer to (v∗1 , . . . , v
∗
n)

as the minimax point, and v∗i is the smallest payoff that the players can keep
player player i below. (In any equilibrium of G, whether or not it is repeated,
player i’s expected average payoff must be at least v∗i . v

∗
j can be denoted by:

v∗j ≡ max
aj

gj

(
aj ,M

j
−j

)
= gj

(
M j

)
.

Definition 6.9. In a repeated game, a strategy profile is a subgame perfect
equilibrium if it represents a Nash equilibrium of every subgame of the original
game. This is also called a perfect equilibrium [2].

Remark 6.10. It is important to note that the strategy profiles of perfect equi-
libria may differ from those in Nash Equilibrium. We demonstrate this in the
following proposition.

Proposition 6.11. In the infinitely repeated prisoners’ dilemma, if δ ≥ 1
2 there

is an equilibrium in which (C, C) is played in every g

Proof. Considering the ’Grim Trigger’ strategy profile. To prove that there is
no profitable single deviation, suppose D has already been played. Then, player
i has two choices:

1. Play C for a payoff of −1+ δ×0+ δ2×0+ . . . = −1 (referring to equation
6.4)

2. Play D for a payoff of 0 + δ × 0 + δ2 × 0 + . . . = 0

Assuming that player i will want to maximise his payoff, player i should play
D. Now, assume D has not been played, then, player i will have 2 choices:
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1. Play C for a payoff of 1 + δ + δ2 + . . . = 1/(1− δ)

2. Play D for a payoff of 2 + δ0 + δ2 × 0 + . . . = 2.

Therefore, we prove that, for δ ≥ 1
2 it is best to play C. So we have a perfect

equilibrium.

Remark 6.12. We cannot say that people always cooperate when they interact.
Cooperation is only one possible SPE outcome. There are many others.

1. For any δ, there is a SPE in which players play D in every period this is
because (D, D) is the Nash Equilibrium.

2. For δ ≥ 1
2 , there is a SPE in which the players play D in the first period

and C in every following period.

3. For δ ≥ 1√
2
, there is a SPE in which the players alternate between (C,C)

and (D,D).

In an infinitely repeated game, one uses the single-deviation principle in
order to check whether a strategy profile is a subgame-perfect Nash equilibrium.
In such a game, single-deviation principle takes a simple form and is applied
through augmented stage games.

Definition 6.13. Augmented stage game for s∗ and g is the same game as the
stage game in the repeated game except that the payoff of each player i from
each terminal history h of the stage game is:

Ui (h | s∗, g) = ui(h) + δPVi,t+1 (g, h, s
∗)

where PVi,t+1(h, g, s
∗) is the present value of player i at t + 1 from the

payoff stream that results when all players follow s∗ starting with the history
(g, h) = (a0, . . . , h), which is a history at the beginning of date t+ 1.

Definition 6.14. An outcome of a game is Pareto dominated if some other
outcome would make at least one player better off without making another
player worse off.

7 Existence of Nash Equilibria in IR games with
discounting

In this section, we will be proving the existence of a Nash Equilibrium in
infinitely repeated games with discounting [5] [7] .

We normalise the payoffs of game g so that

(v∗1 , . . . , v
∗
n) = (0, . . . , 0)
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. Let
U = { {(v1, . . . , vn) | ∃ (a1, . . . , an) ∈ A1 × · · · ×An

with g (a1, . . . , an) = (v1, . . . , vn)} ,
where v ∈ V , and V is a convex hull of U, consisting of feasible payoffs, these

are strictly individually rational payoffs.

Fig 7.1 - Individually rational payoffs in the Prisoner’s Dilemma

V ∗ = (v1, . . . , vn) ∈ V |vi > 0∀i

V ∗ consists of feasible payoffs that pareto dominate the minimax point.

7.1 The Classical Folk Theorem

We now introduce the primary folk theorem, which is more commonly known
as the classical folk theorem.

Theorem 7.1. (Friedman, 1971) For any (v1, . . . , vn) ∈ V ∗, if players discount
the future sufficiently little, there exists a Nash equilibrium of the infinitely re-
peated game, where, for all i, player i’s average payoff is vi [3].

The following one is short and basic, but will be built upon in the rest of
the paper, providing more information.

Proof. Let (s1, . . . , sn ∈
∏n

i∈I Ai be a vector of strategies, or, if necessary, cor-
related strategies, such that g(si . . . , sn) = (v1, . . . , vn). Using the concept of
the grim trigger strategy (6.3), so when player i plays si until some player −i
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deviates from s−i (if more than one player deviate simultaneously, we can sup-
pose that the deviations are ignored). Then, we assume player i plays M−i

i to
minimax his opponents payoff. We can say that these strategies form a Nash
Equilibrium if there isn’t a lot of discounting (in other words, players’ pure -
time preferences remain the same). This is because any momentary gain may
be accrue to player −i if she deviates from s−i and is swamped by the prospect
of being minimaxed forever after. Therefore, both players will be playing their
best responses (for example, in the prisoner’s dilemma, defecting is the best
response for each player, therefore the nash equilibrium is (D, D), however, in
the following proposition, we show how equilibria differ from nash equilibria in

a game played once).

[6]
For the above proof, Forges, Mertens and Neyman hypothesised that ensur-

ing that the vi’s are positive is important.

7.2 The Folk Theorem in the context of Pareto Domi-
nance

Theorem 7.2. If (vn, . . . , vn) ∈ V ∗ Pareto dominates the payoffs (u1, . . . , un)
of a (one-shot) Nash equilibrium (e1, . . . , en) of g, then, if players discount the
future sufficiently little discounting, there exists a perfect equilibrium of infinitely
repeated game where, for all i, player i’s average payoff is vi.

Proof. Suppose that players play actions that sustain (v1, . . . , vj) until some-
one deviates, after which they play (e1, . . . , en) forever. With sufficiently little

discounting, this behavior constitutes a perfect equilibrium.

7.3 Aumann-Shapely/Rubinstein strategies

We now look into Aumann-Shapely/Rubinstein [1] [9] strategies, as in the
theorem below.

Theorem 7.3. (Aumannmann-Shapley/Rubinstein): For any (v1, . . . , vn) ∈
V ∗, there exists a perfect equilibrium in the infinitely repeated game with no
discounting, where for all i, player i’s expected payoff each period is vi.

Here, it is important to note that If there is no discounting, the sum of
single-period payoffs cannot serve as a player’s repeated game payoff since the
sum may not be defined. Aumann and Shapley use the average payoff, and
Rubinstein considers both this and the overtaking criterion, and the sketch of
the proof we offer corresponds to this latter rule.

Remark 7.4. Aumann-Shapely and Rubenstein arguements suggest that only
pure strategies have been played, which leads to a smaller equilibrium set.
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Proof. We use the idea of Grim-Trigger strategies (refer to 6.3).
Consider the following events:

1. As long as previously, everyone has cooperated, player i will continue to
play their strategies si, leading to a payoff vector of vi.

2. some player −i defects

3. they are minimaxed long enough to eliminate possible gains obtained from
their defection.

4. Once the punishment is completed, players continue to play their sis.

These events lead to 2 outcomes:

1. Punishers are compelled to carry out their minimaxing by the possibility
that, should one of them stray from their plan, the others will minimax
her for a length of time that will render the deviation unnecessary.

2. Her punishers will be punished if any one of them deviates.

Therefore, it is suitable to conclude that considering these punishments, a
player’s best response (assuming everyone has previously cooperated) is cooper-
ation. And considering that every player is cooperating, the game is in a Nash

Equilibrium.

Proposition 7.5. We cannot use the Aumann-Shapley/ Rubinstein (AS/R)
strategies once there is discounting.

Remark 7.6. If there was discounting, strategies would not be able to sustain
all individually rational points.

Proof. Using the following version of the Prisoner’s Dilemma,

1, 1 0,−2

−2, 0 −1,−1

cooperate(C) defect(D)

cooperate

defectP
la
ye
r
1

Player 2

Fig 7.3.1 - Another version of The Prisoner’s Dilemma

the minimax point is (0,0), and therefore, a ”folk theorem” would require
us to sustain strategies that choose (C,C) for (ε+ 1)/2 (where 0 < ε < 1) and
(D,D) for the remaining amount of time (refer to proposition 6.11). Keeping
the proof for proposition 6.11 in mind, note that for δ near 1, these strategies
yield average payoffs of approximately (ε, ε), which are individually rational.
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However, Rubenstein’s theorem states that such behavior cannot be part of
an AS/R equilibrium. Suppose player i played C in a period where she was
supposed to play D, in an AS/R equilibrium, player−i would punish i by playing
D for a time long enough to deem the advantage player i’s deviation brought
forward redundant. i’s gain from the deviation is 1, and i’s best response to D
is C, with a payoff of 0. So, if the punishment lasts t1 periods, t1 must satisfy:

δε(1− δt1)

1− δ
> 1 + t1 × 0 = 1

that is,

t1 >
log

(
εδ−1+δ

δε

)
log δ

. (7.1)

equation 7.1 is satisfied as long as

δ >
1

1 + ε
(7.2)

However, in order to punish player i, −i would need to suffer a payoff of -2
for t1 periods. ds. To induce him to submit to such self-laceration, he must be
threatened with a t2-period punishment, where

−2
(1− δt1)

1− δ
+

δt1ε
(
1− δt2−t1+1

)
1− δ

> 1

when

t2 > −1 + log
δt1ε− 3 + 2δt1 + δ

ε
/ log δ (7.3)

t2 exists when

δt1ε− 3 + 2δt1 + δ > 0

which requires a δ such that

δ > (
2

2 + ε
)1/t1 (7.4)

7.4 is stricter than 7.2 since

(2/(2 + ε))1/t1 >
1

1 + ε

Continuing iteratively, we find that, for successively higher order punish-
ments, δ is bounded below by a sequence of numbers converging to 1 . Since
δ < 1, however, this is impossible, and so an AS/R equilibrium is impossi-

ble.
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7.4 The existence of Perfect Equilibria

In theorem 7.1, we introduce the existence of Nash equilibria in repeated
games. Now, we prove the existence of perfect equilibria.

Theorem 7.7. Suppose that the set of feasible payoffs of G is I-dimensional.
Then, for any feasible and strictly individually rational payoff vector v, ∃$δ such
that, for any δ ≥ δ, there is a perfect equilibrium s∗ of G such that the average
payoff vector to s∗ is vi for player i.

Remark 7.8. The Folk Theorem says that anything that is individually rational
is possible.

Proof. When players play an action profile with payoff v, if some player i devi-
ates, he will be punished by getting minimaxed by the others, as they play some
s−i for T periods. From this, the maximum he can get is vi. After the punish-
ment, the players other than i get rewarded for carrying out their punishments.
In order for this to happen, switch to an action profile that allows players −i a

payoff v−i, where −i > v−i

Keep in mind, the above proof was a basic version and doesn’t take into
account several anomalies. We now introduce a slight refinement of Theorem
7.9 by Fudenberg and Maskin and a proof that follows it, which, hopefully,
provides a firm understanding of the existence of perfect equilibria.

Theorem 7.9. For any (v1, v2) ∈ V ∗,∃δ ∈ (0, 1) such that, ∀δ ∈ (δ, 1), there
exists a subgame perfect equilibrium of the infinitely repeated game in which
player i’s payoff is vi when players have a discount factors δ.

Remark 7.10. Since the proof of this theorem for 3 or more players is pretty
involved, we prove this for two players.

Proof. Let M1 be player ones’s minimax strategy against two, and let M2 be
player two’s minimax strategy against one. Take

v̄i = max
a1,a2

gi (a1, a2)

.
For (v1, v2) ∈ V ∗, choose v and δ such that, for i = 1, 2,

vi > v̄i(1− δ) + δv∗∗i , (7.5)

where

v∗∗i = (1− δν) gi (M1,M2) + δνvi, (7.6)

and

v∗∗ > 0 (7.7)
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Finally, to confirm that v and δ exist, choose δ close enough to 1 so that

vi > v̄i(1− δ) (7.8)

and (7.7) holds for when

v = 1

If, with v = 1, (7.5) is violated, considering that we are raising v. From 7.8,
7.5 will eventually be satisfied. For δ close to 1, (7.6) declines as v increases, by
taking δ near enough to 1 we can ensure that (7.7) will be satisfied for the first
v for which (7.5) holds.

(7.5) guarantees that player i prefers receiving vi forever to receiving his
maximum possible payoff (v̄i) once, then receiving gi (M1,M2) for ν periods,
and receiving vi thereafter. (7.7) ensures that being punished for deviating is
still better than receiving the reservation value, zero, forever. Clearly, for any
δ > δ there is a corresponding ν(δ) such that (7.5) and (7.7) hold for (δ, ν(δ) ).

Let (s1, s2) be correlated one-shot strategies corresponding to (v1, v2) : gi (s1, s2) =
vi. Consider the following repeated game strategies for player i : (A) Play si
each period as long as (s1, s2) was played last period.

After any deviation from (A): (B) Play Miν(δ) times and then start again
with (A). If there are any deviations while in phase (B), then begin phase (B)
again.

These strategies form a subgame-perfect equilibrium. This is because (7.5)
guarantees that deviation is not profitable in phase (A). In phase (B), player i
receives an average payoff of at least v∗∗i by not deviating. If he deviates, he can
obtain at most 0 in the first period (because his opponent, −i, is playing M−i

), and thereafter can average at most v∗∗i . Hence deviation is not profitable in

phase (B).

7.5 The lower - hemicontinuity of perfect equilibria pay-
offs

Since we have proven the existence of perfect equilibria, we now investigate
the lower hemi-continuity of the perfect equilibrium average payoff correspon-
dence. This is where the discount factor is the independent variable. Using this
knowledge, we investigate whether Theorem 7.1 holds for perfect equilibrium,
instead of Nash Equilibrium.

Theorem 7.11. Let V (δ) = {(v1, . . . , vn) ∈ V ∗ | (v1, . . . , vn) are the average
payoffs of a perfect equilibrium of the infinitely repeated game where players
have discount factor δ}. The correspondence V (·) is upper hemicontinuous at
any δ < 1.

Remark 7.12. We find it easier to show that V (·) cannot be lower hemicontin-
uous at δ < 1.
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Proof. We prove this by contradiction. Using the version of the prisoner’s
dilemma in Fig. 6.1 Using information from remark 7.3, For δ < 1/2 there
are no equilibria of the repeated game other than players’ choosing ·D every pe-
riod. However at δ = 1/2 many additional equilibria appear, including playing
C each period until someone deviates and thereafter playing D. Thus V (·) is

not lower hemicontinuous at δ = 1/2.

This corresponds to the initial proof of the Nash Equilibrium (see Theorem
7.4) and the fact that it was a closed graph (upper hemi-continuity). With this,
we conclude the information that we had to share in this paper.

8 Axelrod’s tournament

Considering that you’ve made it so far, you are clearly interested in the
theory of repeated games! Let me leave you with one last bit of information;
about an experiment carried out by Robert Axelrod (University of Michigan)
in 1979, where game theorists submitted strategies run by computers to play a
repeated version of the prisoner’s dilemma [?].

Some of the strategy submissions included:

1. Always cooperate

2. Always Defect

3. Random, where players cooperated 50% of the time

4. Tit for tat, where the strategy cooperates on the first move, and then does
whatever its opponent has done on the previous move.

5. Tit for two tats

The winner of Axelrod’s tournament was the ’Tit for Tat’ strategy, this is
becauase, when matched against the all-defect strategy, TIT FOR TAT strategy
always defects after the first move. When matched against the all-cooperate
strategy, TIT FOR TAT always cooperates. This strategy has the benefit of both
cooperating with a friendly opponent, getting the full benefits of cooperation,
and of defecting when matched against an opponent who defects. When matched
against itself, the TIT FOR TAT strategy always cooperates.

Interestingly, beyond the realm of theoretical abstraction, tit for tat strategy
found practical utility in diverse fields, ranging from conflict resolution to social
psychology. Its simplicity and effectiveness rendered it a valuable tool for miti-
gating conflicts, with research indicating its efficacy in fostering cooperation and
defusing tensions. By leveraging the principles of reciprocity and behavioural
assimilation, tit for tat offered a pragmatic framework for navigating complex
social dynamics, facilitating trust-building and conflict mitigation.
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