Nonstandard Methods In Ramsey Theory

Jayadev Ghanta

July 8, 2024

Jayadev Ghanta

Nonstandard Methods In Ramsey Theory

July 8, 2024

→

< 1⁻

Motivations for Using Nonstandard Methods in Infinite Ramsey's Theorem

1. Simplification of Proofs

- Nonstandard methods streamline complex proofs in Ramsey theory.
- Hyperfinite sets and ultrafilters simplify intricate combinatorial arguments.
- Reduces the need for elaborate traditional proofs, making them more intuitive.

2. Integration of Mathematical Fields

- Combines elements from combinatorics, logic, and analysis.
- Shows how nonstandard analysis bridges gaps between different mathematical areas.
- Demonstrates the versatility and power of nonstandard techniques in solving combinatorial problems.

Relevance of Filters and Ultrafilters

- Central in capturing the notion of "limit" in mathematics
- Used in various branches of mathematics including topology, analysis, and combinatorics
- Allow generalization of the concept of limits beyond simple sequences to more complex structures

What is a Filter?

- **Definition:** A (proper) filter on an infinite set S is a set F of subsets of S such that:
 - $\emptyset \notin \mathcal{F}, S \in \mathcal{F}$
 - If $A, B \in \mathcal{F}$, then $A \cap B \in \mathcal{F}$
 - If $A \in \mathcal{F}$ and $A \subseteq B \subseteq S$, then $B \in \mathcal{F}$
- \bullet Elements of ${\cal F}$ are considered "big" sets
- The first and third axioms are intuitive properties of big sets
- The second axiom: If complements of big sets are "small", the union of small sets is small

What is an Ultrafilter?

• A filter \mathcal{U} on a set S that is maximal, meaning:

▶ For every subset $A \subseteq S$, either $A \in U$ or $S \setminus A \in U$ (but not both)

- Extends the notion of limit to sequences or nets that might not converge traditionally
- On a compact space, ultrafilters always have a limit
- Useful in asymptotic or limiting arguments, compactness proofs, and nonstandard analysis

Introducing Nonstandard Analysis

Basics of Nonstandard Analysis

- Infinitesimals: Extremely small numbers, smaller than any positive real number.
- ► Infinite Numbers: Larger than any natural number.

• Hyperreal Numbers (*R)

- Extension of real numbers.
- Contains infinitesimals and infinite numbers.

Standard Part

• Every finite hyperreal number is close to a unique real number called the *standard part*.

• Hypernatural Numbers (*N)

- Extends natural numbers to include infinite values.
- Not well-ordered (no smallest infinite number).

The Star Map and Transfer Principle

• Nonstandard Extensions:

- $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ extend to $*\mathbb{N}, *\mathbb{Z}, *\mathbb{Q}, *\mathbb{R}$.
- Every mathematical object A has a hyper-extension *A.
- Star Map:
 - The star map extends objects to their nonstandard versions.

Transfer Principle:

• If an elementary property *P* holds for A_1, \ldots, A_n , it holds for $*A_1, \ldots, *A_n$.

• Elementary Properties:

- Defined using basic logical connectives and quantifiers.
- Examples include equality, membership, and functions.

Elementary Properties and Practical Examples

• Elementary Properties:

- $\blacktriangleright a = b \iff *a = *b$
- $\bullet \ a \in A \iff *a \in *A$
- If $A \subseteq B$, then $*A \subseteq *B$.

• Examples:

▶
$$*(\{a_1, ..., a_k\}) = \{*a_1, ..., *a_k\}$$

▶ $*(A \cup B) = *A \cup *B$
▶ $*(f(a)) = (*f)(*a)$

< A >

→ Ξ →

э

Introduction to Hyperfinite Sets (Part 1)

Definition:

- ► A hyperfinite set *A* is an element of the hyper-extension **F* of a family *F* of finite sets.
- Hyperfinite sets are internal objects.

Key Properties:

- A subset $A \subseteq *X$ is hyperfinite if and only if $A \in *Fin(X)$, where $Fin(X) = \{A \subseteq X \mid A \text{ is finite}\}.$
- 2 Every finite set of internal objects is hyperfinite.
- A set of the form *X for some standard set X is hyperfinite if and only if X is finite.
- If $f : A \to B$ is an internal function, and $\Omega \subseteq A$ is hyperfinite, then $f(\Omega)$ is hyperfinite.

Introduction to Hyperfinite Sets (Part 2)

• Examples:

- For every pair N < M of (possibly infinite) hypernatural numbers, the interval [N, M] ⊆ *N is hyperfinite.</p>
- ▶ Hyperfinite sequences: Internal functions with hyperfinite domains, e.g., $[1, N] \subseteq *N$.

• Cardinality:

The internal cardinality |A|_h of a hyperfinite set A is the unique hypernatural number α such that there exists an internal bijection f : [1, α] → A.

• Applications:

• Hyperfinite sums: For $f : A \to \mathbb{R}$ and hyperfinite $\Omega \subseteq *A$,

$$\sum_{\xi\in\Omega}*f(\xi)=*S_f(\Omega)$$

where S_f : Fin(A) \ { \emptyset } $\to \mathbb{R}$.

Hyperfinite Generators and Ultrafilters

Understanding Hyperfinite Generators:

- What are Hyperfinite Generators?
 - Hyperfinite Sets: Infinite sets that behave like finite sets in many ways.
 - Ultrafilters: Special tools used to understand the structure of sets.

• How They Connect:

- Elements in a hyperfinite set can create ultrafilters on the original set.
- For any element α in a hyperfinite set *S, the collection of subsets of S that include α (denoted U_α) forms an ultrafilter on S.

• Key Points:

- If α ∈ S, then U_α is a principal ultrafilter (focused on a specific element).
- ▶ If $\alpha \notin S$, U_{α} is a *non-principal* ultrafilter (not focused on any single element).

• Visualizing with Colorings:

Think of assigning colors to elements of S. Two elements α and β in *S are equivalent if they are colored the same way by every coloring.

・ロト ・ 同ト ・ ヨト ・ ヨト

Introducing Infinite Ramsey's Theorem

What is a Graph?

- A graph consists of:
 - Vertices (V): The points or nodes of the graph.
 - **Edges (E):** Connections between vertices, forming pairs (*x*, *y*).
- The edges are **anti-reflexive** (no loops) and **symmetric** (if (x, y) is an edge, so is (y, x)).

Key Terms:

- **Clique:** A set of vertices where each pair of vertices is connected by an edge.
- Anticlique: A set of vertices where no two vertices are connected by an edge.

Infinite Ramsey's Theorem (For Pairs)

- In any infinite graph (V, E), you will always find:
 - An **infinite clique** (a set of vertices where every pair is connected).
 - Or an infinite anticlique (a set of vertices where no two are connected).

3

Proof of Ramsey's Theorem for Pairs - Part 1

Setting Up:

- Consider an infinite graph (V, E), where V is the set of vertices and E is the set of edges.
- Let ξ be an element of the nonstandard extension *V that is not in
 V. We examine (ξ, *ξ) ∈ * * V.

Two Cases:

- There are two possibilities for $(\xi, *\xi) \in * * V$:
 - Case 1: $(\xi, *\xi) \in * * E$ (focus of this proof).
 - Case 2: $(\xi, *\xi) \notin * * E$ (handled similarly).

Recursive Construction:

• Define a sequence (x_n) of distinct vertices from V.

• Assume $x_0, x_1, \ldots, x_{d-1}$ are such that:

- For all $1 \le i < j < d$, $(x_i, x_j) \in E$ (forming a clique).
- ▶ For each *i*, $(x_i, \xi) \in *E$ (edge in the nonstandard extension).

Proof of Ramsey's Theorem for Pairs - Part 2

Finding *x*_d:

- To extend the clique, we need:
 - A vertex $y \in *V$ such that:
 - * $y \neq x_i$ for all i < d (ensuring distinctness),
 - ★ $(x_i, y) \in *E$ for all i < d (ensuring connectivity),
 - ★ $(y, *\xi) \in * * E$ (ensuring edge (x_d, ξ) in the nonstandard extension).
- By the transfer principle, if this holds, then there exists $x_d \in V$ such that:
 - x_d is distinct from x_i,
 - $(x_i, x_d) \in E$ for all i < d,
 - $(x_d,\xi) \in *E.$

Conclusion:

• By continuing this recursive process, an infinite clique in V is found, showing that an infinite graph contains either an infinite clique or an infinite anticlique.

Ramsey's Theorem for *m*-Regular Hypergraphs

Theorem

If (V, E) is an infinite m-regular hypergraph, then (V, E) contains an infinite clique or an infinite anticlique.

What is an *m*-Regular Hypergraph?

- Vertices (V): The set of points or nodes in the hypergraph.
- Edges (*E*): Instead of edges connecting pairs of vertices (as in simple graphs), in an *m*-regular hypergraph, edges are *m*-tuples (subsets of *m* distinct vertices).

Definitions:

- **Clique:** An *m*-tuple of vertices where every possible *m*-subset of vertices is part of the hypergraph *E*.
- Anticlique: An *m*-tuple where no *m*-subset is part of *E*.

< 口 > < 同 > < 回 > < 回 > < 回 > <

Ramsey's Theorem for 3-Regular Hypergraphs

Theorem

If (V, E) is an infinite 3-regular hypergraph, then (V, E) contains an infinite clique or an infinite anticlique.

Proof:

- Consider $\xi \in *V$ such that $\xi \notin V$.
- **2** Two cases: $(\xi, *\xi, **\xi) \in **E$ or not. We handle the first case.

Ramsey's Theorem for 3-Regular Hypergraphs (cont.)

Construction:

- Define a sequence (x_n) in V forming a clique.
- Suppose $d \in \mathbb{N}$ and $x_0, ..., x_{d-1}$ are distinct in V such that:

•
$$(x_i, x_j, x_k) \in E$$

$$(x_i, x_j, \xi) \in *E$$

$$(x_i,\xi,*\xi)\in **E$$

Recursive Step:

• Statement: There exists $y \in *V$ such that:

•
$$y \neq x_i$$
 for $1 \leq i < d$

•
$$(x_i, x_j, y) \in *E$$
 for $1 \leq i < j < d$

•
$$(x_i, y, *\xi) \in * *E$$
 for $1 \le i < d$

$$(y, *\xi, **\xi) \in ***E$$

• ξ confirms this statement in *V. By transfer, there exists $x_d \in V$ distinct from x_i for $1 \le i < d$ maintaining these properties.

This concludes the recursive construction, proving the theorem.

ヘロト 不得 トイヨト イヨト

Motivation for Ramsey's Theorem

• Understanding Combinatorial Structures:

- Reveals deep insights into the structure of combinatorial objects.
- Shows that large, well-structured subsets always exist, regardless of how elements are organized or colored.
- Aids in analyzing and predicting complex systems' behavior in various fields.

• Generalizing Patterns in Infinite Structures:

- Extends finite pattern concepts to infinite sets.
- Provides a way to grasp how patterns emerge and persist in larger structures.
- Broadens the application of combinatorial principles to solve problems involving infinite sets and processes.