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1 Introduction

This paper explores the application of nonstandard methods to the Infinite
Ramsey’s Theorem, highlighting how ultrafilters, nonstandard analysis, and hy-
perfinite generators contribute to our understanding of combinatorial structures
in infinite graphs and hypergraphs. The discussion begins with an introduction
to ultrafilters and their crucial role in nonstandard analysis, providing a founda-
tion for analyzing infinite combinatorial systems. We then delve into the basics
of nonstandard analysis, including the transfer principle and its implications for
extending classical results.

The concept of hyperfinite generators is introduced to illustrate how finite
structures can approximate infinite combinatorial configurations. We explore
the use of many stars and iterated nonstandard extensions to construct and
analyze large combinatorial objects. By employing these techniques, we demon-
strate how infinite Ramsey’s theorem can be effectively proven in the context
of hypergraphs and general hypergraph theory.

The paper aims to bridge classical combinatorial results with modern non-
standard analytical methods, offering a comprehensive view of how these tools
can be applied to solve problems in infinite Ramsey theory.[3]

3



2 Ultrafilters

Ultrafilters are a fundamental concept in topology and set theory, playing a
crucial role in various branches of mathematics, including nonstandard analy-
sis. They can be seen as a tool for selecting ”large” subsets of a given set in
a maximal way, and they have profound implications in understanding conver-
gence, compactness, and other topological properties.

2.1 Definition and Basic Properties

Definition 2.1. Given an infinite set S, a filter F on S is a collection of subsets
of S that satisfies the following properties:

1. ∅ /∈ F .

2. If A ∈ F and A ⊆ B ⊆ X, then B ∈ F .

3. If A,B ∈ F , then A ∩B ∈ F .

We consider the elements of F as ”large” sets since filters generally capture
large sets. The first and third properties should be intuitively clear for large sets.
The second property might be less obvious, but if we think of the complement
of a large set as ”small,” then the second property implies that the union of two
small sets is also small, which makes sense intuitively.

Definition 2.2. If F is a filter on S, then F is an ultrafilter if, for any A ⊆ S,
either A ∈ F or S \A ∈ F (but not both!).

A filter U on X is called an ultrafilter if it is maximal, meaning that for
every subset A ⊆ X, either A ∈ U or X \A ∈ U , but not both. In other words,
an ultrafilter U cannot be extended to a larger filter on X. Let’s take a quick
look at an exercise to explore this topic further.

Exercise 2.3. Suppose that F is a filter on S. Then F is an ultrafilter on S if
and only if it is a maximal filter, that is, if and only if, whenever F ′ is a filter
on S such that F ⊆ F ′, we have F = F ′.

Proof. Assume F is an ultrafilter on S. For any filter G on S with F ⊆ G,
consider any A ∈ G. Since F is an ultrafilter, A ∈ F or S \A ∈ F . If S \A ∈ F ,
then S \ A ∈ G, which contradicts G being a filter. Thus, A ∈ F and G ⊆ F .
Hence, F = G, proving F is maximal.

Assume F is a maximal filter on S. For any A ⊆ S, if neither A ∈ F nor
S \A ∈ F , then G = F ∪ {A} would form a filter, contradicting the maximality
of F . Hence, for any A ⊆ S, either A ∈ F or S \ A ∈ F , proving F is an
ultrafilter.

Thus, F is an ultrafilter on S if and only if F is a maximal filter on S.
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2.2 The Space of Ultrafilters βS

Definition 2.4. The space βS is defined as the set of all ultrafilters on a set
S. An ultrafilter on S is a maximal filter, meaning it cannot be extended to a
larger filter. Formally, an ultrafilter U on S satisfies:

• ∅ /∈ U ,

• If A ∈ U and A ⊆ B ⊆ S, then B ∈ U ,

• If A,B ∈ U , then A ∩B ∈ U .

Theorem 2.5. The space βS is equipped with the Stone-Čech topology. For
any subset A ⊆ S, define the set

UA = {U ∈ βS | A ∈ U}.

The sets UA form a basis for the topology on βS. This topology is both compact
and Hausdorff.

Proof. The basis for the topology on βS is given by the sets UA. To show that
βS is compact, we need to demonstrate that any open cover of βS has a finite
subcover. Consider any cover of βS by open sets. Since the basis sets UA are
open and closed in βS, we can extract a finite subcover from any cover consisting
of such basis elements.[5]

To establish that βS is Hausdorff, note that any two distinct ultrafilters in
βS can be separated by disjoint open sets. This follows from the definition
of the Stone-Čech topology, where the open sets UA are designed to separate
points.

Thus, βS is compact and Hausdorff under this topology.

Definition 2.6. The space βS is known as the Stone-Čech compactification of
S. It is the largest compact space containing S as a dense subset. Formally, if
X is any compact space and f : S → X is any function, then there exists an
extension f̃ : βS → X such that f̃ is continuous and f̃ |S = f .

Theorem 2.7. The Stone-Čech compactification βS has the property that every
function from S to any compact space can be extended to a continuous function
on βS. This property makes βS the largest compactification of S in the sense
of function extension.

Proof. By definition, βS is the largest compact space that contains S as a dense
subset. This means that for any compact space X and any function f : S → X,
there exists a continuous extension f̃ : βS → X. The extension f̃ is constructed
using the universal property of βS in the context of compactifications.

Thus, βS provides a framework in which functions from S can be extended to
compact spaces, demonstrating its role as the largest compactification of S.

Exercise 2.8. Show that if F is a filter on S that is not an ultrafilter, then
there exists a filter G on S such that F ⊆ G and F ̸= G.
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Proof. Let F be a filter on S that is not an ultrafilter. This means there exists
some subset A ⊆ S such that neither A ∈ F nor S \ A ∈ F . We can construct
a new filter G by including A in G along with all sets in F .

Define G as:
G = F ∪ {A}.

Since F is not an ultrafilter, A is not in F , and G will be a strictly larger
filter than F . Hence, F ⊆ G and F ̸= G.

Thus, we have shown that such a filter G exists.

2.3 Extending Semigroup Operations to Ultrafilters

Definition 2.9. A semigroup is an algebraic structure consisting of a set
S equipped with a binary operation · that is associative. This means for all
a, b, c ∈ S, the operation satisfies:

(a · b) · c = a · (b · c).

Theorem 2.10. Given a semigroup (S, ·), we can extend the semigroup opera-
tion · to the space of ultrafilters βS. For ultrafilters U and V on S, define the
operation ⋆ on βS as follows:

A ∈ U ⋆ V ⇐⇒ {s ∈ S | s−1 ·A ∈ V } ∈ U.

Here, s−1 ·A represents the preimage of the set A under the operation ·.

Proof. To extend the semigroup operation to ultrafilters, we need to ensure that
the operation ⋆ is well-defined on βS. Given ultrafilters U and V , the operation
⋆ is designed to mimic the original semigroup operation · in the ultrafilter space.
For any subset A ⊆ S:

A ∈ U ⋆ V if and only if {s ∈ S | s−1 ·A ∈ V } ∈ U.

This definition ensures that U ⋆ V correctly extends the operation · from S
to βS, preserving the associative nature of the operation.

Definition 2.11. The operation ⋆ on ultrafilters U and V extends the semi-
group operation · from S to βS. This extension maintains the structure of the
original semigroup in the space of ultrafilters.

Theorem 2.12. The extended operation ⋆ on βS is generally non-commutative.
That is, U ⋆ V ̸= V ⋆ U in general, even if the original semigroup operation · is
commutative.

Proof. The non-commutativity of ⋆ can be shown by considering specific ultra-
filters U and V where the sets involved in the definition of U ⋆ V and V ⋆U are
not symmetrical. Although the operation · itself is commutative, the extension
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to ultrafilters introduces asymmetries because the sets involved in U ⋆ V and
V ⋆ U are not generally the same.

For example, if U and V are chosen such that U ⋆V and V ⋆U differ in their
respective sets, this non-commutativity becomes evident.

Exercise 2.13. Consider a semigroup (S, ·) and ultrafilters U and V on S.
Verify that the extended operation ⋆ defined by

A ∈ U ⋆ V ⇐⇒ {s ∈ S | s−1 ·A ∈ V } ∈ U

preserves the semigroup structure of (S, ·) when extended to βS. Show that this
operation ⋆ is not necessarily commutative.

Proof. To verify that ⋆ preserves the semigroup structure, check that it satisfies
associativity. For ultrafilters U, V, and W , and any subset A ⊆ S, demonstrate
that

A ∈ (U ⋆ V ) ⋆ W if and only if A ∈ U ⋆ (V ⋆ W ).

To show that ⋆ is not necessarily commutative, provide a counterexample
with specific ultrafilters U and V where U ⋆ V ̸= V ⋆ U . This illustrates how
the extension of the operation · to βS may differ from the original semigroup
operation.

2.4 Ultrafilters in Nonstandard Analysis

In the context of nonstandard analysis, ultrafilters are pivotal in constructing
hyperreal numbers and establishing the framework for dealing with infinites-
imals. The hyperreal number system ∗R is an extension of the real number
system R that includes infinitesimally small and infinitely large numbers. This
system is built using sequences of real numbers and ultrafilters on the set of
natural numbers N.

Given an ultrafilter U on N, two sequences (xn) and (yn) of real numbers are
said to be equivalent if they agree on a set that belongs to U . The equivalence
classes of these sequences form the hyperreal numbers. The choice of ultrafilter U
determines the specific hyperreal number system, with nonprincipal ultrafilters
ensuring the inclusion of nonstandard elements.[4]
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3 Nonstandard Analysis

Nonstandard analysis is a branch of mathematics that reformulates classical
analysis using a rigorous framework involving infinitesimals. Introduced by
Abraham Robinson in the 1960s, nonstandard analysis provides an alternative
to the standard epsilon-delta definitions used in calculus and other fields. It
extends the real number system to include infinitesimals and infinitely large
numbers, offering a new perspective on continuity, differentiation, and integra-
tion.

3.1 Introduction to Nonstandard Analysis

To build a foundation for understanding nonstandard analysis, we first need to
define some fundamental concepts related to the ordering of numbers. These
concepts help us distinguish between different types of numbers and their prop-
erties within an ordered field.

Definition 3.1. Let F be an ordered field. An element ϵ ∈ F is called in-
finitesimal (or infinitely small) if for every natural number n, the following
holds:

− 1

n
< ϵ <

1

n
.

Conversely, an element Ω ∈ F is called infinite if either:

Ω > n for every n ∈ N

or
Ω < −n for every n ∈ N.

In nonstandard analysis, distinguishing between finite, infinitesimal, and
infinite elements in a field is crucial. This helps us understand how numbers
behave under different operations and transformations.

Definition 3.2. An ordered field F is called non-Archimedean if it contains
nonzero infinitesimal numbers. Equivalently, F is non-Archimedean if the set
of natural numbers N has an upper bound in F .

The concept of non-Archimedean fields provides insight into fields that ex-
tend beyond the usual real numbers by including infinitesimals. Such fields offer
a broader framework for analyzing limits and continuity.

Definition 3.3. The hyperreal field ∗R is a proper extension of the ordered
field R that includes infinitesimal and infinite numbers. Elements of ∗R are
called hyperreal numbers.

Understanding the hyperreal field is essential for applying nonstandard anal-
ysis to various mathematical problems. It extends the real numbers by incor-
porating both infinitely large and infinitesimally small quantities.
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Definition 3.4. For any finite hyperreal number ξ ∈ ∗R, the standard part
of ξ is the unique real number r ∈ R such that ξ is infinitely close to r. We
denote this standard part by st(ξ). Formally,

st(ξ) = inf{x ∈ R | x > ξ} = sup{y ∈ R | y < ξ}.

The concept of the standard part allows us to connect hyperreal numbers
with their real counterparts. It plays a key role in understanding how hyperreal
numbers approximate real values.

Definition 3.5. The hyperintegers ∗Z form an unbounded discretely ordered
subring of ∗R. For every hyperreal number ξ ∈ ∗R, there exists a hyperinteger
ζ ∈ ∗Z such that

ζ ≤ ξ < ζ + 1.

The hypernatural numbers ∗N are the positive part of ∗Z, that is, ∗N =
{x ∈ ∗Z | x > 0}.

The hyperintegers and hypernatural numbers extend the concept of integers
and natural numbers to include infinite quantities. They are crucial for working
with nonstandard models of arithmetic and analysis.

Definition 3.6. The hyperrational numbers ∗Q are defined as the subfield
of ∗R consisting of elements of the form ξ

ν , where ξ ∈ ∗Z and ν ∈ ∗N.

Hyperrational numbers generalize rational numbers to the hyperreal field,
facilitating operations and functions involving both finite and infinite quantities.
Nonstandard analysis encompasses new properties and structures, which I will
present in the following theorems, which can illustrate key characteristics of the
hyperreal field.

Theorem 3.7. The hyperreal field ∗R is non-Archimedean. Hence, it contains
nonzero infinitesimal and infinite numbers.

Proof. Since ∗R is a proper extension of R, there exists a hyperreal number
ξ ∈ ∗R \ R. If ξ is infinite, the theorem is immediately satisfied. Otherwise, by
the completeness of R, we can consider the number

r = inf{x ∈ R | x > ξ}.

It is straightforward to verify that ξ − r is a nonzero infinitesimal number.

Theorem 3.8. Every finite hyperreal number ξ ∈ ∗R is infinitely close to a
unique real number r ∈ R, which is called the standard part of ξ. That is,

ξ = r + ϵ

where r = st(ξ) and ϵ is infinitesimal.

Proof. By the completeness of R, we set st(ξ) := inf{x ∈ R | x > ξ} = sup{y ∈
R | y < ξ}. By the supremum (or infimum) property, it directly follows that
st(ξ) is infinitely close to ξ. Moreover, st(ξ) is the unique real number with that
property, since infinitely close real numbers are necessarily equal.
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3.2 The Star Map and Transfer Principle

In nonstandard analysis, the star map and transfer principle are essential for
translating properties and operations from the standard to the nonstandard
setting. Understanding these concepts helps in applying nonstandard methods
effectively to various mathematical structures.

Definition 3.9. The star map is a function that extends standard mathemat-
ical objects to their nonstandard counterparts. For any standard mathematical
object A, its hyper-extension is denoted by ∗A, so:

N extends to ∗N, Z extends to ∗Z, Q extends to ∗Q, R extends to ∗R.

The star map provides a way to work with nonstandard versions of mathe-
matical objects, allowing for the exploration of properties and structures beyond
the standard framework.

Definition 3.10. The transfer principle asserts that if a property P is ele-
mentary and holds for a collection of standard objects A1, . . . , An, then it also
holds for their nonstandard counterparts ∗A1, . . . , ∗An. Formally:

P (A1, . . . , An) implies P (∗A1, . . . , ∗An).

The transfer principle is crucial as it guarantees that many properties and
theorems that are valid in the standard setting also apply in the nonstandard
context. The following propositions further illustrate the application of the
transfer principle to more specific mathematical structures:

Proposition 3.11. This proposition describes how various mathematical con-
cepts are preserved under the star map. Specifically:

1. a = b ⇐⇒ ∗a = ∗b.

2. a ∈ A ⇐⇒ ∗a ∈ ∗A.

3. A is a set if and only if ∗A is a set.

4. ∗∅ = ∅.

Furthermore, for sets A and B:

5. A ⊆ B ⇐⇒ ∗A ⊆ ∗B.

6. ∗(A ∪B) = ∗A ∪ ∗B.

7. ∗(A ∩B) = ∗A ∩ ∗B.

8. ∗(A \B) = ∗A \ ∗B.

9. ∗{a1, . . . , ak} = {∗a1, . . . , ∗ak}.

10. ∗(a1, . . . , ak) = (∗a1, . . . , ∗ak).
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11. ∗(A1 × · · · ×Ak) = ∗A1 × · · · × ∗Ak.

12. ∗{(a, a) | a ∈ A} = {(ξ, ξ) | ξ ∈ ∗A}.

For a family of sets F :

12. ∗{(x, y) | x ∈ y ∈ F} = {(ξ, ζ) | ξ ∈ ζ ∈ ∗F}.

13. ∗
(⋃

F∈F F
)
=

⋃
G∈∗F G.

Proposition 3.12. This proposition deals with how the star map affects rela-
tions. Specifically:

1. R is a k-ary relation if and only if ∗R is a k-ary relation.

For binary relations R:

2. ∗{a | ∃bR(a, b)} = {ξ | ∃ζ ∗R(ξ, ζ)}.

3. ∗{b | ∃aR(a, b)} = {ζ | ∃ξ ∗R(ξ, ζ)}.

4. ∗{(a, b) | R(b, a)} = {(ξ, ζ) | ∗R(ζ, ξ)}.

For ternary relations S:

5. ∗{(a, b, c) | S(c, a, b)} = {(ξ, ζ, η) | ∗S(η, ξ, ζ)}.

6. ∗{(a, b, c) | S(a, c, b)} = {(ξ, ζ, η) | ∗S(ξ, η, ζ)}.

Proposition 3.13. This proposition examines the behavior of functions under
the star map. Specifically:

1. f is a function if and only if ∗ f is a function.

For functions f and g and sets A and B:

2. ∗domain(f) = domain(∗f).

3. ∗range(f) = range(∗f).

4. f : A→ B if and only if ∗ f : ∗A→ ∗B.

5. ∗graph(f) = graph(∗f).

6. ∗f(a) = (∗f)(∗a) for every a ∈ domain(f).

7. If f : A → A is the identity, then ∗f : ∗A → ∗A is the identity, that is
∗1A = 1∗A.

8. ∗{f(a) | a ∈ A} = {∗f(ξ) | ξ ∈ ∗A}.

9. ∗{a | f(a) ∈ B} = {ξ | ∗f(ξ) ∈ ∗B}.

10. ∗(f ◦ g) = ∗f ◦ ∗g.
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11. ∗{(a, b) ∈ A×B | f(a) = g(b)} = {(ξ, ζ) ∈ ∗A× ∗B | ∗f(ξ) = ∗g(ζ)}.

Proof. These propositions follow from the transfer principle applied to prop-
erties of sets, relations, and functions. For example, set operations and re-
lationships between elements are preserved in the nonstandard world, ensuring
consistency with their standard counterparts. The preservation of function prop-
erties such as domain, range, and graph are verified by applying transfer to the
corresponding elementary formulas.

3.3 Hyperfinite Sets

In this section, we introduce the concept of hyperfinite sets, which serve as
a crucial tool in nonstandard analysis by bridging the gap between finite and
infinite structures.

Definition 3.14. A hyperfinite set A is an element of the hyper-extension
∗F of a family F of finite sets. Hyperfinite sets are internal objects.

Hyperfinite sets have properties similar to finite sets, which makes them
useful in various applications where we need to handle infinitary notions with
finitary methods.

Proposition 3.15. The following statements characterize hyperfinite sets:

1. A subset A ⊆ ∗X is hyperfinite if and only if A ∈ ∗Fin(X), where
Fin(X) = {A ⊆ X | A is finite}.

2. Every finite set of internal objects is hyperfinite.

3. A set of the form ∗X for some standard set X is hyperfinite if and only if
X is finite.

4. If f : A → B is an internal function, and Ω ⊆ A is hyperfinite, then
f(Ω) is hyperfinite. In particular, internal subsets of hyperfinite sets are
hyperfinite.

Proof.

1. If A is a hyperfinite subset of ∗X, then A is internal, and hence A ∈ ∗P(X).
So, if F is a family of finite sets with A ∈ ∗F , then A ∈ ∗P(X) ∩ ∗F =
∗(P(X) ∩ F ) ⊆ ∗Fin(X). The converse implication is straightforward.

2. Let A = {a1, . . . , ak}, and pick Xi such that ai ∈ ∗Xi. If X =
⋃k

i=1Xi,
then A ∈ ∗Fin(X), as it is easily shown by applying transfer to the ele-
mentary property: “For all x1, . . . , xk ∈ X, {x1, . . . , xk} ∈ Fin(X)”.

3. This follows directly from transfer and the definition of hyperfinite sets.

4. Pick X and Y with A ∈ ∗P(X) and B ∈ ∗P(Y ). Applying transfer
to the property: “For every C ∈ P(X), for every D ∈ P(Y ), for every
f ∈ Fun(C,D) and for every F ∈ Fin(X) with F ⊆ C, the image f(F ) is
in Fin(Y)”.
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Example 3.16. For every pair N < M of (possibly infinite) hypernatural
numbers, the interval

[N,M ]∗N = {α ∈ ∗N | N ≤ α ≤M}

is hyperfinite. This follows from applying transfer to the property: “For every
x, y ∈ N with x < y, the set [x, y]N = {a ∈ N | x ≤ a ≤ y} ∈ Fin(N)”. More
generally, every bounded internal set of hyperintegers is hyperfinite.

Definition 3.17. A hyperfinite sequence is an internal function whose do-
main is a hyperfinite set A. Typical examples of hyperfinite sequences are
defined on initial segments [1, N ] ⊆ ∗N of the hypernatural numbers. In this
case, we use notation {ξν | ν = 1, . . . , N}.

By transfer from the property: “For every nonempty finite set A there exists
a unique n ∈ N such that A is in bijection with the segment {1, . . . , n}”, we
obtain a well-posed definition of cardinality for hyperfinite sets.

Definition 3.18. The internal cardinality |A|h of a nonempty hyperfinite
set A is the unique hypernatural number α such that there exists an internal
bijection f : [1, α] → A.

Proposition 3.19. The internal cardinality satisfies the following properties:

1. If the hyperfinite set A is finite, then |A|h = |A|.

2. For any ν ∈ ∗N, we have |[1, ν]|h = ν. More generally, we have |[α, β]|h =
β − α+ 1.

Proof.

1. If A is a finite internal set of cardinality n, then every bijection f : [1, n] →
A is internal by Proposition 2.44.

2. The map f : [1, β − α + 1] → [α, β] where f(i) = α + i − 1 is an internal
bijection.

When confusion is unlikely, we will drop the subscript and write |A| to denote
the internal cardinality of a hyperfinite set A.

The following proposition illustrates a property that hyperfinite sets inherit
from finite sets. It is obtained by a straightforward application of transfer, and
its proof is left as an exercise.

Proposition 3.20. Every nonempty hyperfinite subset of ∗R has a least ele-
ment and a greatest element.
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Definition 3.21. Fix an infinite N ∈ ∗N. The corresponding hyperfinite grid
HN ⊆ ∗Q is the hyperfinite set that partitions the interval [1, N ] ⊆ ∗R of
hyperreals into N intervals of equal infinitesimal length 1/N . Precisely:

HN =

{[
1 +

i− 1

N
, 1 +

(N − 1)i

N

]
| i = 1, 2, . . . , N

}
.

Proposition 3.22. If α ∈ ∗N is infinite, then the interval [1, α] ⊆ ∗N has
cardinality at least the cardinality of the continuum.

Proof. For every real number r ∈ (0, 1), let

ψ(r) = min{β ∈ [1, α] | r < β/α}.

Notice that this definition is well-posed, because {β ∈ ∗N | r < β/α} is an
internal bounded set of hypernatural numbers, and hence a hyperfinite set. The
map ψ : (0, 1) → [1, α] is injective. Indeed, ψ(r) = ψ(s) implies |r − s| < 1/α,
which results in r ≈ s and thus r = s (since two real numbers that are infinitely
close are equal). Hence, |(0, 1)R| ≤ |[1, α]∗N|.
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4 Hyperfinite Generators

In the realm of nonstandard analysis, hyperfinite sets are essential for under-
standing the relationship between standard and nonstandard objects. A hy-
perfinite set, an element of the nonstandard extension of a finite set, exhibits
properties akin to those of finite sets but within a nonstandard framework. This
section explores how elements of a nonstandard extension, denoted as ∗S, gen-
erate ultrafilters on a standard set S. By leveraging the properties of hyperfinite
sets, a deep connection between nonstandard methods and ultrafilters is estab-
lished. Specifically, each element in the nonstandard extension of S generates a
unique ultrafilter on S, and these ultrafilters can capture properties of sets in the
nonstandard world. Additionally, the conditions under which ultrafilters can be
classified as principal or nonprincipal, providing insight into the structure and
behavior of ultrafilters within the nonstandard framework.

4.1 Hyperfinite Generators of Ultrafilters

Definition 4.1 (Hyperfinite Generator of an Ultrafilter). Let S be an infinite
set and ∗S be its nonstandard extension. For any element α ∈ ∗S, define the
set

Uα = {A ⊆ S | α ∈ ∗A}.

Then Uα is an ultrafilter on S. It is principal if and only if α ∈ S.

Proposition 4.2. For any function f : S → T and ultrafilter U on S, the image
ultrafilter f(U) on T is given by

f(U) = {B ⊆ T | f−1(B) ∈ U}.

In particular, for α ∈ ∗S,
f(Uα) = Uf(α).

Proof. Let U = Uα for some α ∈ ∗S. By definition of Uα,

f(Uα) = {B ⊆ T | f−1(B) ∈ Uα}.

Since α ∈ ∗A if and only if A ∈ Uα, we have

f−1(B) ∈ Uα ⇐⇒ α ∈ ∗f−1(B).

Thus,
f(Uα) = {B ⊆ T | α ∈ ∗f−1(B)} = Uf(α).

The concept of u-equivalence reveals a profound relationship between the
elements of a nonstandard extension and the ultrafilters on a standard set.
Two elements of the nonstandard extension are considered u-equivalent if they
generate the same ultrafilter. Two elements of the nonstandard extension ∗S
are u-equivalent if they generate the same ultrafilter on the standard set S.

15



Definition 4.3 (u-Equivalence). Let α, β ∈ ∗S. We say that α and β are u-
equivalent, written α ∼ β, if Uα = Uβ . Two elements α and β are u-equivalent
if and only if they receive the same color under every finite coloring of S.

This concept is closely related to finite colorings of S; specifically, two ele-
ments α and β of ∗S are u-equivalent if and only if they receive the same color
under every finite coloring of S. Additionally, the saturation of the nonstan-
dard universe influences the uniqueness of ultrafilters. In a sufficiently saturated
nonstandard universe, any ultrafilter on S corresponds to some element in ∗S,
and different elements of ∗S can generate the same ultrafilter, illustrating that
u-equivalence classes capture these distinctions. This framework shows how
nonstandard methods can classify and analyze ultrafilters, bridging the gap be-
tween nonstandard analysis and classical set theory.

Proposition 4.4. If the nonstandard universe is sufficiently saturated (for ex-
ample, (2|S|)+-saturated), then every ultrafilter U ∈ βS is of the form Uα for
some α ∈ ∗S. Furthermore, there are | ∗ S| many elements α ∈ ∗S such that
Uα = U for each nonprincipal ultrafilter U ∈ βS \ S.

Proof. By assumption, the nonstandard universe has the (2|S|)+-enlarging prop-
erty. Hence, every ultrafilter U ∈ βS can be represented as

U = {A ⊆ S | ∃α ∈ ∗S such that α ∈ ∗A}.

Thus, there exists α ∈ ∗S such that U = Uα.
To show there are |∗S| many such α for each nonprincipal ultrafilter U , note

that if U is nonprincipal, it cannot be generated by any standard element of S.
By saturation, there are | ∗ S| distinct elements α such that Uα = U .

4.2 Ultrafilters and Semigroup Structures

In the context of semigroup theory, the interaction between ultrafilters and
semigroup operations introduces additional complexity and richness to the study
of nonstandard models. This section focuses on how ultrafilters, generated from
elements of the nonstandard extension, interact with semigroup operations.

Definition 4.5 (Semigroup Operation on Ultrafilters). Consider a semigroup
(S, ·) and elements α, β ∈ ∗S. For any ultrafilter U on S, define

Uα · Uβ = {A ⊆ S | ∃C ∈ Uα,∃D ∈ Uβ such that A ⊆ C ·D}.

Proposition 4.6. In general, for α, β ∈ ∗S, the equation

Uα·β ̸= Uα · Uβ

can hold, particularly when S is the additive semigroup of positive integers. For
some α ∈ ∗N \N , there may exist β ∈ ∗N such that Uα+β ̸= Uα + Uβ .
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Proof. Consider S = N with addition. Let α ∈ ∗N \ N and choose β ∈ ∗N.
Define A as

A = {n even | [n2, (n+ 1)2)}.

Let ν ∈ ∗N such that ν2 ≤ α < (ν + 1)2.
- If (ν + 1)2 − α is finite, let β = ν2. Then A /∈ Uβ ⊕ Uα but A ∈ Uα ⊕ Uβ

since α− β is infinite.
- If (ν + 1)2 − α is infinite, let β = (ν + 1)2. Then A /∈ Uα ⊕ Uβ but

A ∈ Uβ ⊕ Uα since α− β is finite.
Hence, in general Uα+β ̸= Uα + Uβ .

Theorem 4.7. Given an ultrafilter Uβ on S, for a subset A ⊆ S, define

A · U−1
β = {a ∈ S | {b ∈ S | a · b ∈ A} ∈ Uβ}.

Then,
A ∈ Uα · Uβ if and only if α ∈ ∗(A · U−1

β ).

Proof. Consider the definition of Uα · Uβ :

A ∈ Uα · Uβ ⇐⇒ ∃C ∈ Uα,∃D ∈ Uβ such that A ⊆ C ·D.

So,

A ∈ Uα · Uβ ⇐⇒ ∃C ⊆ S,∃D ⊆ S such that A ⊆ C ·D and α ∈ ∗C, β ∈ ∗D.

By transfer,
A ∈ Uα · Uβ ⇐⇒ α ∈ ∗(A · U−1

β ),

where ∗(A · U−1
β ) is the set of all α ∈ ∗S such that α · β ∈ ∗A.
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5 Many Stars: Iterated Nonstandard Extensions

5.1 The Foundational Perspective

In nonstandard analysis, iterated hyper-extensions provide a profound explo-
ration of mathematical structures through multiple layers of hyper-extensions
such as ∗N , ∗∗N , ∗∗∗N , and beyond. These extensions allow for the investi-
gation of properties and behaviors that standard analysis alone cannot easily
reach.

Definition 5.1 (Star Map). Let ∗ : V → V be a star map on the universe V .
This map extends each set X ⊆ V to its hyper-extension ∗X ⊆ V . Iterative
applications of ∗ yield higher-level hyper-extensions ∗∗X,∗∗∗X, . . ..

Proposition 5.2. For X ⊆ V , ∗X remains within the universe V , ensuring
that ∗X ⊆∗∗ X and so forth, maintaining coherence within the system.

Theorem 5.3 (Transfer Principle). For any property P of standard objects
A1, A2, . . . , An, P holds true if and only if it holds for their hyper-extensions
∗A1,

∗A2, . . . ,
∗An.

Let’s explore examples that illustrate these concepts:

Example 5.4. Consider N ⊆∗ N . By transfer, ∗N ⊆∗∗ N , showing that ∗N is
a proper initial segment of ∗∗N .

Example 5.5. If η ∈∗ N \N , then ∗η ∈∗∗ N \∗N , illustrating the non-equality
η ̸=∗ η for η ∈∗ N \N .

Example 5.6. For ϵ ∈∗ R, a positive infinitesimal, ∗ϵ < ϵ, highlighting distinc-
tions between hyper-extensions and standard counterparts.

These examples underscore how iterated nonstandard extensions enrich our
understanding by revealing deeper connections and structures within mathe-
matical systems.

5.2 Revisiting Hyperfinite Generators

Building on the foundational concepts discussed, we now explore hyperfinite
generators in the context of ultrafilters within an infinite semigroup (S,+).

Definition 5.7 (Hyperfinite Generator of an Ultrafilter). Let α ∈ ∗S, and
define Uα = {A ⊆ S | α ∈ ∗A}. This set Uα forms an ultrafilter on S.

Proposition 5.8. For α, β ∈ ∗S, the ultrafilter Uα ∪ Uβ equals Uα+∗β .

Proof. By the transfer principle, A ∈ Uα ∪ Uβ if and only if α ∈ ∗(A · U−1
β ),

which holds if and only if α+ ∗β ∈ ∗A.

This proposition demonstrates the relationship between ultrafilters and semi-
group operations under nonstandard extensions, paving the way for deeper ex-
plorations into ultrafilters within iterated nonstandard extensions.
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6 Infinite Ramsey’s Theorem

6.1 Introducing Infinite Ramsey’s Theorem

Definition 6.1 (Graph). A graph G is a mathematical structure consisting of:

• Vertices (V): The points or nodes of the graph.

• Edges (E): Connections between vertices, represented as pairs (x, y).

The edges in a graph are anti-reflexive (no loops) and symmetric (if (x, y)
is an edge, then (y, x) is also an edge).

Definition 6.2 (Clique and Anticlique).

• Clique: A subset of vertices where every pair of vertices is connected by
an edge.

• Anticlique: A subset of vertices where no two vertices are connected by
an edge.

Theorem 6.3 (Infinite Ramsey’s Theorem (For Pairs)). In any infinite graph
(V,E), there exists either:

• An infinite clique (a set of vertices where every pair is connected by an
edge).

• Or an infinite anticlique (a set of vertices where no two vertices are
connected by an edge).

This theorem asserts that in infinitely large graphs, certain patterns such as an
infinite clique or anticlique are unavoidable.

6.2 Proof of Ramsey’s Theorem for Pairs

Proof. Consider an infinite graph (V,E), where V is the set of vertices and E
is the set of edges. Let ∗V denote the nonstandard extension of V . Let ξ be an
element in ∗V but not in V . We will examine (ξ, ∗ξ) in ∗ ∗ V .

Case Analysis: There are two possibilities for (ξ, ∗ξ) ∈ ∗ ∗ V :

• Case 1: (ξ, ∗ξ) ∈ ∗ ∗ E (focus of this proof).

• Case 2: (ξ, ∗ξ) /∈ ∗ ∗ E (handled similarly).

Recursive Construction: Define a sequence (xn) of distinct vertices from
V . Assume x0, x1, . . . , xd−1 are such that:

• For all 1 ≤ i < j < d, (xi, xj) ∈ E (forming a clique).

• For each i, (xi, ξ) ∈ ∗E (ensuring the vertices are well-connected in the
nonstandard extension).
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Finding xd: To extend the clique, find a vertex y ∈ ∗V such that:

• y ̸= xi for all i < d (ensuring distinctness),

• (xi, y) ∈ ∗E for all i < d (ensuring connectivity),

• (y, ∗ξ) ∈ ∗ ∗ E (ensuring edge (xd, ξ) in the nonstandard extension).

By the transfer principle, if such a y exists, then there is a vertex xd ∈ V
such that:

• xd is distinct from xi,

• (xi, xd) ∈ E for all i < d,

• (xd, ξ) ∈ ∗E.

Conclusion: Continuing this recursive process shows that if (ξ, ∗ξ) ∈ ∗∗E,
then an infinite clique exists in V . The analogous process for the case where
(ξ, ∗ξ) /∈ ∗∗E leads to the conclusion that an infinite graph must contain either
an infinite clique or an infinite anticlique.

Thus, Infinite Ramsey’s Theorem is proved by demonstrating the existence
of either an infinite clique or anticlique in any infinite graph through recursive
construction and nonstandard analysis.

6.3 What is an m-Regular Hypergraph?

Definition 6.4 (m-Regular Hypergraph). An m-regular hypergraph is a hyper-
graph where:

• Vertices (V): The set of points or nodes in the hypergraph.

• Edges (E): Instead of edges connecting pairs of vertices (as in simple
graphs), in an m-regular hypergraph, edges are m-tuples (subsets of m
distinct vertices).

Definition 6.5 (Clique and Anticlique in m-Regular Hypergraphs).

• Clique: An m-tuple of vertices where every possible m-subset of vertices
is part of the hypergraph E.

• Anticlique: An m-tuple where no m-subset is part of E.

6.4 Ramsey’s Theorem for 3-Regular Hypergraphs

Theorem 6.6 (Ramsey’s Theorem for 3-Regular Hypergraphs). If (V,E) is
an infinite 3-regular hypergraph, then (V,E) contains an infinite clique or an
infinite anticlique.
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Proof. Consider an infinite 3-regular hypergraph (V,E). Let ∗V denote the
nonstandard extension of V . Let ξ be an element in ∗V but not in V . We will
analyze the case where (ξ, ∗ξ, ∗ ∗ ξ) ∈ ∗ ∗ ∗E.

Recursive Construction: Define a sequence (xn) in V such that {xn :
n ∈ N} forms a clique. Suppose d ∈ N and x0, x1, . . . , xd−1 are distinct in V
satisfying the following:

• For all 1 ≤ i < j < k < d, the triples (xi, xj , xk) belong to E (forming a
3-clique).

• For each i, (xi, xj , ξ) ∈ ∗E (ensuring the vertices are well-connected in the
nonstandard extension).

• For each i, (xi, ξ, ∗ξ) ∈ ∗ ∗ E (ensuring further connectivity).

To extend this clique, we need to find a vertex y ∈ ∗V such that:

• y ̸= xi for 1 ≤ i < d (ensuring distinctness),

• (xi, xj , y) ∈ ∗E for all 1 ≤ i < j < d (ensuring connectivity in the
nonstandard extension),

• (xi, y, ∗ξ) ∈ ∗ ∗ E for all 1 ≤ i < d (ensuring further connectivity),

• (y, ∗ξ, ∗ ∗ ξ) ∈ ∗ ∗ ∗E (ensuring the extension).

By the transfer principle, if such a y exists, then there is a vertex xd ∈ V
distinct from xi for 1 ≤ i < d such that:

• xd is distinct from xi,

• (xi, xd, xj) ∈ E for all 1 ≤ i < j < d,

• (xi, xd, ξ) ∈ ∗E for all 1 ≤ i < d,

• (xd, ξ, ∗ξ) ∈ ∗ ∗ E.

By recursively applying this process, we ensure the existence of an infinite
clique. The analogous process for the case where (ξ, ∗ξ, ∗ ∗ ξ) /∈ ∗ ∗ ∗E leads to
the conclusion that an infinite hypergraph must contain either an infinite clique
or an infinite anticlique.

This completes the proof of Ramsey’s Theorem for 3-Regular Hypergraphs.

To extend the result from 3-regular hypergraphs to m-regular hypergraphs,
we generalize the proof strategy used for the 3-regular case. In the m-regular
hypergraph setting, we seek to prove that any infinite m-regular hypergraph
contains either an infinite clique or an infinite anticlique. The process involves
similar steps as the m = 3 case, where we use nonstandard analysis to handle
the hyperedges, which are now m-tuples instead of triples.[2]
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The key idea remains the same: we use nonstandard extensions to analyze
the structure of the hypergraph and apply a recursive construction to find an
infinite clique or anticlique. For m-regular hypergraphs, we extend the proof by
considering m-tuples and ensuring that all necessary conditions for connectivity
and distinctness are satisfied in the nonstandard extension. The proof structure
adapts to accommodate the m-tuple nature of the hyperedges, demonstrat-
ing that the theorem’s essence—guaranteeing the existence of either an infinite
clique or an infinite anticlique—holds true for any m-regular hypergraph. This
generalization reinforces the robustness of Ramsey’s theorem in higher dimen-
sions of hypergraphs.[1]
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