The Group Extension Problem

Ishan Joshi

Euler Circle

July 15, 2024

han		

The Group Extension Problem

イロト イヨト イヨト イヨト

æ

What is the Group Extension Problem?

イロト イポト イヨト イヨト

æ

What is the Group Extension Problem?

The group extension problem for groups H and K asks us to find all groups G, such that $K \lhd G$, and $G/K \cong H$.

Intuitively, G can be factored into K and H.

Example

Let K be \mathbb{Z} , and $H = [0, 1) \mod 1$. Then \mathbb{R} is an extension G, of H by K. $K \times H$ is another extension.

Short Exact Sequence

To generalize the idea of a normal subgroup, we introduce a short exact sequence,

Definition 1

A sequence of groups:

$$1 \stackrel{f_1}{\longrightarrow} K \stackrel{f_2}{\longrightarrow} G \stackrel{f_3}{\longrightarrow} H \stackrel{f_4}{\longrightarrow} 1$$

Is called *short exact* if all f_i are homomorphisms and $im(f_i) = ker(f_{i+1})$.

G is an extension of H by K if G fits into the above short exact sequence.

Image: A matrix and a matrix

Example

The sequence:

$$1 \stackrel{f_1}{\longrightarrow} \mathbb{Z}/2\mathbb{Z} \stackrel{f_2}{\longrightarrow} \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \stackrel{f_3}{\longrightarrow} \mathbb{Z}/2\mathbb{Z} \stackrel{f_4}{\longrightarrow} 1$$

is short exact. To see this, we let $f_2(a) = (a, 0)$, and let $f_3(a, b) = b$, for all $a, b \in \mathbb{Z}/2\mathbb{Z}$.

イロト イ団ト イヨト イヨト

Main Theorem

Theorem 1.1

There exists a bijection between $H^2_{\theta}(H, K)$ and the set of equivalence classes, E, of extensions which realize the data (H, K, θ) .

As a result, the description of all congruence clases of extensions of H by K can be described as:

$$\bigcup_{\theta \in \operatorname{Hom}(H,\operatorname{Aut}(K))} H^2_{\theta}(H,K)$$

イロト イヨト イヨト ・

Sketch

- When $G/K \cong H$, it can be noted that H acts upon K.
- This homomorphism is determined by the congruence classes of the extensions of *H* by *K*.
- The congruence classes of extensions are able to be partitioned by the elements of Hom(H, Aut(K))
- For the fixed homomorphism θ, the congruence classes of extensions which induce θ is described by the second cohomology group H²_θ(H, K).

Transversal

Definition 2

A transversal is a set containing one element from every coset of K. We denote this transversal T. Alternatively, it can also be thought of as a function $\phi: H \longrightarrow G$, where $\phi(H) = T$.

Lemma 3

Let T be a transversal of K in G. Then

$$G = \bigcup_{t \in T} tK$$

Example

 $K = \mathbb{Z}$ and H = [0, 1), we can see that a transversal of K in \mathbb{R} would be the set [0, 1).

Image: A marked black

Definition 4

An ordered triple (H, K, θ) is called *data* if K is abelian, H is a group, and $\theta: H \longrightarrow Aut(K)$ is a homomorphism. If G is an extension of H by K, then G realizes the data if for every transversal $\phi: H \longrightarrow G$:

$$xa = \phi(x) + a - \phi(x).$$

For $a \in K$ and $x \in H$.

Factor Sets

Definition 5

A factor set for the group G is a function $f : H \times H \longrightarrow K$ such that for all $x, y \in H$ and some transversal ϕ ,

$$\phi(x) + \phi(y) = f(x, y) + \phi(xy)$$

We call the set of factor sets $Z^2_{\theta}(H, K)$.

Example

Let $K = \mathbb{Z}$ and H = (0, 1], with transversal T = [0, 1), we define $\phi(h) = h$. This means ϕ is a homomorphism, so f(x, y) = 0, for all $x, y \in H$.

イロト イヨト イヨト ・

Construction of G_f

We take this time to provide a construction of a group realizing the data (H, K, θ) and factor set f. We consider the set $K \times H$, along with addition:

$$(k, x) + (l, y) = (k + xl + f(x, y), xy).$$

We denote this group as G_f , and the equivalence class of this group $[G_f]$.

Coboundaries

Definition 6

Given the data, (H, K, θ) , a coboundary is a function $g : H \times H \longrightarrow K$, such that for all $x, y \in H$,

$$g(x,y) = xe(y) - e(xy) + e(x)$$

Where $e: H \longrightarrow K$ and e(1) = 0. The set of all coboundaries is an is denoted $B^2_{\theta}(H, K)$.

Second Cohomology Group

Definition 7

We define the second cohomology group to be $Z^2_{\theta}(H, K)/B^2_{\theta}(H, K)$. We denote this group as $H^2_{\theta}(H, K)$.

This is not the actual definition of the *ith* cohomology group, but it will suffice for now.

Main Theorem

Theorem 1.2

There exists a bijection between $H^2_{\theta}(H, K)$ and the set of equivalence classes, E, of extensions which realize the data (H, K, θ) .

Proof sketch: We define a function $\rho: H^2_{\theta}(H, K) \longrightarrow E$, as $\rho(f + B^2_{\theta}(H, K)) = [G_f]$. We prove that ρ is bijective.

Diagram

This is a diagram depicting how we classify the equivalence classes of the extensions of H by K.

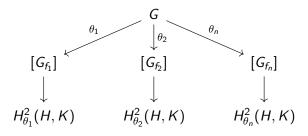


Image: A matrix and a matrix

< ∃⇒

Thank you for your attention! If you have any questions you can message me on discord.

	n J	

イロト イボト イヨト イヨト

э