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Abstract
This is an expository paper about Pell’s equation, including the proof of the existence of a
nontrival solution, the way to solve all solutions based on fundamental solution, and the
way to find the fundamental solution. Some basics about continued fractions will also be
introduced in this paper, serving as a useful tool for solving the fundamental solution of a

Pell’s equation. Finally, we will talk about the application of Pell’s equation.

1 Introduction

Pell’s equation is any Diophantine equation of the form

x2 − dy2 = 1 (*)

where n is a nonsquare positive integer. The equation was first studied in the case
x2 − dy2 = 1 because early mathematicians, upon discovering that

√
2 is irrational, realized

that one cannot solve the equation x2−dy2 = 0, and started to attempt solving the “next best
things”. Pell’s equation was first studied extensively in India starting with Brahmagupata,
who described how to use known solutions to create new solutions, and Bhaskara, who
gave an efficient method for finding a minimal positive solution to Pell’s equation. Later,
several European mathematicians rediscovered how to solve Pell’s equation in 17th century.
Fermat had contributed to some of the basic theories, and it was Lagrange who discovered
the complete theory of the equation x2−dy2 = 1. Brounker had also gave a general method
for solving Pell’s equation and solve the case d = 313. However, Leonhard Euler mistakenly
thought this solution was due to John Pell who helped with writing a book regarding these
equations. As a result, he named the equation after Pell out of accident.

For equation (*), we are interested in solutions (x, y) where x and y are both integers, and
the term “solution” regarding Pell’s equation will always mean an integral solution. There
are trivial solutions (x, y) = (±1, 0) that works for all (*). They are the only solutions
when d is negative (that’s why we are only interested in the cases for d > 0). The other
solutions, which we will be studying in this paper, will be called the nontrivial solutions.
Solutions which x > 0 and y > 0 will be called positive solutions. Due to the property of
square numbers, every nontrivial solution can be made into a positive solution by changing
the sign of x or y. For the sake of this paper, we will only talk about the ways to find the
positive solutions.
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In addition, we don’t consider the case when d is a square since if d = c2 with c ∈ Z,
there is x2 − (cy)2 = 1. The only perfect squares that differ by 1 are 0 and 1, so x2 = 1 and
(cy)2 = 0, which gives x = ±1 and y = 0. Thus, this kind of Pell’s equation only has trivial
solutions.

2 The Existence of a Nontrivial Solution

For Pell’s equation (*), a trivial solution is the obvious solutions (x, y) = (±1, 0) which
works for all x2 − dy2 = 1. Our goal is to find the nontrivial solutions. Before introducing
the methods to solve it, we will first prove that this kind of solution always exists for a valid
Pell’s equation. The starting point is the following lemma:

Lemma 2.1 (Dirichlet’s approximation theorem). For each nonsquare positive integer d,
there are infinitely many positive integers x and y such that |x− y

√
d| < 1/y.

Proof. Construct a set of m+ 1 numbers:

0,
√
d, 2

√
d, . . . ,m

√
d

Each of these number will have a fractional part belonging to the interval [0, 1). View [0, 1) as
m half-open intervals: [0, 1/m), [1/m, 2/m), . . . , [(m−1)/m, 1). By the pigeonhole principle,
two of the m + 1 numbers, say a

√
d and b

√
d with a < b, must have fractional parts in the

same interval. Suppose that

a
√
d = A+ ϵ, b

√
d = B + δ.

where A,B ∈ Z and ϵ, δ belongs to the same interval [i/m, (i + 1)/m) for a certain m.
Therefore,

|ϵ− δ| < 1

m

=⇒ |(a
√
d− A)− (b

√
d−B)| < 1

m

=⇒ |(B − A)− (b− a)
√
d| < 1

m
.

Set x = B − A and y = b− a where x and y are integers. Since a, b ∈ [0, 1, . . . ,m], there is
0 < y ≤ m. Substituting this to the inequality above we get

|x− y
√
d| < 1

m
≤ 1

y
.

Since it can be derived that |x−y
√
d| < 1, we have x > y

√
d−1 ≥

√
d−1 > 0, so x is positive.

Thus, we successfully create one pair of positive integers (x, y) such that |x − y
√
d| < 1/y.

To find another pair, choose a positive integer m′ such that 1/m′ < |x − y
√
d|. There is

always such an m′ because x−
√
dy ̸= 0 (since

√
d is irrational). run through the arguments
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above replacing m with m′, which will result in x′ and y′ that satisfy |x′ − y′
√
d| < 1/y′.

(x′, y′) is obviously different from (x, y) because of the following relationship:

|x− y
√
d| > 1

m′ > |x′ − y′
√
d|.

Furthermore, by repeating the operation we can get

|x− y
√
d| > 1

m′ > |x′ − y′
√
d| > m′′ > |x′′ − y′′

√
d| > · · ·

which can be extended unlimitedly. In this way, we can obtain infinitely many pairs of x
and y satisfying |x− y

√
d| < 1/y. ■

Example. We will use an example using the case when d = 5 to demonstrate the process in
Lemma 2.1. We will give two solutions to |x−

√
5y| < 1/y.

Taking m = 10, then among the eleven numbers 0,
√
5, 2

√
5, . . . , 10

√
5, there are at least

two numbers that have fractional parts on the same interval [i/10, (i + 1)/10). Listing the
fractional parts of k

√
5 for 0 ≤ k ≤ 10 rounding to two decimal places, we have:

k 0 1 2 3 4 5 6 7 8 9 10

Fractional part of k
√
5 0 .24 .47 .71 .94 .18 .42 .65 .89 .12 .36

Noticing that k = 2 and k = 6 have fractional parts on the common interval. Let a = 2 and
b = 6, we have: 2

√
5 = 4.47 · · · , 6

√
5 = 13.41 · · · . Thus,

|(2
√
5− 4)− (6

√
5− 13)| = |9− 4

√
5| ≈ 0.05 <

1

10
<

1

4
.

Therefore, we obtain a positive solution (x, y) = (9, 4).
To get a second pair (x′, y′) such that |x′ −

√
5y′| < 1/y′, choose an m′ which satisfies

1/m′ < |x−
√
5y|. Since |9− 4

√
5| ≈ 0.055 > 1/20, we take m′ = 20 and seek two numbers

from k
√
5(0 ≤ k ≤ 20) that have fractional parts on the same interval [i/20, (i + 1)/20).

This happens when k = 1 and k = 18, as
√
5 = 2.236 · · · and 18

√
5 = 40.249 · · · . So

|(
√
5− 2)− (18−

√
5)− 40| = |38− 17

√
5| ≈ 0.013 <

1

20
<

1

17
.

This gives another solution (x′, y′) = (38, 17).

Lemma 2.2. For each positive integers x and y satisfying |x −
√
dy| < 1/y there is |x2 −√

dy2| < 1 + 2
√
d.

Proof. First, we will show that x has the upper bound as follows:

x = x− y
√
d+ y

√
d ≤ |x− y

√
d|+ y

√
d <

1

y
+ y

√
d ≤ 1 + y

√
d.

Thus, we have

|x2 − dy2| = (x+ y
√
d)|x− y

√
d| < (1 + y

√
d+ y

√
d)

1

y
=

1

y
+ 2

√
d ≤ 1 + 2

√
d.

■
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Theorem 2.3 (Lagrange). For all d ∈ Z+ that are not perfect squares, the equation x2 −
dy2 = 1 has a nontrivial solution.

Proof. From Lemma 2.3, |x2 − dy2| < 1 + 2
√
d for infinitely many pairs of positive integers

(x, y). Since there are only finitely many integers between −1 − 2
√
d and 1 + 2

√
d, by the

pigeonhole principle, there exists an integer M with |M | < 1 + 2
√
d such that

x2 − dy2 = M (2.1)

for infinitely many positive integer pairs (x, y), and M ̸= 0 since
√
d is irrational. For x and

y satisfying equation (2.1), reduce x and y modulo |M |. By the pigeonhole principle, there
must be a repetition for the infinitely many pairs (x mod |M |, y mod|M |) since there are
only finitely many integers mod |M |. Therefore, there are distinct positive integer solutions
(x1, y1) and (x2, y2) to equation (2.1) that satisfy x1 ≡ x2 mod |M | and y1 ≡ y2 mod |M |.
Write x1 = x2 +Mk, y1 = y2 +Ml (k, l ∈ Z), then

x1 + y1
√
d = x2 + y2

√
d+M(k + l

√
d)

x1 − y1
√
d = x2 − y2

√
d+M(k − l

√
d)

Substituting M = x2
2 − dy22 = (x2 +

√
dy2)(x2 −

√
dy2), we get

x1 + y1
√
d = (x2 + y2

√
d)(1 + (x2 −

√
dy2)(k + l

√
d)), (2.2)

x1 − y1
√
d = (x2 − y2

√
d)(1 + (x2 +

√
dy2)(k − l

√
d)). (2.3)

Combine like terms in the second factor on the right side of (2.2) to rewrite it as x + y
√
d,

then that of (2.3) will be x− y
√
d. So we have

x1 + y1
√
d = (x2 + y2

√
d)(x+ y

√
d), (2.4)

x1 − y1
√
d = (x2 − y2

√
d)(x− y

√
d). (2.5)

Multiplying the last two equations together, there is M = M(x2 − dy2). Therefore, we get
an integral solution to the equation x2 − dy2 = 1. To show that this solution is nontrivial,
that is, (x, y) ̸= (±1, 0), assume otherwise. If (x, y) = (1, 0), we will notice that x1 = x2 and
y1 = y2 when substituting them to either (2.4) or (2.5). This contradicts the fact that (x1, y1)
and (x2, y2) are different. Similarly, if (x, y) = (−1, 0) then x1 = −x2, which contradicts
that x1 and x2 are both positive. ■

3 From The Fundamental Solution to All Solutions

In last section, we discover that there is always a nontrivial solution to a Pell’s equation,
which will be the hunting license for us solve the equation. In fact, to find all of its solutions,
our starting point is to find a solution called the fundamental solution.

Definition 3.1. For equation (*), let the fundamental solution (x0, y0) be a positive
integral solution that minimize the value of x0 +

√
dy0 .
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In fact, this also means that the fundamental solution has the least x and y values among
all solutions, which can be shown by the following lemma:

Lemma 3.2. If a Pell’s equation (*) has the fundamental solution (x0, y0), then every solu-
tion (x, y) of this equation must satisfy x0 ≤ x, y0 ≤ y.

Proof. Conversely, suppose x0 > x, then we have x2
0 = dy20 + 1 > x2 = dy2 + 1. Therefore,

y0 > y. Now, we have x0 +
√
dy0 > x+

√
dy which contradicts the minimality of x0 +

√
dy0.

Thus, x0 must be smaller or equal to x. Similarly, y0 ≤ y. ■

Lemma 3.3. For integers x and y, if x2 − dy2 = 1 and x+ y
√
d > 1 then x and y are both

positive integers.

Proof. The crucial point is that 1/(x+
√
dy) = x−

√
dy when x2 − dy2 = 1. Therefore

x+
√
dy > 1 > x−

√
dy > 0.

So 2x > 1 =⇒ x > 0 =⇒ x ∈ N+. Additionally, from x −
√
dy < 1 < x +

√
dy we have√

dy > 0 =⇒ y ∈ N+. ■

Theorem 3.4. Pell’s equations have infinitely many solutions if it has a nontrivial solution
(x0, y0), and all solutions (xn, yn) can be expressed as xn +

√
dyn = (x0 +

√
dy0)

n for all
n ∈ Z+.

Proof. We will first show that every (xn, yn) that satisfies xn +
√
dyn = (x0 +

√
dy0)

n will be
a valid solution to (*). By the binomial theorem, if

xn +
√
dyn = (x0 +

√
dy0)

n (3.1)

then it must also satisfy that

xn −
√
dyn = (x0 −

√
dy0)

n. (3.2)

Multiplying both sides of (3.1) and (3.2), there is

x2
n − dy2n = (x0 +

√
dy0)

n(x0 −
√
dy0)

n = (x2
0 − dy20)

n = 1.

Therefore, (xn, yn) is a positive solution to (*). Next, we want to prove that all solutions
can be expressed as xn+

√
dyn = (x0+

√
dy0)

n, which means no other solutions will be found
aside from using this formula.

Conversely, assume that there exists a solution (x, y) that cannot be expressed by equation
(3.1), namely x+

√
dy ̸= (x0+

√
dy)n. Then there is a specific positive integer r that satisfies

(x0 +
√
dy0)

r < x+
√
dy < (x0 +

√
dy0)

r+1

⇐⇒ 1 <
x+

√
dy

(x0 +
√
dy0)r

< x0 +
√
dy0. (3.3)
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Since

1

(x0 +
√
dy0)r

=
(x0 −

√
dy0)

r

(x0 +
√
dy0)r(x0 −

√
dy0)r

=
(x0 −

√
dy0)

r

(x2
0 − dy20)

r

= (x0 −
√
dy0)

r,

substitute it to the second item of (3.3) we have

1 < (x+
√
dy)(x0 −

√
dy0)

r < x0 +
√
dy0. (3.4)

Suppose that X +
√
dY = (x+

√
dy)(x0 −

√
dy0)

r where X and Y are both integers and Y .
Consequently, we also have X2 − dY 2 = (x−

√
dy)(x0 +

√
dy0)

r. Multiplying them together
we will get

X2 − dY 2 = (X +
√
dY )(X −

√
dY ) = (x+

√
dy)(x0 −

√
dy0)

r(x−
√
dy)(x0 +

√
dy0)

r = 1

We can also prove that X and Y must be positive integers in this case using Lemma 3.3.
Thus, (X, Y ) is a positive solution of (*) with 1 < X +

√
dY < x0 +

√
dy0 according to

3.4. However, this contradicts the minimality of x0 +
√
dy0, so the solution is invalid.

Therefore, all solutions can be and must be generated from xn+
√
dyn = (x0+

√
dy0)

n. ■

Example. x2 − 35y2 = 1.
The fundamental solution for this Pell’s equation is: (x0, y0) = (6, 1). Then, from the

method in Theorem 3.4 we have

x2 + y2
√
35 = (6 +

√
35)2 = 71 + 12

√
35.

So we get another solution: (x2, y2) = (71, 12). This solution works since

712 − 35 ∗ 12 = 5041− 5040 = 1.

Using the formula again, we have

x3 + y3
√
35 = (6 +

√
35)3 = 846 + 143

√
35.

So (x3, y3) = (846, 143). To check it, we will get

8462 − 35 ∗ 1432 = 715716− 715715 = 1.

In this way, we can generate all the solutions of x2 − 35y2 = 1.

Note: If (x0, y0) is the fundamental solution of (*), then the solutions (xn, yn) can be
given by the following formula:{

xn = 1
2
[(x0 +

√
dy0)

n + (x0 −
√
dy0)

n],

yn = 1
2
√
d
[(x0 +

√
dy0)

n − (x0 −
√
dy0)

n].
(3.5)

However, this formula is too complicated, so we want to find a method that can let us
calculate the solutions quickly and easily.
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Corollary 3.5. All solutions of Pell’s equation (*) satisfy the following recursive relation-
ship:

For any n ≤ 2

{
xn = 2x0xn−1 − xn−2

yn = 2x0yn−1 − yn−2

(3.6)

Proof. The proof is rather complex and involving a lot of manipulations. We start by
transforming the expression of xn +

√
dyn:

xn +
√
dyn = (x0 +

√
dy0)

n

= (x0 +
√
dy0)

n−1(x0 +
√
dy0)

= (xn−1 +
√
dyn−1)(x0 +

√
dy0)

= x0xn−1 + xn−1

√
dy0 + x0

√
dyn−1 + dy0yn−1.

(3.7)

Thus,
xn = x0xn−1 + dy0yn−1, (3.8)

yn = x0yn−1 + y0xn−1. (3.9)

Replace the n’s in equation (3.8) with n− 1, then

xn−1 = x0xn−2 + dy0yn−2. (3.10)

Multiply x0 on both sides, then

x0xn−1 = x2
0xn−2 + dx0y0yn−2. (3.11)

Subtracting equation (3.8) by equation (3.11) result in

xn = 2x0xn−1 − x2
0xn−2 + dy0(yn−1 − x0yn−2). (3.12)

Replace the the n’s in equation (3.9) with n− 1, then

yn−1 = x0yn−2 + y0xn−2. (3.13)

Substituting equation (3.13) to equation (3.12), we have

xn = 2x0xn−1 − x2
0xn−2 + dy20xn−2

= 2x0xn−1 − xn−2(x
2
0 − dy20)

= 2x0xn−1 − xn−2.

So the recursive relationship for x is proven. To prove that for y, substitute equation (3.10)
to equation (3.9):

yn = x0yn−1 + x0y0xn−2 + dy20yn−2.

Furthermore, since dy20 = x2
0 − 1, we have

yn = x0yn−1 + x0y0xn−2 + (x2
0 − 1)yn−2

= x0yn−1 + x0y0xn−2 + x2
0yn−2 − yn−2

= x0yn−1 + x0(y0xn−2 + x0yn−2)− yn−2

Finally, from equation (3.13),
yn = 2x0yn−1 − yn−2.

■
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4 Continued Fractions

From Section 3, we learn how all solutions of a Pell’s equation is derived from its funda-
mental solution. However, the problem is: how to find a fundamental solution?
An elementary method to find a nontrivial solution of x2 − dy2 = 1 is through trial and
error. Rewrite the equation to x2 = dy2 + 1 and set y = 1, 2, 3, . . . until x2 can be a perfect
square. This effectively produce a fundamental solution(x, y). However, the numbers can
be prohibitively large for this method. This leads to our useful tool for finding the funda-
mental solution — continued fractions. This section will introduce some basics of continued
fractions, and at last, will explain how to use it to solve a Pell’s equation.

Definition 4.1. A continued fraction is an expression of the form

a1 +
b1

a2 +
b2

a3 +
b3

a4 + · · ·

where ai and bi are either real numbers or complex numbers. Only a1 may be zero, and
others are all non-negative numbers. If the expression contains finitely many terms, it is
called a finite continued fraction;otherwise it is called an infinite continued fraction.
The number ai is called the partial quotients.

If bi = 1 for all i, then the expression is called a simple or regular continued fraction
and has the following form:

a1 +
1

a2 +
1

a3 +
1

a4 + · · ·
In most cases, it is assumed that the term “continued fraction” refers to the regular form.
If the numerator of one of the fractions is not zero, it will be specifically mentioned as
generalized continued fraction. For a simple continued fraction, it can be represented
by the abbreviated notation [a0; a1, a2, . . . , an] or [a0; a1, a2, . . .] depending on whether it
terminates.

Some examples will be given to show how to write the continued fraction expansion for
a fractional number:

Example. Consider 13
5
, which we write as a whole number plus a remainder:

13

5
= 2 +

3

5
.

Now, consider the reciprocal of the remainder, which is 5
3
, and repeat the first step. Thus,

we have
5

3
= 1 +

2

3
.
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Repeat again with the reciprocal of 2
3
:

3

2
= 1 +

1

2
.

This time, the reciprocal of the remainder is 2, which is a rational with no remainder. So
we stop here and get the following expression:

2 +
1

1 +
1

1 +
1

2

.

T

Definition 4.2. For n ≤ m, [a0, a1, . . . , an] is called nth convergent to [a0, a1, . . . , am].
Define two sequences of real numbers, (pn) and (qn), recursively as follows:

p0 = a0, p1 = a1a0 + 1, pn = anpn−1 + pn−2(2 ≤ n ≤ m)

q0 = 1, q1 = a1, qn = anqn−1 + qn−2(2 ≤ n ≤ m)

Theorem 4.3. Let [a0, a1, . . . , am] be a continued fraction. Then, for 0 ≤ n ≤ m, pn
qn

=

[a0, a1, . . . , an].

Proof. The proof can be done by induction.
For n = 0,

p0
q0

= a0

For n = 1,

p1
q1

=
a1a0 + 1

a1

= a0 +
1

a1
= [a0, a1]

Now, suppose the theorem holds for n− 1. We have that

[a0, . . . , an] = [a0, a1, . . . , an−1 +
1

an
]

=
(an−1 +

1
an
)pn−2 + pn−3

(an−1 +
1
an
)qn−2 + qn−3

=
(anan−1 + 1)pn−2 + anpn−3

(anan−1 + 1)qn−2 + anqn−3

=
an(an−1pn−2 + pn−3) + pn−2

an(an−1qn−2 + pn−3) + qn−2

=
anpn−1 + pn−2

anqn−1 + qn−2

=
pn
qn

So the theorem holds for each n ≥ 0. ■
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Example. For the continued fraction

19

51
= [0; 2, 1, 2, 6]

p0 = 0, q0 = 1 =⇒ C0 =
p0
q0

= 0.

p1 = 1, q1 = 2 =⇒ C1 =
p1
q1

= 1
2
.

p2 = 1 ∗ 1 + 0 = 1, q2 = 1 ∗ 2 + 1 = 3 =⇒ C3 =
p2
q2

= 1
3
.

p3 = 2 ∗ 1 + 1 = 3, q3 = 2 ∗ 3 + 2 = 8 =⇒ C0 =
p3
q3

= 3
8
.

p4 = 6 ∗ 3 + 1 = 19, q4 = 6 ∗ 8 + 3 = 51 =⇒ C0 =
p4
q4

= 19
51
.

Definition 4.4. Let [a0, a1, a2, . . .] be a continued fraction such that an = an+l for all
sufficiently large n and a fixed positive integer l, then it is periodic and l is the length of
the period .
We denote this expansion by

[a0, a1, . . . , an−1, an, an+1, . . . , an+l]

Example. Converting the irrational number
√
5 to its continued fraction expansion:

√
5 = 2 +

1
1√
5−2

= 2 +
1

√
5+2
1

= 2 +
1

4 + (
√
5− 2)

= 2 +
1

4 + 1
1√
5−2

.

Since the 1√
5−2

has appeared before, the continued fraction will continue to split 4’s. So the

result is that
√
5 = [2; 4].

Theorem 4.5. For a Pell’s equation(*), let l be the minimal period of the continued fraction
of

√
d, then the fundamental solution to this Pell’s equation is:

(x1, y1) =

{
(pl−1, ql−1) if l is even

(p2l−1, q2l−1) if l is odd
(4.1)

5 Applications of Pell’s equation

A very well-known application of Pell’s equation is its connection with triangular-
square numbers.

Definition 5.1. A positive integer n is called triangular if n dots can be arranged to look
like an equilateral triangle, which means it is of the form:

m∑
k=1

k =
1

2
m(m+ 1)

for some m ∈ N. For example, the first four triangular numbers are 1, 3, 6, and 10.
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Definition 5.2. Triangular-square numbers are integers which are simultaneously per-
fect squares and triangular. For example, 36 is a triangular-square number.

Theorem 5.3. Triangular-square numbers correspond to solutions of x2−dy2 = 1 for positive
integers x and y.

Proof. By the definition of a triangular-square number, we know that it must be n2 for some
n ∈ N and 1

2
m(m+ 1) for some m ∈ N. Therefore,

m(m+ 1)

2
= n2

⇐⇒ m2 +m = 2n2

⇐⇒ (m+
1

2
)2 − 1

4
= 2n2

⇐⇒ (2m+ 1)2 − 1 = 2(2n)2

⇐⇒ (2m+ 1)2 − 2(2m)2 = 1.

(5.1)

Since every step is reversible, finding a triangular-square number is equivalent to solving
x2 − 2y2 = 1 in positive integers x and y where x = 2m+ 1 is odd and y = 2m is even. ■
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