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Preliminary Notation

Definition

(Big O Notation) Denote f and g to be two functions such that g(x) > 0
for all x ≥ a. Then, f (x) = O(g(x)), if there exists a constant M > 0 such
that

|f (x)| ≤ Mg(x)

for all x ≥ a.

Definition

(Little O Notation) Denote f and g to be two functions. If

lim
x→∞

f (x)

g(x)
= 0,

then f (x) = o(g(x)).
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The Star of the Show: ω(n)

Definition

Denote ω(n) to count the number of unique prime factors of n.

Example

ω(2) = 1, since 2 is prime and ω(2024) = 3, since 2024 = 23 × 11× 23.
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Mertens’ Second Theorem

Theorem (Mertens’ Second Theorem)

There exists a constant C such that for x ≥ 2,∑
p≤x

1

p
= log log x + C +O

(
1

log x

)
= log log x +O(1).

Mertens’ Second Theorem can be used to find the expected value of ω(n).
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Mean and Variance

There are two definitions that we are particularly interested in when it
comes to understand the Erdös-Kac Theorem: mean and variance.

Definition (Mean)

Denote X as a discrete random variable. Then, the mean of X , µ, is
defined as

µ = E[X ] =
∑
x∈N

P(X = x) · x .

Definition (Variance)

Denote X as a discrete random variable. Then, the variance of X , σ2, is
define as

σ2 = E[(X − µ)2] =
∑
x∈N

P(X = x) · (X − µ)2.
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Mean of ω(n)

We can calculate the mean of ω(n), E[ω(n)], to be log log n by the
definition of ω(n) and Mertens’ Second Theorem:

1

x

∑
n≤x

ω(n) =
1

x

∑
n≤x

∑
p|n

1 =
1

x

∑
p≤x

∑
n≤x
p|n

1

=
1

x

∑
p≤x

⌊
x

p

⌋

=
1

x

∑
p≤x

(
x

p
+O(1)

)
=

1

x
(x log log x + O(x)) .
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Variance of ω(n)

In 1934, Turán computed the variance of ω(n):

Theorem (Turán 1934)∑
n≤x

(ω(n)− log log n)2 = O(x log log x).

Hence, we have that the Var[ω(n)] = log log n.
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Motivation for Erdös-Kac Theorem

We have that the motivation for Erdös-Kac Theorem is due to the the
following theorem from Hardy and Ramanujan.

Theorem (Hardy-Ramanujan 1917)

For some real number δ,

lim
N→∞

#
{
n ≤ N : |ω(n)− log logN| > (log logN)

1
2
+δ

}
= o(N).

Notice how Turán’s Theorem can deduces the above theorem. This
motivates us to ask the question if we can find a distribution for ω(n) to
find a stronger result than the above Theorem. We will do some
exploration.
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Distribution of ω(n) (1000 ≤ n ≤ 1500)
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Distribution of ω(n) Data (1000 ≤ n ≤ 1500)

µ 2.308

σ2 0.613

log log 1500 1.990

ω(n) #(ω(n))

1 74

2 224

3 176

4 26
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Distribution of ω(n) (106 ≤ n ≤ 106 + 103)
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Distribution of ω(n) Data (106 ≤ n ≤ 106 + 103)

µ 2.931

σ2 1.039

log log(106 + 103) 2.626

ω(n) #(ω(n))

1 75

2 268

3 371

4 227

5 58

6 2
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Normal Distribution

As you may have seen from the images of the proceeding slides, the graphs
look pretty similar in nature. Indeed, the graphs look like the normal
distribution!

Definition (Normal Distribution)

Denote X to be a continuous random variable. Then X has a normal
distribution if it has a probability density function f (x) give by

f (x) =
1

σ
√
2π

exp

[
−1

2

(
x − µ

σ

)2
]
,

where µ = E[X ] and σ2 = Var[X ]. We call f (x) the normal density
function.
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The Erdös-Kac Theorem

In 1940, M. Kac and P. Erdös showed that

ω(n)− log log n√
log log n

follows the normal distribution with mean 0 and variance 1.

Which can be written more concisely as.

Theorem (Erdös-Kac Theorem)

For γ ∈ R,

lim
x→∞

1

x
#

{
3 ≤ n ≤ x :

ω(n)− log log n√
log log n

≤ γ

}
=

1√
2π

∫ γ

−∞
e−

t2

2 dt.
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Moments

Definition (Moments)

Denote X to be a random variable and a scalar c ∈ R. Then, the kth

moment of X is
E[X k ],

and the kth moment of X (about c) is

E[(X − c)k ].

Definition (Central Moments)

Denote X to be a continuous random variable and f (x) be its normal
density function. Then, the kth central moment is defined as

E[(X − µ)k ] =

∫ ∞

−∞
(x − µ)k f (x) dx .
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Why Moments?

The proof by Granville and Soundarajan of the Erdös-Kac theorem is to
show that the moments of

ω(n)− log log n√
log log n

are asymptotic to the moments of the normal distribution.

This can be done because the normal distribution are defined by its
moments. Note that not all distributions exhibit this property (for
example, the lognormal distribution cannot).
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Moments of the Normal Distribution

Theorem

Denote X as a continuous random variable that exhibits the normal
probability distribution. Denote E[(X − µ)k ] as the kth central moment of
X . Then,

E[(X − µ)2k+1] = 0 and E[(X − µ)2k ] =
(2k)!σ2k

k!2k
.

Harshil Sreesai Nukala The Erdös-Kac Theorem July 9, 2024 17 / 22



Sufficiency of Erdös-Kac Theorem

Hence, by the previous theorem we can develop the following shorthand
that represents the moments of the normal distribution for Erdös-Kac
Theorem. Since σ2 = 1,

mk =

{
(2ℓ)!
ℓ!2ℓ

if k = 2ℓ,

0 if otherwise.

Hence, it suffices to show that

lim
x→∞

1

x

∑
n≤x

(ω(x)− log log x)k = mk(log log x)
k/2 + o(log log x)k/2.
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Probabilistic Model

Denote

gp(n) =

{
1 if p | n,
0 otherwise.

and consider the following probabilistic model:

X (p) =

{
1 with probability 1

p ,

0 with probability 1− 1
p .
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Mean and Variance of X (p)

The mean can be calculated as

E[X (p)] = 1 · 1
p
+ 0 ·

(
1− 1

p

)
=

1

p
.

The variance can be calculated as

σ2
p = E

[(
X (p)− 1

p

)2
]
= E[X (p)2]− 2

p
E[X (p)] +

1

p2

= E[X (p)]− 2

p
E[X (p)] +

1

p2

=
1

p
− 2

p2
+

1

p2

=
1

p

(
1− 1

p

)
.
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Final Remarks on X(p)

The reason why we have defined this model is because of the following
(which comes from Lindeberg-Feller Central Limit Theorem) is the
following:

E


∑

p≤y

(
Xp −

1

p

)k
 = mk(log log y)

k/2 + o((log log y)k/2).
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Thank you

Thank you for your attention!
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