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Abstract. The function ω(n) is a wonderful function. In our paper, we will be exploring
ω(n) in a probabilistic number theory setting. It is known that the normal order of ω(n) is
log log n and the variance of ω(n) is also log log n. In this paper, we will be studying how the
distribution ω(n) relates to the normal distribution, which is the result of the Erdös-Kac
Theorem–our key result in this paper. We will be assuming very little knowledge to be able
to understand such an unintuitive result.

1. Introduction

The Erdös-Kac Theorem is a well celebrated theorem in probabilistic number theory that
is quite unintuitive at the start but becomes more and more engaging and beautiful as you
study further. Define ω(n) to be the number of distinct prime factors of n. For example
ω(2) = 1, since 2 is prime and ω(2024) = ω(23 × 11× 53) = 3. Before we go any further, we
would like to clarify some notation that we will be using throughout the paper.

Definition 1.1. (Big O Notation) Denote f and g to be two functions such that g(x) > 0
for all x ≥ a. Then, f(x) = O(g(x)), if there exists a constant M > 0 such that

|f(x)| ≤ Mg(x)

for all x ≥ a.

Definition 1.2. (Little O Notation) Denote f and g to be two functions. If

lim
x→∞

f(x)

g(x)
= 0,

then f(x) = o(g(x)).

When the index of the sum is n ≤ x we are summing over all positive integers n less than
x, but when the index is p ≤ x we will be summing over all primes p less than x. In this
paper, the natural logarithm of x is denoted as log x. Finally, we denote [r] to be the set
{1, 2, · · · , r}.
The function ω(n) has been a prime focus for many well known mathematicians. Turán

[Tur34] showed that ∑
n≤x

(ω(n)− log log x)2 = O(x log log x).

Then, Hardy and Ramanujan [HR17] showed that for some real number δ the number of
positive integers n ≤ N that satisfy

(1.1) |ω(n)− log log n| ≥ (log logN)
1
2
+δ
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is o(N). But now, we might ask if there is a stronger result that may give the distribution
for ω(n). After Turán’s simple, probabilistic proof of 1.1, the ideas further developed and
led Erdös and Kac to discover that there exists a normal distribution for

(1.2)
ω(n)− log log n√

log log n

with mean 0 and variance 1. In particular, Erdös and Kac asserted the Central Limit Theorem
for ω(n). More precisely, we have that Theorem 1.3 is our center of focus.

Theorem 1.3 (Erdös-Kac Theorem). For γ ∈ R,

lim
x→∞

1

x
#

{
3 ≤ n ≤ x :

ω(n)− log log n√
log log n

≤ γ

}
=

1√
2π

∫ γ

−∞
e−

t2

2 dt.

The original proof of Erdös-Kac theorem uses Brun’s method from Sieve Theory [EK40].
However, in 1953 Delange [Del62] and in 1955 Halberstam [Hal56] used the idea of the method
of moments to proof Erdös-Kac Theorem, but were rather complex. In 2006, Granville and
Soundarajan [GS06] proved Erdös-Kac Theorem in a more understandable way by comparing
the moments of 1.2 to the moments of the normal distribution.

In this paper, we will accomplish two things: the first is proving the Erdös-Kac Theorem
(by a method similar to Granville and Soundarajan but removing the necessity of intro-
ducing Ck which is in terms of the gamma function as done in [Les15]) and the second is
demonstrating the beauty of Erdös-Kac Theorem through multiple different variants. In the
second section, we will start of with some probability review that is necessary to understand
the Central Limit Theorem. Then, in the third section, we will review some number theory
results which will be essential for understading the behavior of ω(n). Then, in the fourth
section, we will be exploring characteristic functions which is a vital part in understanding
the Central Limit Theorem. Then, in the fifth section, we will talk about the method of
moments and understand how they relate to what we wish to show. Then, in the sixth
section, we will discuss the Central Limit Theorem and understand how 1.2 relates to what
we discussed in Section 2. Then, in the seventh section , we define some final notation and
models that will be used to prove the Erdös-Kac Theorem. From here, in the eighth section,
we prove the Erdös-Kac Theorem. Finally, in the ninth section, we will define final notation
to be able to discuss the variants of Erdös-Kac Theorem. For our ultimate section, we will
be windowing watching some of the magnificent analogues for the Erdös-Kac Theorem.

2. Probability Theory Review

We begin by reviewing the necessary knowledge of probabilistic theory to understand the
Erdös-Kac theorem and its proof. Denote P (•) to denote probability. The results from this
section will be carrying over to other sections as well. Denote X to be a discrete random
variable which is defined to be a process that is associate to a particular value which is a
natural number. Here, the natural number statement is necessary since we are talking about
a discrete random variable. Soon, we will talk about continuous random variables that will
have a different definition.

We have that the expected value of X, denoted as E[X], can be represented as

E[X] =
∑
x∈N

P (X = x) · x
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Hence, we can define µ, the mean, to equal to the expected value of X. That is µ = E[X].
Now define

σ2 = E[(X − µ)2] =
∑
x∈N

P (X = x) · (X − µ)2.

We refer to σ2 as the variance, which can also be written as Var[X]. The variance tells us
how distributed our data is.

Until now, we were talking about a single random sample X; however, most of the time
we are processing X more than just a single time–suppose N times. Hence, suppose that
(X1, X2, X3, · · · , XN) is a sequence of independent, identically distributed, real-valued ran-
dom variables. To demonstrate this, suppose the process of a coin flip with a fair coin. This
process is referred to as a random experiment. Denote Xi to be a random variable that
takes values of 0 or 1, where 1 represents heads and 0 represents tails. We say Xi = 1 with
probability p, and 0 with probability 1− p. Since our coin is fair, p = 1/2 . Throughout this
paper, we will shorten the definition of the random variable, such as the one defined above,
to the following:

Xi =

{
1 with probability 1

2
,

0 with probability 1
2
.

A coin flip is an example of a Bernouli Trail, which is defined when a random experiment has
one random variable Xi which has two possible values 0 and 1 with not necessarily the same
probability (a weighted coin flip is still considered a Bernouli Trail). Now we are equipped
to talk about binomial distributions and their wonderful mathematical properties.

Definition 2.1 (Binomial Distribution). Assume X1, X2, · · · , XN are independent and iden-
tically distributed (idd) Bernoulli random variables, where P (Xi = 1) = p. Then let

YN =
N∑
i=1

Xi.

We say that YN is a binomial distribution.

Binomial distributions are one type of partial sum process (others include negative bino-
mial distribution and gamma distribution). We can now explore mean and variance in our
binomial distribution setting.

Proposition 2.2 (Lineraity of Expectation).

E

[
N∑
i=1

Xi

]
=

N∑
i=1

E[Xi]

Proof. It suffices to show that

E[X1 +X2] = E

[
2∑

i=1

Xi

]
=

2∑
i=1

E[Xi] = E[X1] + E[X2].
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We have that by definition of expected value,

E[X1 +X2] =
∑
n≥0

nP (X1 +X2 = n)

=
∑
n≥0

∑
x1+x2=n

(x1 + x2)P (X1 = x1)P (X2 = x2)

=
∑

x1+x2≥0

(x1 + x2)P (X1 = x1)P (X2 = x2)

=
∑
x1≥0

∑
x2≥0

x1P (X1 = x1)P (X2 = x2) +
∑
x2≥0

∑
x1≥0

x2P (X1 = x1)P (X2 = x2)

=
∑
x1≥0

x1P (X1 = x1) +
∑
x2≥0

x2P (X2 = x2)

= E[X1] + E[X2].

This completes the proof. ■

Notice that in the above proof we did not use the fact that (X1, X2, · · · , XN) are inde-
pendent random variables. Hence, Proposition 2.2 is true even when the random variables
are non-independent. In fact linearity extends to variance as well (but with a small caveat).
For, linearity of variance to be satisfied the random variables must be independent (since
then we can undermine the covariance). That is,

Var

[
N∑
i=1

Xi

]
=

N∑
i=1

Var[Xi]

only when (X1, X2. · · · , XN) are independent random variables. Linearity of Variance will
not be used in this paper and an interested reader can read the proof here [Cha21]. One
nice property, as a consequence from the definition of variance and Proposition 2.2 is that

Var[X] = E[X2]− E[X]2.

Until now, we have been referring to events happening in a discrete manner (that is, all
random variables are associated with a value in the natural numbers); however, this may
not necessarily be the case. We will now study when our random variable is continuous.
A continuous random variable X is defined to be taking on values between a fixed range
[a, b]. We wish to move away from our binary binomial distribution and define a normal
distribution, a valuable player in Erdös-Kac Theorem. Before defining a normal distribution,
we will first define a probability density function.

Definition 2.3 (Probability Density Function). A function f(x) is a probability density
function if f(x) ≥ 0 for all −∞ ≤ x ≤ ∞, and∫ ∞

−∞
f(x) dx = 1.

I would like to highlight the integral is analogous to saying that the sum of all discrete
events probabilities for a given experiment is equal to 1. For example, in our coin flip example,
we have that if the probability of flipping heads is p the probability of flipping tails is 1− p,
so that the sum of the two events probabilities will be 1. We can now define probability,
expected value, and variance for continuous random variables.
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Definition 2.4 (Probability of a Continuous Random Variable). Denote X to be a contin-
uous random variable such that a ≤ X ≤ b and has a probability density function f(x).
Then,

P (a ≤ X ≤ b) =

∫ b

a

f(x) dx.

Note that P (X = x) = 0. That is the probability of a continuous random variable taking
on a single value is 0 since its is assumed that X has infinitely mainly values it could take.

Definition 2.5 (Expected Value of a Continuous Random Variable). Denote X to be a
continuous random variable and f(x) to be the probability density function of X. Then

E[X] = µ =

∫ ∞

−∞
xf(x) dx.

Definition 2.6 (Variance of a Continuous Random Variable). Denote X to be a continuous
random variable and f(x) to be the probability density function of X. Then

Var[X] = σ2 =

∫ ∞

−∞
(x− µ)2f(x) dx.

We will now define the normal distribution:

Definition 2.7 (Normal Distribution). Denote X to be a continuous random variable. Then
X has a normal distribution if it has a probability density function Φ(x) give by

Φ(x) =
1

σ
√
2π

exp

[
−1

2

(
x− µ

σ

)2
]
,

where µ = E[X] and σ2 = Var[X]. We call Φ(x) the normal density function.

As an example, Figure 1 is a normal distribution with µ = 0 and σ2 = 1.
The normal density function has multiple wonderful properties of which we will be high-

lighting four of them in Lemma 2.8.

Lemma 2.8 (Normal Density Function Properties). Denote f(x) to be a normal density
function. Then f(x) satisfies the following properties:

• f(x) is symmetric about x = µ.
• limx→±∞ f(x) = 0.
• f ′(x) > 0 when x < µ and f ′(x) < 0 when x > µ. Moreover, f(x) attains its
maximum value at x = µ.

• f(x) has two inflections points (change in concavity) at x = µ± σ.

Proof. To show the first property, it suffices to show that f(µ− x) = f(µ+ x). Indeed,

f(µ− x) =
1

σ
√
2π

exp

[
−1

2

(
−x

σ

)2
]
=

1

σ
√
2π

exp

[
−1

2

(x
σ

)2]
= f(µ+ x).

The next three properties are all simple calculus exercises. The second property is a direct
consequence of

lim
x→±∞

−1

2

(
x− µ

σ

)2

= −∞.
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Hence,

lim
x→±∞

1

σ
√
2π

exp

[
−1

2

(
x− µ

σ

)2
]
=

1

σ
√
2π

lim
x→±∞

exp

[
−1

2

(
x− µ

σ

)2
]
= 0,

as needed.
To show the third property, note that

f ′(x) = −
(
x− µ

σ2

)
f(x).

Since f(x) is always positive by definition, we have that when x < µ, f ′(x) > 0 and when
x > µ, f ′(x) < 0. Hence, the third property follows by the first derivative test and f ′(x) = 0
when x = µ. To show the fourth property, note that

f ′′(x) = f(x)

(
− 1

σ2
+

(x− µ)2

σ4

)
.

Note that f ′′(x) = 0 when x = µ± σ. Since both 1
σ2 and (x−µ)2

σ4 are both positive, f ′′(x) > 0

when (x−µ)2

σ4 > 1
σ2 , which occurs when x ∈ (−∞, µ − σ) ∩ (µ + σ,∞). Similarly f ′′(x) < 0

when (x−µ)2

σ4 < 1
σ2 , which occurs when x ∈ (µ− σ, µ+ σ). Hence, we have that x = µ± σ are

inflections points, proving the fourth property. ■

Figure 1. Example of a normal distribution with µ = 0 and σ2 = 1.

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

x

Φ(x) = 1√
2π
e−

x2

2

We will end our discussion here to review some necessary number theory. However we will
return to some of the ideas when talking about characteristic functions and moments.

3. Number Theory Review

We will start with a result that we will not proof but will use to proof Theorem 3.2.

Theorem 3.1 (Abel Summation). Denote {an}∞n=1 to be a sequence of complex numbers.
For t > 0, denote A(t) =

∑
n≤t an. Denote b(t) to be a continuously differentiable function

on the interval [1, x], where x > 1 is a real number. Then,∑
1≤n≤x

anb(n) = A(x)b(x)−
∫ x

1

A(t)b′(t) dt.
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We can now discuss a beautiful theorem that will be continuously used throughout this
paper. The proof has been adapted from [Vil05].

Theorem 3.2 (Mertens’ Second Theorem). There exists a constant C such that for x ≥ 2,∑
p≤x

1

p
= log log x+ C +O

(
1

log x

)
= log log x+O(1).

Proof. Our proof is via Abel Summation across continuous functions. We define our an such
that

an =

{
log p
p

if n = p

0 if n ̸= p,

and b(x) = 1
log x

. Then, we have that A(x) =
∑

p≤x
log p
p

(since only primes give a non-zero

value) and then Theorem 3.1 gives us that∑
p≤x

1

p
=

A(x)

log x
+

∫ x

2

A(t)

t(log t)2
dt.

Writing A(x) = log x + R(x), where R(t) =
∑

x≤p
log p
p

− log t. Note that this means that

|R(t)| = 2. Hence, we have that∑
p≤x

1

p
=

A(x)

log x
+

∫ x

2

A(t)

t(log t)2
dt

=
log x+R(x)

log x
+

∫ x

2

log t+R(t)

t(log t)2
dt

= 1 +
R(x)

log x
+

∫ x

2

1

t log t
dt+

∫ x

2

R(t)

t(log t)2
dt

= log log x− (log log 2− 1) +

(
R(x)

log x
+

∫ ∞

2

R(t)

t(log t)2
dt−

∫ ∞

x

R(t)

t(log t)2

)
dt

= log log x+ C +O
(

1

log x

)
= log log x+O(1).

The reason why we go from the fifth equality to the sixth equality is due to the fact that

C can be treated as an error term of O(1) and since x ≥ 2, we have that O
(

1
log x

)
gets

absorbed into O(1). This completes the proof. ■

We will now begin our discussion on arithmetic functions [Apo76] which will allow us to
proof Lemma 3.11. This lemma is in turn used in the proof of Erdös-Kac Theorem. We will
start with the definition:

Definition 3.3. (Arithmetic Functions) Denote f : N → C as a function. We refer to f as
an arithmetic function.

There are many basic arithmetic functions. A few examples are τ(n) which counts the
number of (positive) integer divisors of n and σ(n) which is the sum of the divisors of n. For
example, σ(12) = 1+2+3+4+6+12 = 28 and τ(12) = 6. Also, another arithmetic function
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is N(n) = n. However, in the context of the Erdös-Kac theorem we will be highlighting µ(n)
and ϕ(n), the Möbius and Totient arithmetic functions.

Definition 3.4. (Möbius Function) Denote n = pα1
1 pα2

2 · · · pαk
k as the prime factorization of

n for primes p1, p2, · · · , pk. Then the Möbius function, µ(n), is defined as follows:

µ(n) =

{
(−1)k if α1 = α2 = · · · = αk = 1,

0 otherwise.

and µ(1) = 1.

Hence, we have that µ(n) = 0 if n has any prime factor divides it more than once, otherwise
µ(n) = −1 if n has an odd number of primes factors and µ(n) = 1 if n has an even number
of prime factors. For example µ(19) = −1, µ(20) = 0, and µ(21) = 1. We can jump straight
into a very helpful theorem which be used to prove Theorem 3.7.

Theorem 3.5. If n ≥ 1, then∑
d|n

µ(n) =

⌊
1

x

⌋
=

{
1 if n = 1,

0 if n > 1.

Proof. First when n = 1, we have that∑
d|1

µ(n) = µ(1) = 1 =

⌊
1

1

⌋
,

as claimed. Now suppose that n ≥ 2. Denote n = pα1
1 pα2

2 · · · pαk
k as the prime factorization

of n. Note that∑
d|n

µ(n) = µ(1) +
∑
1≤i≤k

( ∑
1≤a1<a2<···<ai≤k

µ(pa1pa2 · · · pai)

)
= µ(1) + µ(p1) + µ(p2) + µ(p3) + · · ·+ µ(pn) + µ(p1p2) + · · ·+ µ(pk−1pk) + · · ·+ µ(p1p2 · · · pk),

since the only divisors of n that have a non-zero µ(•) value are 1 and product of distinct
primes. However, note that there are

(
k
1

)
primes that have µ(•) = (−1)1 = −1,

(
k
2

)
pairs of

pair of primes such that the µ(•) of their product is (−1)2 = 1, and so on. Hence,∑
d|n

µ(n) = µ(1) +
∑
1≤i≤k

( ∑
1≤a1<a2<···<ai≤k

µ(pa1pa2 · · · pai)

)

= µ(1) + (−1)1
(
k

1

)
+ (−1)2

(
k

2

)
+ (−1)3

(
k

3

)
+ · · ·+ (−1)k

(
k

k

)
= (1− 1)k

= 0,

as claimed for n ≥ 2. This completes the proof. ■

We will now introduce the Euler Totient Function.
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Definition 3.6. For n ≥ 1, the Euler Totient Function, ϕ(n), counts the number of values
of 1 ≤ a ≤ n that are relatively prime to n.

For example, ϕ(12) = 4 since gcd(1, 12) = gcd(5, 12) = gcd(7, 12) = gcd(11, 12) = 1. We
now can explore a relationship between µ(n) and ϕ(n) :

Theorem 3.7. For n ≥ 1, we have

ϕ(n) =
∑
d|n

µ(d)
n

d
.

Proof. By the definition of ϕ(n), we can write

ϕ(n) =
n∑

k=1

⌊
1

gcd(n, k)

⌋
.

Using Theorem 3.5 with n ≡ gcd(n, k) we have,

ϕ(n) =
n∑

k=1

∑
d|gcd(n,k)

µ(d) =
n∑

k=1

∑
d|n,d|k

µ(d).

We now bring our attention to the innermost sum. We have that for a fixed value d, we need
to sum over all the values of d that divides n. Moreover, for 1 ≤ k ≤ n, we would also need
to sum the values of k that are multiples of d. Hence, if k = qd then 1 ≤ k ≤ n if and only
if 1 ≤ q ≤ n

d
. Hence,

ϕ(n) =
n∑

k=1

n/d∑
q=1

µ(d) =
∑
d|n

µ(d)

n/d∑
q=1

1 =
∑
d|n

µ(d)
n

d
.

This completes the proof. ■

What we saw in Theorem 2.5 is a frequent sum that we see in number theory, that is sums
of the form ∑

d|n

f(d)g
(n
d

)
,

where f and g are two arithmetic functions. In fact, this sum has a special name for it:

Definition 3.8 (Dirichlet Convolution). If f and g are two arithmetic functions, we define
h, another arithmetic function, to be the Dirichlet convolution of f and g by

h(n) =
∑
d|n

f(d)g
(n
d

)
.

As a shorthand, we can write h(n) = (f ∗ g)(n) or h = f ∗ g. Notice, by Theorem 3.7,
ϕ = µ ∗ N. To see how Dirichlet Convolution can act like normal operations which we are
familiar with, we will define one last arithmetic function:

Definition 3.9. (Identity Function) For n ≥ 1, we have

I(n) =

⌊
1

n

⌋
=

{
1 if n = 1,

0 if n > 1.

A simple theorem with I(n) makes it clear why the function is named “identity”:
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Theorem 3.10. Denote f as an arithmetic function and I as the identity function. Then,

f ∗ I = I ∗ f = f.

Proof. We have that

(f ∗ I)(n) =
∑
d|n

f(d)I
(n
d

)
=
∑
d|n

f(d)

⌊
d

n

⌋
= f(n) and

(I ∗ f)(n) =
∑
d|n

If
(n
d

)
=
∑
d|n

⌊
1

n

⌋
f
(n
d

)
= f(n),

since ⌊n/k⌋ = 0 when k > n. ■

With our knowledge on arithmetic functions, we can study the following lemma which is
pivotal in the proof of Erdös-Kac Theorem. The proof has been adapted from [GS06]

Lemma 3.11. Suppose a positive integer r > 2 and denote R as the product of the distinct
primes powers of r. Then,

∑
n≤x

gcd(n,R)=d

1 =
x

R
ϕ

(
R

d

)
+O

(
τ

(
R

d

))
.

Proof. Write n = md. Note that R =
(
R
d

)
d since d = gcd(n,R) =⇒ d | R. From here we

can do some manipulation in the indices:∑
n≤x

gcd(n,R)=d

1 =
∑
md≤x

gcd(md,R)=d

1

=
∑
md≤x

gcd(md,(R/d)d)=d

1

=
∑

m≤x/d
gcd(m,R/d)=1

1

=
∑

m≤x/d

∑
k|gcd(m,R/d)

µ(k).

Since R is square-free by definition, we have that this implies that m and k are square-free
as well. Since k | gcd(m,R/d) =⇒ k | m. Hence,∑

m≤x/d

∑
k|gcd(m,R/d)

µ(k) =
∑
k|R/d

µ(k)
∑

m≤x/d
k|m

1.
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We have that the inner sum is
⌊

x
dk

⌋
= x

dk
−
{

x
dk

}
= x

dk
+O(1). Hence, substituting and using

Theorem 3.7, ∑
k|R/d

µ(k)
∑

m≤x/d
k|m

1 =
∑
k|R/d

µ(k)
( x

dk
+O(1)

)

=
x

d

∑
k|R/d

µ(k)

k
+
∑
k|R/d

µ(k)O(1)

=
x

d

d

R

∑
k|R/d

µ(k)

k

R

d
+
∑
k|R/d

µ(k)O(1)

=
x

R
ϕ

(
R

d

)
+O

∑
k|R/d

1


=

x

R
ϕ

(
R

d

)
+O

(
τ

(
R

d

))
.

This completes the proof. ■

4. Characteristic Functions

The proof of Erdös-Kac Theorem uses central limit theorems which we will cover in Section
6; however, before then, we need to understand characteristic functions. This section is an
adaption of Chapter 5.1 in [PB95]. We will start with the formal definition:

Definition 4.1 (Characteristic Function). The characteristic function of a probability mea-
sure µ on the line is define for t ∈ R by

φ(t) =

∫ ∞

−∞
µeitx dx

=

∫ ∞

−∞
µ cos(tx) dx+ i

∫ ∞

−∞
µ sin(tx) dx,

where i2 = −1.

However, for our purposes we naturally have the following to be true:

φ(t) = E[eitX ] =
∫ ∞

−∞
µeitx dx.

From here, we will consider the multiplicative property of characteristic functions. However,
here we need to consider the independence of our two events.

Proposition 4.2 (Characteristic Functions Multiplication Property). Suppose that X1 and
X2 are independent random variables with characteristic functions φ1 and φ2. Then,

φ1(t)φ2(t) = E[eit(X1+X2)].
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Proof. Denote Yi = cos(Xi) and Zi = sin(tXi), then note that (Y1, Z1) and (Y2, Z2) are
independent since X1 and X2 are independent by assumption. Then from the expected
value definition of the characteristic function and Linearity of Expectation,

φ1(t)φ2(t) = E[Y1 + iZ1]E[Y2 + iZ2]

= (E[Y1] + iE[Z1])(E[Y2] + iE[Z2])

= E[Y1]E[Y2]− E[Z1]E[Z2] + i(E[Y1]E[Z2] + E[Y2]E[Z1])

= E[Y1Y2 − Z1Z2 + i(Y1Z2 + Z1Y2)]

= E[eit(X1+X2)],

as needed. ■

In fact, this property can be generalized. If X1, X2, · · · , Xn are independent, then

E[eit
∑n

k=1 Xk ] =
n∏

k=1

E[eitXk ].

Finally, to conclude our discussion on characteristic functions, we have the follow property:
if X has the characteristic function φ(t), then aX + b has the characteristic function

E[eit(aX+b)] = eitbφ(at).

In particular, when (a, b) = (−1, 0), the characteristic function of −X is φ(−t); the complex
conjugate of φ(t).

5. The Method of Moments

The wonderful proof of Erdös-Kac theorem by Granville and Soundarajan utilizes the
idea of showing that the moments of the assumption of Erdös-Kac theorem converges to the
moments of the normal distribution (with µ = 0 and σ2 = 1). Hence, we will need to study
some theory on moments; we will start with the definition, courtesy of [Tsu].

Definition 5.1. (Moments) Denote X to be a random variable and a scalar c ∈ R. Then,
the kth moment of X is

E[Xk],

and the kth moment of X (about c) is

E[(X − c)k].

For the purposes of probabilistic number theory and our main focus on Erdös-Kac theorem,
we are interested when c = µ, refereed to as the central moment.

Definition 5.2. (Central Moments) Denote X to be a continuous random variable. Then,
the kth central moment is defined as

E[(X − µ)k] =

∫ ∞

−∞
(x− µ)kf(x) dx.

In this paper we have already saw the first moment, being µ, and the second moment, being
σ2. We have that the third moment represents skewness of the distribution measuring the
two tails of the distribution and the fourth moment represents the kurtosis of the distribution
measuring the total size of the tails relative to the entire distribution. Interestingly, higher
moments behave in a similar way as skewness and kurtosis: with the kth moment (k ≥ 3)
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when k ≡ 1 (mod 2), measuring the relative nature of the two tails with respect to each
other, while when k ≡ 0 (mod 2) measures the total tail-ends together as a whole relative
to the entire distribution. With definitions in place we can explore a theorem which is vital
for the proof of Erdös-Kac Theorem:

Theorem 5.3. Denote X as a continuous random variable that exhibits the normal proba-
bility distribution. Denote E[(X − µ)k] as the kth central moment of X. Then,

E[(X − µ)2k+1] = 0 and E[(X − µ)2k] =
(2k)!σ2k

k!2k
.

Proof. We will first start with evaluating E[(X − µ)2k+1]. Note that, by the first property of
Lemma 2.8, we have that,∫ µ

−∞
(x− µ)2k+1f(x) dx = −

∫ ∞

µ

(x− µ)2k+1f(x) dx.

Hence,

E[(X − µ)2k+1] =

∫ ∞

−∞
(x− µ)2k+1f(x) dx

=

∫ µ

−∞
(x− µ)2k+1f(x) dx+

∫ ∞

µ

(x− µ)2k+1f(x) dx

= −
∫ ∞

µ

(x− µ)2k+1f(x) dx+

∫ ∞

µ

(x− µ)2k+1f(x) dx

= 0,

as needed. We will now show the even moment case by induction. Before we start the
induction, we will clean up E[(X − µ)2k]. Denote u = z−µ

σ
, so du = dz

σ
. Also, denote Φ(u) as

the normal density function in terms of u. Hence, by Definition 5.2,

E[(X − µ)2] =

∫ ∞

−∞
(x− µ)2

1

σ
√
2π

exp

[
−1

2

(
x− µ

σ

)2
]
dx

=

∫ ∞

−∞
u2σ3 1

σ
√
2π

e−
1
2
u2

du

= σ2

∫ ∞

−∞
u2

(
1√
2π

e−
1
2
u2

)
du

= σ2

∫ ∞

−∞
u2Φ(u) du.

= σ2E[U2]

= σ2(σ2 − (E[U ])2)

= σ2(1− 02)

= σ2.

Hence, we have established that E[(X − µ)2] = σ2. Note that when k = 1, σ2 = (2k)!σ2k

k!(2k)
,

which is our base case. Now suppose that E[(Z − µ)2n] = (2n)!σ2n

(n!)2n
. Before proceeding to our

inductive step, we must proof the following proposition:
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Proposition 5.4. For n ∈ N,

E[(X − µ)n+1] = nσ2E[(X − µ)n−1].

Proof. Recall from the proof of Lemma 2.8 property 3, −σ2f ′(x) = (x− µ)f(x). Hence,

E[(Z − µ)n+1] =

∫ ∞

−∞
(x− µ)n+1f(x) dx

=

∫ ∞

−∞
(x− µ)n(x− µ)f(x) dx

= −σ2

∫ ∞

−∞
(x− µ)nf ′(x) dx.

From here we can proceed with the classic integration by parts technique. With u = (x−µ)n,
du = k(x− µ)n−1, dv = f ′(x), and v = f(x),

−σ2

∫ ∞

−∞
(x− µ)nf ′(x) dx =

[
−σ2(x− µ)nf(x)

]∞
−∞ + σ2

∫ ∞

−∞
n(x− µ)n−1f(x) dx.

= nσ2

∫ ∞

−∞
(x− µ)n−1f(x) dx

= nσ2E[(X − µ)n−1],

as needed. Note that reason why the first summand is zero is due to L’Hôpital’s rule applied
n+ 1 times. ■

Now we can come back and finish the induction. We have that

E[(X − µ)2n+2] = (2n+ 1)σ2E[(Z − µ)2n]

= (2n+ 1)σ2E[(X − µ)2n]

=
(2n+ 1)!σ2n+2

(n!)2n
2n+ 2

2n+ 2

=
(2n+ 2)!σ2n+2

(n+ 1)!2n+1
,

which is just what we wanted. Hence, we conclude by induction. ■

We finish this section by defining moment-generating function.

Definition 5.5. (Moment-Generating Function) DenoteX be a continuous random variable.
The moment-generating function m(t) of X is

m(t) = E[etX ].

6. The Central Limit Theorem

As stated in Section 1, the Erdös-Kac Theorem asserts the Central Limit Theorem on
ω(n). We have that the expression 1.2 does not come out of nowwhere and is actually a
result of the following Central Limit Theorem:
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Theorem 6.1. Denote {Xn} to be an independent sequence of random variables having the
same distribution with mean µ and finite positive variance σ2, then

lim
x→∞

Sn − µn

σ
√
n

→ χ,

where Sn = X1+X2+ · · ·+Xn and χ has the normal distribution with mean 0 and variance
1.

This theorem is essentially modeling the idea that the sum of many independent random
variables will be approximately normally distributed given that each summand has a high
probability of being small. As mentioned in Section 2, the normally distribution can be
graphically represented by a bell curve as seen in Figure 1.

We have that Theorem 5.2 is a subcase of the bigger central limit theorem, the Lindeberg-
Feller Central Limit Theorem, which is pivotal for the proof of Erdös-Kac Theorem. We will
start our discussion with a definition:

Definition 6.2. Denote {an}n to be a sequence of natural numbers such that if for each
n ∈ N, we have that there exists random variables Xn,1, · · · , Xn,rn , the collection {Xn,k}n,k
is called a triangular array.

Visually, we can represent a triangular array as we did in Figure 2.

Figure 2. Triangular Array

X1,1

X2,1 X2,2

X3,1 X3,2 X3,3
...

...
...

. . .
Xi,1 Xi,2 Xi,3 · · · Xi,i
...

...
...

. . .

From here we can define the Lindeberg-Levy-Feller CLT.

Theorem 6.3. For each n and 1 ≤ m ≤ n, let Xn,m be independent random variables with
E[Xn,m] = 0. If

(1)
∑n

m=1 E[X2
n,m] → σ2 > 0, and

(2) For all ϵ > 0, limn→∞
∑n

m=1 E[|Xn,m|2; |Xn,m| > ϵ] = 0

Then Sn = Xn,1 + · · ·Xn,n ⇒ σχ as n → ∞.

We have that (2) is called the Lindeberg condition. The theorem is basically saying that the
sum of a large number of small independent effects (not necessarily identically distribution)
has a normal distribution. This idea is the reason why we will be using the Lindeberg-Feller
CLT rather than the the first CLT mentioned. This will be talked about more in Section 7.
We will first show how Theorem 6.3 implies Theorem 6.1.

Proposition 6.4. Theorem 6.3 implies Theorem 6.1
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Proof. Suppose that (Y1, Y2, · · · , Yn) are independent and identically distributed random
variables under the assumption of the Central Limit Theorem. WLOG, assume that E[Yn] =
0 and E[Y 2

n ] = σ2. As per the condition of Lindeberg-Feller Central Limit Theorem, Xn,m =
Ym√
n
. By the first condition of Lindeberg-Feller Central Limit Theorem,

lim
x→∞

n∑
m=1

E(|Xn,m|2) = σ2.

Also, we have that
n∑

m=1

E(X2
n,m) = nE(X2

n,m) = E(Y 2
1 ) = 0,

as n approaches infinity. Hence, we have showed what we asserted. This completes the
proof. ■

It can be shown that the characteristic function of the normal distribution with mean µ
and variance σ2 is

φ(t) = exp

(
iµt− σ2t2

2

)
.

A proof of this can be found in [Dur19]. The below proof of Theorem 6.3 is adapted from
[Dur19] as well, with many parts omitted for the interested reader to check thoroughly in
the book for further clarity.

Proof of Theorem 6.3. Denote φn,m(t) = E[exp(itXn,m)] and σ2
n,m = E[X2

n,m]. It suffices to
show that

n∏
m=1

φn,m(t) → exp(−t2σ2/2).

It can be show that

|zn,m − wn,m| ≤ ϵt3E[|Xn,m|2; |Xn,m| ≤ ϵ] + 2t2E[|Xn,m|2; |Xn,m| > ϵ],

where zn,m = φn,m(t) and wn = 1− t2σ2
n,m

2
. Now, we have that the conditions implies that

lim
n→∞

n∑
m=1

|zm,n − ym,n| ≤ ϵt3σ2 and

∣∣∣∣∣
n∏

m=1

φn,m(t)−
n∏

m=1

(
1−

t2σ2
n,m

2

)∣∣∣∣∣→ 0.

We have that, ∣∣∣∣∣
n∏

m=1

(
1−

t2σ2
n,m

2

)∣∣∣∣∣→ exp

(
−t2σn,m

2

)
.

Hence, we see that ∣∣∣∣∣
n∏

m=1

φn,m(t)− exp

(
−t2σn,m

2

)∣∣∣∣∣→ 0.

■

Hence we get that,
n∏

m=1

φn,m(t) → exp(−t2σ2/2),

as needed. This completes the proof.



ON THE DISTRIBUTIONS OF THE NUMBER OF DISTINCT PRIME FACTORS 17

7. Heuristics

We are almost to the goal of proving Erdös-Kac theorem but we would need to define a
few more terminologies to get ready for the proof. What we have shown till now is that if
mk are the moments of a random variable under the normal distribution (when µ = 0 and
σ2 = 1), then

mk =

{
(2ℓ)!
ℓ!2ℓ

if k = 2ℓ,

0 otherwise.

We would like to show that the moments of

ω(n)− log log n√
log log n

are asymptotically equal to the moments of the normal distribution. We would like to stress
the word asymptotically–we are not showing that the moments of the two actually match,
but rather match to a small degree of error. Hence, to prove the Erdös-Kac Theorem, it
suffices to show that

(7.1) lim
x→∞

1

x

∑
n≤x

(ω(n)− log log x)k = mk(log log x)
k/2 + o(log log x)k/2.

Note that this argument can be made due to the fact that the normal distribution is deter-
mined by its moments. This is not always the case. As an example, the lognormal function
is not defined by its moments. We will now define some probabilistic heuristics which will
be a common sight in our next section. Denote

gp(n) =

{
1 if p | n,
0 otherwise.

From this definition, we can construct a probabilistic model for gp(n). As defined in Section
2, we denote X(p) to be a Bernoulli trail such that

X(p) =

{
1 with probability 1

p
,

0 with probability 1− 1
p
.
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From here, note that we can find the mean and variance very easily from the model defined:

E[X(p)] = 1 · 1
p
+ 0 ·

(
1− 1

p

)
=

1

p
,

σ2
p = E

[(
X(p)− 1

p

)2
]

= E[X(p)2]− 2

p
E[X(p)] +

1

p2

= E[X(p)]− 2

p
E[X(p)] +

1

p2

=
1

p
− 2

p2
+

1

p2

=
1

p

(
1− 1

p

)
.

Now, notice by Theorem 3.2,∑
p≤n

σ2
p =

∑
p≤n

1

p

(
1− 1

p

)
=
∑
p≤n

1

p
−
∑
p≤n

1

p2
= log log n+O(1).

As a result from Theorem 6.3, as y → ∞,

(7.2) E

(∑
p≤y

(
Xp −

1

p

))k
 = mk(log log y)

k/2 + o(log log y)k/2

Note that we must use the Lindeberg-Feller Central Limit Theorem opposed to the Central
Limit Theorem because we are not guaranteed that Xp has the same distribution for all p,
which is an assumption of the Central Limit Theorem and not the Lindeberg-Feller Central
Limit Theorem.

Hence, we see that the probabilistic model which was defined is very similar to what we
are dealing with in Erdös-Kac Theorem, in particular the sum of the X(p) values over primes
at most n. Before we proceed, denote the following function fp(n):

fp(n) =

{
1− 1

p
if p | n,

−1
p

otherwise.

Note that fp(n) = gp(n) − 1/p. We can now proof Erdös-Kac Theorem: by finding a con-
nection between equation 7.2 and fp(n) and finding a relation between fp(n) and ω(n).
Hence, these two connections can establish a relation between 7.2 and ω(n), which we wish
to obtain due to the right-hand side of 7.2.

8. Proof of Erdös-Kac Theorem

We have that Theorem 8.1 prompts us in the right direction of what we would like to
show and will give a proof of it towards the end of this section. For now, assume it to be
true.
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In this section we have another variable y which is defined to be a function of x, y(x), such
that y(x) → ∞ as x → ∞. This particular value of y will be analyzed just before Lemma
8.2 and shown to be suitable in our setting of Erdös-Kac Theorem in that lemma itself.

Theorem 8.1. For k ≥ 1,

1

x

∑
n≤x

(∑
p≤y

fp(n)

)k

= E

(∑
p≤y

(
X(p)− 1

p

))k
+O

(
yk

x(log y)k

)
.

With Theorem 8.1 we will first proof that equation 7.1 is indeed true. From there, we
will proof the above assumption made.

We will begin by finding the moments of ω(x)− log log x. For 1 ≤ n ≤ x, denote

ω(n)− log log x =
∑
p≤y

fp(n) +R(x),

where R(x) is an error term such that it will get replaced as O(•). Note that R(x) does
not depend on n. From here, we can specifically look at the quantity we want in equation
7.1.We have,

1

x

∑
n≤x

(ω(n)− log log x)k =
1

x

∑
n≤x

(∑
p≤y

fp(n) +R(x)

)k

=
1

x

∑
n≤x

k∑
j=0

(
k

j

)(∑
p≤y

fp(n)

)j

R(x)k−j

=
1

x

∑
n≤x

(∑
p≤y

fp(n)

)k

+
1

x

∑
n≤x

k−1∑
j=0

(
k

j

)(∑
p≤y

fp(n)

)j

R(x)k−j

≤ 1

x

∑
n≤x

(∑
p≤y

fp(n)

)k

+R(x)k
k−1∑
j=0

(
k

j

)
1

x

∑
n≤x

(∑
p≤y

fp(n)

)j

≤ 1

x

∑
n≤x

(∑
p≤y

fp(n)

)k

+ 2kR(x)k max
j∈{0,1,··· ,k−1}

1

x

∑
n≤x

∣∣∣∣∣∑
p≤y

fp(n)

∣∣∣∣∣
j

For brevity, denote

E =
1

x

∑
n≤x

(ω(x)− log log x)k.

Hence by Cauchy-Schwarz,

E ≤ 1

x

∑
n≤x

(∑
p≤y

fp(n)

)k

+ 2kR(x)k max
j∈{0,1,··· ,k−1}

1

x

(∑
n≤x

1

) 1
2

∑
n≤x

(∑
p≤y

fp(n)

)2j
 1

2

.
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Using Theorem 8.1 twice and equation 7.2, we have that

E = mk(log log y)
k/2 + o(log log y)k/2 +O

(
yk

x(log y)k

)
+O

(
R(x)k√

x
(log log y)

k−1
4

)
.

Looking at what we would like to proof and the expression above, we are very close. Since
y is a function of x, we want to find a value of y such that log log y is asymptotic to log log x
and such that the the two rightmost O(•) error terms can get absorbed into o(log log x)k/2.

Such a y with this property can be found in Lemma 8.2:

Lemma 8.2. Denote y = x1/ log log log x. Then for n ≤ x,

ω(n)− log log x =
∑
p≤y

fp(n) +O(log log log x).

Proof. By definition of ω(n) and the asymptotic equivalence established by Theorem 3.2,
we can represent the left hand side in terms of a sum:

ω(n)− log log x =
∑
p|n

1−
∑
p≤x

1

p
+O(1)

=
∑
p|n
p≤y

1 +
∑
p|n
p>y

1−
∑
p≤y

1

p
−
∑

y<p≤x

1

p
+O(1)

=
∑
p|n
p≤y

1 +
∑
p|n
p>y

1−

∑
p|n
p≤y

1

p
+
∑
p∤n
p≤y

1

p

−
∑

y<p≤x

1

p
+O(1)

=
∑
p|n
p≤y

(
1− 1

p

)
+
∑
p∤n
p≤y

1

p
+
∑
p|n
p>y

1−
∑

y<p≤x

1

p
+O(1)

=
∑
p≤y

fp(n) +
∑
p|n
p>y

1−
∑

y<p≤x

1

p
+O(1)

=
∑
p≤y

fp(n) +
∑
p|n
p>y

1− (log log x− log log y) +O(1)

=
∑
p≤y

fp(n) +
∑
p|n
p>y

1− (log log log log x) +O(1)

where we go from the fourth to fifth equality from the definition of fp(n) and from the fifth
to sixth equality from Theorem 3.2 again. Now we will study the second summand. If
there are ℓ distinct primes, p1, p2, · · · , pℓ that satisfy the second summand, then we have
that following inequality:

yℓ ≤
ℓ∏

i=1

pi ≤ n ≤ x ⇐⇒ yℓ ≤ x.
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Hence, we have that that the second sum is bounded above by log x
log y

= log log log x. Hence,

we have that,

ω(n)− log log x =
∑
p≤y

fp(n) +
∑
p|n
p>y

1− (log log log log x) +O(1)

=
∑
p≤y

fp(n) +O(log log log x),

from our bounding argument. This completes the proof. ■

We have that Lemma 8.2 can meet all the conditions stated before proving the lemma
and as a result shows that equation 7.1 is true. First, it can be shown that log log y is
asymptotic to log log x when y = x1/ log log log x. Moreover, recall that R(x) is an error term
that can be expressed in terms of O(•). We take the error from Lemma 8.2 to denote R(x)
(that is, R(x) = log log log x). Note that we can also replace y with x everywhere. Hence,
we have that

E = mk(log log y)
k/2 + o(log log y)k/2 +O

(
yk

x(log y)k

)
+O

(
R(x)k√

x
(log log y)

k−1
4

)
= mk(log log x)

k/2 + o(log log x)k/2 +O
(

xk

x(log x)k

)
+O

(
(log log log x)k√

x
(log log x)

k−1
4

)
= mk(log log x)

k/2 + o(log log x)k/2.

Hence, we have shown that

E =
1

x

∑
n≤x

(ω(n)− log log x)k = mk(log log x)
k/2 + o(log log x)k/2,

which is exactly what we wanted. Hence, we have proved Erdös-Kac Theorem! Now, we
must proof Theorem 8.1, that we assumed. We will now define our last set of notations.
Denote m =

∏r
i=1 p

αi
i ,M =

∏r
i=1 pi, and

fm(n) =
r∏

j=1

(
fpj(n)

)αj ,

as an altered version to our previously define fp(n). Note that as a consequence of Proposition
2.2,

E

[
r∏

j=1

(
X(pj)−

1

pj

)aj
]
=

r∏
j=1

E
[(

X(pj)−
1

pj

)αi
]
.

Hence, by a standard calculation of expectation from the model of X(p) defined in Section
7, we have

(8.1)
r∏

j=1

E
[(

X(pj)−
1

pj

)αi
]
=

r∏
j=1

(
1

pj

(
1− 1

pj

)αi

+

(
− 1

pj

)αi
(
1− 1

pj

))
.
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Note from Lemma 3.11, when (R, d) = (a, 1) we have that∑
n≤x

gcd(n,a)=1

1 = x
ϕ(a)

a
+O(τ(a)).

This representation of the lemma is crucial in Proposition 8.3:

Proposition 8.3.

1

x

∑
n≤x

fm(n) =
r∏

j=1

(
1

pj

(
1− 1

pj

)αj

+

(
− 1

pj

)αi
(
1− 1

pj

))
+O

(
22r

x

)
Proof. We have that ∑

n≤x

fm(n) =
∑
d|M

∑
n≤x

gcd(M,n)=d

fm(n)

=
∑
d|M

fm(d)
∑

n/d≤x/d
(M/d,n/d)=1

1

= x
∑
d|M

fm(d)
ϕ(M/d)

M
+O

(
τ(M)2

)
.

Since |fm(d)| ≤ 1, and τ(M) = 2r since M has r distinct primes that are square-free, by
construction. Hence, we can simply look at the sum without the coefficient of x and have

an error term of O
(

22r

x

)
as we have divided by x to get what we wanted on the left-hand

side. From the definition of fm(n),∑
d|M

fm(d)
ϕ(M/d)

M
=
∑
d|M

∏
pj |d

(
1− 1

pj

)αj ∏
pj |M/d

(
− 1

pj

)αj ϕ(M/d)

M

=
∑
d|M

∏
pj |d

1

pj

(
1− 1

pj

)αj ∏
pj |M/d

(
− 1

pj

)αj ϕ(M/d)

M

=
∑
d|M

∏
pj |d

1

pj

(
1− 1

pj

)αj ∏
pj |M/d

(
− 1

pj

)αj
(
1− 1

pj

)
.

We can now exploit the fact that since d | M, then d =
∑

j∈S pj for S ⊂ [r]. Denote

Sc = [r] \ S, the complement of S. Hence, summing over a set,

1

x

∑
n≤x

fm(n) =
∑
S⊂[r]

∏
j∈S

1

pj

(
1− 1

pj

)αj ∏
j∈Sc

(
− 1

pj

)αj
(
1− 1

pj

)

=
r∏

j=1

(
1

pj

(
1− 1

pj

)αj

+

(
− 1

pj

)αj
(
1− 1

pj

))
,

as needed. ■
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Hence, from equation 8.1,

1

x

∑
n≤x

fm(n) = E

[
r∏

j=1

(
X(pj)−

1

pj

)aj
]
+O

(
22r

x

)
.

With this, we can proof Theorem 8.1.

Proof of Theorem 8.1. We have,

1

x

∑
n≤x

(∑
p≤y

fp(n)

)k

=
∑

p1,p2,··· ,pk≤y

1

x

∑
n≤x

fp1···pk(n)

=
∑

p1,p2,··· ,pk≤y

(
E

[
r∏

j=1

(
X(pj)−

1

pj

)aj
]
+O

(
22k

x

))

= E

[∑
p≤y

(
Xp −

1

p

)]k
+O

(
yk

x(log y)k

)
,

since ai = 1 for all pi where 1 ≤ i ≤ k. This completes the proof. ■

Hence, we have proved Erdös-Kac Theorem!

9. Further Exploration

In Section 10, we will be discussing some further analogues of the Erdös-Kac theorem to
see how beautiful it is. To do so, we would like to share some definitions and notations.

Definition 9.1. Denote n ≥ 0 to be a natural number. Then π(x) counts the number of
primes p ≤ x.

Actually, π(x) comes up a lot in analytical number theory and most prominently in the
Prime Number Theorem, which states that

π(N) ∼ N

logN
.

We have that Definition 9.1 establishes the prime analogue of the Erdös-Kac Theorem. The
following definition is used to generalize the Erdös-Kac Theorem. Note that π(n) appeared
quite subtle in our paper already–the error term in Theorem 8.1 can be written as

O
(
π(y)k

x

)
.

Definition 9.2 (Strongly Additive). Denote m and n to be positive integers such that
gcd(m,n) = 1. Denote p to be a prime and e > 2 to be an integer. We say f is strongly
additive if

(1) f(mn) = f(m) + f(n), and
(2) f(pe) = f(p)

As an example, ω(n), is a strongly additive function.
We will end of this section, quite surprisingly, with some theory on elliptic curves that will

give us one of the most fascinating variants of Erdös-Kac Theorem.
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Definition 9.3 (Elliptic Curves). For constants A,B ∈ R, an elliptic curve is defined as

E := y2 = x3 + Ax+B.

The discriminant of of the elliptic curve is defined as ∆(E) = −16(4A3 + 27B2). Will will
denote an elliptic curve E to be over Q as E/Q. Now, denote a finite field Fp and E(Fp)
as the set of rational points defined over Fp. We denote #E(Fp) to be the number of such
points in E(Fp).

Definition 9.4. Denote p as a prime. Then p is said to be of good reduction of E if

p ∤ ∆(E).

With all these definitions, we will be able to see three different variants of the Erdös-Kac
Theorem.

10. Variants of Erdös-Kac Theorem

In 1955, Halberstam [Hal55] proved that for a prime p,

lim
x→∞

1

π(x)
#

{
p ≤ x :

ω(p− 1)− log log p√
log log p

≤ γ

}
=

1√
2π

∫ γ

−∞
e

−t2

2 dt.

This is often called the ”prime analogue” of Erdös-Kac Theorem.
We can also define a generalized version of the Erdös-Kac Theorem that Halberstam

[Hal55] also showed. If f is a strongly additive function, then

lim
x→∞

1

x

{
n ≤ x : a ≤ f(n)− A(n)√

B(n)
≤ b

}
=

1√
2π

∫ b

a

e
−t2

2 dt,

where

A(n) =
∑
p≤n

f(p)

p
and B(n) =

√√√√∑
p≤n

f(p)2

p
.

Notice this generalization applies to Erdös-Kac Theorem: f(n) ≡ ω(n), and by Theorem 3.2
,setting f(p) = 1 for all p, we get the mean and variance of from the Erdös-Kac Theorem.

Finally, we will finish the paper by stating the prime analogue of the Erdös-Kac theorem
for elliptic curves [Liu06].

lim
x→∞

1

π(x)
#

{
p ≤ x : p is of good reduction and

ω(#(E(Fp)− log log p√
log log p

≤ γ

}
=

1√
2π

∫ γ

−∞
e−

t2

2 dt.
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