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Abstract

This paper will examine the algebraic properties of quaternions and how they can
be applied to real-world situations. We will examine how to manipulate quaternions
and what theorems we can prove from them; we will use these theorems and see how
they can be applied in aerospace and celestial mechanics. We will also discuss the
ramifications of quaternions in mathematics and science and why they are more useful
compared to other methods trying to achieve the same goals as quaternions.

1 What is a Quaternion?

In the simplest sense, a quaternion is simply a 4-dimensional vector. This means that,
much like how a vector can be represented in R2 with two coordinates, a quaternion can be
represented in R4 with four coordinates. For example, we can define a quaternion with the
coordinates (1, 2, 3, 4). We can also write this as 1+2i+3j+4k where i, j, k are unit vectors
of a quaternion. The form of quaternions that we will use most in this paper is q = q0 + q
where q0 is the scalar/constant part and q is the vector part; in our example, 1+2i+3j+4k,
q0 = 1 and q = 2i+3j+4k. There are other ways to write quaternions, but we will examine
them later. A unit vector is a vector that has a length (also known as norm) of one. Unit
vectors are also called normalized vectors.

1.1 Addition and Subtraction

First, let us define a quaternion rigorously. A quaternion is a four-dimensional vector
that is written algebraically in the following way:

a+ bi+ cj + dk

This expression represents a quaternion if a, b, c, d ∈ R and i, j, k satisfy these properties:

i2 = j2 = k2 = ijk = −1,

ij = k = −ji,
jk = i = −kj,
ki = k = −ik.
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Definition 1.1. Quaternion addition and subtraction are componentwise. This means that
given two quaternions, their sum and difference can be found by adding or subtracting the
coefficients of the quaternions.

Example. Define the first quaternion as q1 = a + bi + cj + dk and the second as q2 =
w+xi+yj+zk. Their sum is q1+q2 = a+w+ i(b+x)+ j(c+y)+k(d+z). Their difference
is q1 − q2 = a− w + i(b− x) + j(c− y) + k(d− z)

1.2 Multiplication and Division

Definition 1.2. Multiplication between quaternions works in two main ways. The first way
is by following the distributive property for all the terms and applying the following rules:

i2 = j2 = k2 = ijk = −1,

ij = k = −ji,
jk = i = −kj,
ki = k = −ik.

The second way is by a special formula that we derive here: Say that we have two vectors
a = (a0, a1, a2) an d b = (b0, b1, b2). Their scalar product is given by a · b = a0b0+ a1b1+ a2b2
and their cross product is given by:

a× b =

∣∣∣∣∣∣
i j k
a0 a1 a2
b0 b1 b2

∣∣∣∣∣∣ = i(a1b2 − a2b1) + j(a2b0 − a0b2) + k(a0b1 − a1b0).

Given this, we can write the product between two quaternions p and q as:

pq = p0q0 − p · q+ p0q+ q0p+ p× q.

Example. This is an example of finding the product using the distributive property. There
are several examples of products calculated via the second method through out this paper
which is why we will not see it here. Define the first quaternion as q1 = a+ bi+ cj + dk and
the second as q2 = e+ fi+ gj + hk. Their product, using the first method, is:

(a+ bi+ cj + dk)(e+ fi+ gj + hk),

= ae+afi+agj+ahk+bei+bfi2+bgji+bhki+cje+cfij+cgj2+chjk+dek+dfik+dgkj+dhk2,

= ae+ afi+ agj + ahk+ bei− bf + bgk− bhj + cej− cfk− cg+ chi+ dek+ dfj− dgi− dh.

We can also write this in coordinate form by arranging it the following way:

ae− bf − cg − dh+ i(af + be+ ch− dg) + j(ag − bh+ ce+ df) + k(ah+ bg − cf + de)

Since we know the constant term and the coefficients of i, j, and k, we can write the coordi-
nates as:

(ae− bf − cg − dh, af + be+ ch− dg, ag − bh+ ce+ df, ah+ bg − cf + de).
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Definition 1.3. Quaternion division is also relatively straightforward. If you wanted to
divide two quaternions, called q1 and q2, you would multiply q1 by the multiplicative inverse
of q2.

Remark 1.4. This definition might be difficult to visualize or interpret given that we have
only represented quaternions either as an algebraic expression or as a set of coordinates. This
particular definition of division makes more sense when we write a quaternion as a matrix
since the multiplicative inverse of a matrix is simple to find.

To figure out what the matrix form of a quaternion is, let us look back on what the
product of two quaternions is:

(ae− bf − cg − dh, af + be+ ch− dg, ag − bh+ ce+ df, ah+ bg − cf + de)

We can rewrite this as the following to make it easier to convert to a matrix:

(ae− bf − cg − dh, be+ af − dg + ch, ce+ df + ag − bh, de− cf + bg + ah)

Since all the e, f, g, h’s are in the same order, we can write this as a matrix times a vector:
a −b −c −d
b a −d c
c d a −b
d −c b a



e
f
g
h

 .
The four-by-four matrix on the left is how we can represent any quaternion as a matrix.

This means that given any quaternion q, we can rewrite it as a matrix using the coefficients;
this makes it far easier to divide.

Example. Say we have the quaternion 5 + 12i − 6j + 9k. Knowing that a = 5, b = 12, c =
−6, d = 9, we can write this in matrix form to be:

5 −12 6 −9
12 5 −9 −6
−6 9 5 −12
9 6 12 5

 .
We can now also perform division with ease with matrices since finding the multiplicative
inverse of a matrix just involves solving a system of equations.

1.3 Complex Conjugate, Norms, and Inverses

Definition 1.5. Much like how two-dimensional complex numbers have complex conjugates,
quaternions do as well. For some quaternion a + bi + cj + dk, its complex conjugate is
a− bi− cj − dk. For any quaternion q, we write its complex conjugate as q∗

A couple of properties we can derive from this definition are that the complex conjugate
of the product of two quaternions is equal to the product of the complex conjugates of the
individual quaternions, in reverse order; we can also say that the sum of a quaternion and
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its complex conjugate is a scalar quantity. These two properties can be written algebraically
as:

Given two quaternions p and q, the first property can be written as (pq)∗ = q∗p∗ and the
second property can be written as q+ q∗ = a+ bi+ cj+ dk+ a− bi− cj− dk = 2a→ scalar.

Definition 1.6. A norm is simply the length of an object. The norm of a quaternion q
can be represented as N(q) or |q| and is found by calculating

√
q∗q. So N(q) =

√
q∗q and

N2(q) = q∗q.

A property we can derive from this is N2(pq) = N2(p)N2(q) where p and q are quater-
nions.

Definition 1.7. While we did define the multiplicative inverse before, there is another easier
way of finding the multiplicative inverse of a quaternion than the way mentioned before. The
inverse of a quaternion q can be written as q−1 such that qq−1 = 1. Using both pre- and
post-multiplication by the complex conjugate q∗, we can state that:

q−1qq∗ = q∗qq−1 = q∗

We can further rewrite this since q∗q = N2(q), so:

q−1 =
q∗

N2(q)
=

q∗

|q|2

This equation can be used to find the inverse of any quaternion. Also, note that if q was a
unit quaternion, which is to say that its norm is 1, then the inverse is the complex conjugate.
Algebraically, that is q−1 = q∗.

2 Quaternion Rotation

Out of all the properties and theorems surrounding the quaternion, the rotation of quater-
nions is likely the single most useful and applicable aspect of these objects. We will explore
the applications of a quaternion later on, but for now, we shall establish some theorems
relating to rotations that are useful to understanding their nature in quaternions.

2.1 Rotation Operator

The reason why quaternions are hailed as so applicable in fields outside of mathematics
is because of how good it is at modeling 3-dimensional rotations, but the fact is that a
quaternion is a four-dimensional object, so why would we use it to model 3-dimensional
movement and how would we do it? The first question will be answered a bit later, so
we shall examine the second question—how would we do it? To use a quaternion in a
3-dimensional space, the solution is very simple—set the real term equal to 0. Written
differently, a vector in R3 can be treated as a quaternion in R4 with a real term equal to 0.
Such a quaternion is known as a pure quaternion. here is a more formal definition.
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Definition 2.1. Say that Q0 is the set of all pure quaternions and it is a subset of Q, the set
of all quaternions. We call any “impure quaternions”, that is non-pure quaternions, general
quaternions. Here, we can establish a correspondence between any vector v ∈ R3 and the pure
quaternion q = 0+ v ∈ Q0. We write this correspondence as v ∈ R3 ↔ q = 0+ v ∈ Q0 ⊂ Q.

Our goal here is to try to find the rotation operator defined by a quaternion by which
we can rotate other objects in three-dimensional space. It is reasonable to believe that a
quaternionic rotation operator may follow a similar structure to a matrix rotation operator;
if work off on this belief, then we can say that there must be some quaternion q ∈ Q that
represents rotation such that for some vector v ∈ R3 and image w ∈ R3 we have w = qv.
We are testing to see if this product qv will give us a vector as a result. Note again that a
pure quaternion and a vector in R3 are the same.

We shall verify if this equation will work as a rotation operator.

qv = (q0 + q)(0 + v)

= q0 · 0− q · v + 0 · q+ q0 · v + q× v

= −q · v + q0v + q× v.

This result shows that qv does not necessarily equal to a vector in R3 except in the case that
q · v = 0 where q and v are orthogonal. This means that the quaternion rotation cannot
consist of a single general quaternion.

So we look onward and consider two quaternions. It is important to note that from now
on we will represent all vectors in R3 in their pure quaternion form to avoid complication.

Say that we have two general quaternions from the set Q called q and r and we have one
pure quaternion from the set Q0 called p. There are six different combinations of products
that we can derive from p, q, r:

pqr, prq, qrp, rqp, rpq, and qpr.

Quaternions of set Q are closed under multiplication while the set Q0 is not closed under
multiplication. This means the products qr and rq are also quaternions; this means that
the four combinations that have r and q next other are actually made up of one general
quaternion and one pure quaternion. We know that these four combinations cannot work
because, as we have shown above, a rotation operator cannot consist of only one general
quaternion and one pure quaternion. This means that the only two combinations that can
work are qpr and rpq as these are the only ones that do not contain qr or rq.

Note that while p is distinct from q and r because it is a pure quaternion (also known
as a vector in R3), q and r are both general quaternions that have no distinction, so really
there is only one combination that can work: qpr. Let us now see if this is satisfactory to
make a quaternion operator.

Let q = q0 + q, p = 0 + p, and r = r0 + r. The real part of the product qpr is:

−r0(q · p)− q0(p · r) + (q× r) · p.

Recall that we want the result to be a vector (which is the same as a pure quaternion),
so we need the real part to be 0. We can do this by setting r0 = q0. Doing so results in:

−q0(q+ r)p+ (q× r) · p.
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This can become 0 if r = −q. Note that if we set r = −q, we also get the following:

r = r0 + r = q0 − q = q∗ → q = r∗.

Recall from before that even though there were two valid combinations, qpr, and rpq, we
only considered the former because both of the combinations were essentially the same since
there was no distinction between q and r. While they are the same, we will still write them
as two different but equivalent operators:

qpq∗and q∗pq.

These triple products always produce a pure quaternion when p is a pure quaternion. So
when we have an input vector v, we have two possible triple-product quaternion operators
defined as:

w1 = qvq∗,

w2 = q∗vq.

We can write the above operators generally as a map Wq : Q0 → Q0 where the function
is defined as Wq(v) = qvq∗ where q is the quaternion that is rotating and v is the vector
being acted upon. There are two operators we derived above, but they both can be found
using Wq(v) since the first operator is Wq(v) and the second is Wq∗(v).

The operator Wq(v) above will be used several times from here on out because while we
think these are two possible operators, we have yet to prove definitively they define quaternion
rotations. That is what the next section will be examining: an alternate, geometric viewpoint
on how we can begin to approach the proof of why these two operators are rotation operators.

2.2 Angles and Geometric View

Here, we will examine whether we can associate an angle with a quaternion. If we can,
then we can associate an angle with the operator we discovered above. Note that from here
on out in this section, the quaternion q that is used to define operators will always be a unit
quaternion. Recall that given a unit quaternion q = q0 + q, we can say that q20 + |q2| = 1.
Here, we can make a connection to the identity cos2 θ+sin2 θ = 1. So if we match the cos2 θ
with q20 and the sin2 θ with |q2|. Setting these terms equal to each other, we get:

cos2 θ = q.02

sin2 θ = |q2|.

We note that there is a restriction of −π < θ ≤ π so that θ can be defined uniquely. We can
also write the unit vector u that represents the axis q rotates about through the following
equation:

q

|q|
=

q

sin θ
.

Using that above equation, we can rewrite the equation of q as:

q = q0 + q = cos(θ) + u sin(θ).
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This is an important result because given any unit quaternion q = q0 + q, we can rewrite it
into the above form. To see the connection between quaternions and rotations more clearly,
we can examine what would happen if we multiplied two unit quaternions, p and q, that
have the same vector u, together. Let α be the angle associated with p and β be the angle
associated with q. Using the previous result, we write

p = cosα + u sinα.

q = cos β + u sin β.

The product of these two quaternions, pq, can be found using the second quaternion product
method that was discussed in the multiplication and division section above:

(cosα + u sinα)(cos β + u sin β)

= cosα · cos β − (u sinα)(u sin β) + cosα(u sin β) + cos β(u sinα) + u sinα× u sin β

= cosα · cos β − sinα · sin β + u(sinα · cos β + cosα · sin β)
= cos(α + β) + u sin(α + β).

Say that α + β = γ. This means the above result can be rewritten as:

cos(γ) + u sin(γ).

This expression is also a quaternion as it follows the general form of a quaternion defined
by an angle. This means multiplying two quaternions with the same vector u results in a
quaternion with the vector u. Furthermore, the resulting quaternion will have an angle that
is the sum of the angles of the two quaternions that were multiplied. In this example, the
quaternions p and q have the angles α and β respectively and they both have vector u. This
means that their product will have the vector u and an angle of α + β.

To see the rotations in a more general form, let us do a small test with a quaternion q
in the operator that has a vector u = 0i + 0j + 1k = k ∈ R3. This vector is also known as
a basis vector; in R3 the vectors i, j, k are all basis vectors. We also choose an extremely
small value for the angle θ. The formula for a quaternion q with a vector k and an angle θ
is q = cos θ + k sin θ.

But here, we can use our knowledge of the fact that θ is very small, meaning that cos θ ≈ 1
and sin θ ≈ θ. This means we can rewrite q as q = 1 + k · θ.

Using this quaternion, we can apply the first operator on the basis vector i. Given this,
the operator is:

Wq(i) = qiq∗,

Wq(i) = (1 + kθ)(0 + i)(1− kθ),

Wq(i) = 0 + i+ 2θj,

Wq(i) = i+ 2θj.

We got this result because θ2 is effectively negligible since θ is very small. If we say that the
angle between the input and output vector is α, then we can say that tanα = 2θ. Since for
a small α we can say that tanα ≈ α. This shows that vector i was rotated counter-clockwise
by 2θ around the axis of k.

We will now take a look at an example of rotation given the methods we have outlined
above.
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2.3 Example of Quaternion Rotation With Angle π
6

This section is based on an example from Jack B. Kuipler’s book [3].

q = cos θ + k sin θ = cos
π

6
+ k sin

π

6
=

√
3

2
+

1

2
k.

We apply this quaternion to a different basis vector i, which can also be written as v =
1i+ 0j + 0k. Using the first quaternion operator on q and i, we get:

Wq(v) = qvq∗,

Wq(v) = (

√
3

2
+

1

2
k)(0 + i)(

√
3

2
− 1

2
k),

Wq(v) =
1

2
i+

√
3

2
j.

We note three things: Wq is a pure quaternion as expected since when we have a pure
quaternion input then we would expect a pure quaternion output. The second thing we
should note is that the norm of w is 1. The third thing is that the angle associated with the
quaternion q is π

3
since cos π

3
= 1

2
and sin π

3
=

√
3
2
.

This result is exactly what we saw before in the previous section because the vector i was
rotated by an angle of 2θ = 2π

6
= π

3
around an axis k much like the general example before.

Now we should consider what this means geometrically. When viewing this particular
example, it is best to consider multiple perspectives; in this case, there are two viewpoints:

Perspective 1: A person is seated with respect to the coordinate frame i, j, k. When we
apply the operator qvq∗, it appears to this person that the vector v is being rotated about
k as an axis with an angle of positive π

3
, meaning that v is being rotated counterclockwise.

Here, the coordinate frame is fixed while the vector is rotated. This is also known as point
rotation.

Perspective 2: In this perspective, a person is seated with respect to the vector v.
When we apply the operator qvq∗, this person will see the coordinate frame i, j, k move
clockwise at an angle of −π

3
around the axis k. Here, the vector is fixed and the coordinate

frame is rotated. This is also known as frame rotation. This shows more clearly how exactly
rotations work in the context of a quaternion.

2.4 Proof that Wq is a Rotation

So, as of now, we have enough evidence to believe that Wq represents a quaternion
rotation, but we have not yet proved that rigorously. So that is what we shall do now.
However, for that proof to work, we need to prove thatWq(v) is a linear operator; the reason
why this is necessary will become clear later. After that, we will also prove another theorem
that will be used later.

Theorem 2.2. What it means for Wq to be a linear operator is that given any two vectors
x and y in R3 and a scalar quantity k, we can say that:

Wq(kx+ y) = kWq(x) +Wq(y).
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To prove that this is true, let us start by using the distributive property on the quaternion
product:

Wq(kx+ y) = q(kx+ y)q∗,

Wq(kx+ y) = (kqx+ qb)q∗,

Wq(kx+ y) = kqxq∗ + qyq∗,

Wq(kx+ y) = kWq(x) +Wq(y).

■

Theorem 2.3. This theorem will prove that when Wq is applied to a vector v = kq, such
that v is in the same direction as the vector component of q, the vector remains unchanged.

Wq(v) = qvq∗,

Wq(v) = q(kq)q∗,

Wq(v) = (2q20 − 1)(kq) + 2(q · kq)q+ 2q0(q× kq),

Wq(v) = kq20q− k|q|2q+ 2k|q|2q,
Wq(v) = k(q20 + |q|2)q,

Wq(v) = kq.

■

Our plan is as follows: Say that we have a quaternion q with its vector part being q
and its associated angle being θ. We also have a vector v ∈ R3 that we can write in two
orthogonal components: one component called a along q and a component n normal to q.
We will show that when we apply the operator Wq(v) = qvq∗, the first component a will
be invariant, and the second component n will be rotated above q by an angle of 2θ. Since
we have proved previously that Wq is a linear operator and since v is the sum of the two
aforementioned components, this would mean that Wq(v) would be a rotation of 2θ in R3

about q as its axis.
To start, we should define the following:

q = q0 + q = cos θ + u sin θ.

u =
q

|q|
.

In this case, u is the unit vector.
We will write v as v = a + n. The vector a is a scalar multiple of q because the vector

a lies along the vector q, which means that a = kq for some scalar quantity k. If we use
theorem 2.3, we can say that:

Wq(a) = Wq(kq) = kq = a.

We now have to prove that Wq rotates the component n by through an angle of 2θ about q
as an axis. To do this, we compute the following using the fact that u = q

|q| :

Wq(n) = (q20 − |q|2)n+ 2(q · n)q+ 2q0(q× n),

9



Wq(n) = (q20 − |q2|)n+ 2q0(q× n),

Wq(n) = (q20 − |q2|)n+ 2q0|q|(u× n).

If we write that u×n = n⊥, we can rewrite the last equation above asWq(n) = (q20−|q|2)n+
2q0|q|n⊥. Our goal now is to prove that n and n⊥ have the same length. Since the angle
between the two vectors is π

2
and they are orthogonal and sin(π

2
) = 1 we can say that:

|n⊥| = |n× u| = |n||u| sin(π
2
) = |n|.

Using the trigonometric form of a quaternion, we can rewrite Wq(n) as:

(cos2 θ − sin2 θ)n+ (2 cos θ sin θ)n⊥,

= cos(2θ)n+ sin(2θ)n⊥.

So, we have shown that Wq(v) = Wq(a + n) = Wq(a) + Wq(n) = a + m such that m =
Wq(n) = cos(2θ)n+ sin(2θ)n⊥. From all this, we can write the following theorem:

Theorem 2.4. For any unit quaternion q = q0+q = cos θ+u sin θ and for any given vector
v ∈ R3, the operator Wq = qvq∗ on vector v is a rotation of the vector v through an angle of
2θ about q as the axis of rotation. ■

This proof is incredibly important because this theorem is one of the principal reasons
why quaternions are so applicable to other fields. In fact, we will now explore the applications
of quaternions to other fields of science and math,

3 Quaternion Applications

3.1 The Aerospace Sequence

Before we delve into how quaternions come into play here, we should discuss Euler an-
gles first. Euler angles are the angle of rotation about a coordinate axis. A sequence of
these rotations is called an Euler angle sequence or an Euler angle-axis sequence. There
is a restriction that states that successive axes of rotations have to be distinct; given this
restriction, there are 12 Euler angle-axis sequences. These twelve axis-sequences are:

xyz yzx zxy

xzy yxz zyx

xyx yzy zxz

xzx yxy zyz

These sequences are read as follows: given some sequence, for example xyz, it is read as a
rotation about the x-axis, then a rotation about the y-axis, followed by a rotation about the
z-axis. Now that we know what Euler angles are, we can define the aerospace sequence using
them and then define it using quaternions.
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Figure 1. Aircraft Euler Angle Sequence

Figure 2. Geometric Representation of Aircraft Euler Angle Sequence

The Euler angle-axis sequence zyx is a sequence used often in aerospace. This can be
seen in the Heading and Attitude Indicator which exists in almost every airplane cockpit;
this indicator associates the orientation of the aircraft frame to a reference frame, typically
Earth’s local tangent and the northwards direction. The positive x-axis of the aircraft is
directed along the longitude and the positive y-axis is directed along the right wing, and
the positive z-axis is normal to the x and y axes and it points downwards. In aerospace,
the reference coordinate frame is defined, as we have mentioned above, as the Earth’s local
tangent plane and the Northward direction. This means that the positive X-axis points
north, the positive Y-axis points east, and the positive Z-axis points downwards. Note that
there is a difference between the x-axis and the X-axis, the y-axis and the Y-axis, and the
z-axis and the Z-axis, as shown in Figure 2. The reference coordinate frame has a rotation
first through an angle ψ about the Z-axis; this rotation defines the aircraft’s heading. Then,
there is a rotation about the y-axis through an angle θ that defines the aircraft’s elevation.
There is also the rotation about the x-axis through an angle of ϕ that defines the aircraft’s
bank angle. All put together, these three rotations connect the aircraft’s body coordinate
frame to the local reference coordinate frame of Earth. The aerospace rotation sequence
shown in Figure 1 can be represented mathematically as the following matrix product:

R = (Rx)ϕ(R
y)θ(R

z)ψ,
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R = (Rx)ϕ

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 ,
=

1 0 0
0 cos θ sinϕ
0 − sinϕ cosϕ

cos θ cosψ cos θ sinψ − sin θ
− sinψ cosψ 0

sin θ cosψ sin θ sinψ cos θ

 ,
=

 cosψ cos θ sinψ cos θ − sin θ
(cosψ sin θ sinϕ− sinψ cosϕ) (sinψ sin θ sinϕ+ cosψ cos θ) cos θ sinϕ
(cosψ sin θ cosϕ+ sinψ sinϕ) (sinψ sin θ cosϕ− cosψ sinϕ) cos θ cosϕ

 .
This product of rotation matrices is also a rotation matrix that can represent the aerospace
sequence; this matrix, geometrically, is a single rotation about a general axis. However, this
was all derived using Euler angles, so where do quaternions come in?

We take a look at Figure 2 again. To use the quaternion rotation operator, we state the
following:

α =
ψ

2
,

β =
θ

2
,

γ =
ϕ

2
.

The half-angle equations above make it easier to do the rest of this process. Writing in terms
of α, β, γ, the quaternions used to define the rotation operators are:

qz,ψ = cosα + k sinα,

qy,θ = cos β + j sin β,

qx,ϕ = cos γ + i sin γ.

Since this is a sequence of frame rotations, the quaternion product representing a composite
rotation is q = qz,ψqy,θqx,ϕ. When we calculate this composite product, we get:

q = qz,ψqy,θqx,ϕ = q0 + iq1 + jq2 + kq3.

The above equation holds true when:

q0 = cosα cos β cos γ + sinα sin β sin γ,

q1 = cosα cos β sin γ − sinα sin β cos γ,

q2 = cosα sin β cos γ + sinα cos β sin γ,

q3 = sinα cos β cos γ − cosα sin β sin γ.

We now have a quaternion product we can read as an expression for the composite rotation
angle and the composite rotation axis. If the said rotation angle is µ, for example, then we
can state:

cos(
µ

2
) = cosα cos β cos γ + sinα sin β sin γ.
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The rotation axis can be defined as:

v = (v1, v2, v3) such that the following conditions are true:

v1 = q1 = cosα cos β sin γ − sinα sin β cos γ,

v2 = q2 = cosα sin β cos γ + sinα cos β sin γ,

v3 = q3 = sinα cos β cos γ − cosα sin β sin γ.

This general rotation formula is equivalent to the aerospace sequence and is significantly
easier to calculate and use.

3.2 Orbit and Orbit Ephemeris Sequence

Our goal here is to find out what the internally fixed reference frame and the orbit frame
are so that we can find two Euler angle sequences to connect both of these frames. What
we can say for certain now is that these two sequences have to be equal, so we can match
corresponding terms with each other. Leonhard Euler often used the Euler angle sequences
of zxz and zyz when talking about orbital mechanics, so that is what we will examine here
as well.

We will begin by considering the orbit of a near-Earth satellite and defining the satellite’s
inertially fixed frame. This frame has the X and Y axes located on the equatorial plane,
meaning that it contains the Earth’s equator. We also define the x-axis to be fixed in the
direction of the constellation Aries. The Z-axis is normal to this plane such that the plane
can be right-handed.

Figure 3. Orbital Euler Angle Sequence

From Figure 4, we note the following: the plane NOR is an orbital plane and it intersects
the equatorial plane along the line ON . ON is known as the line of nodes and point N is an
ascending node. The orientation of the orbital plane is defined by two Euler angle rotations
from the reference frame. As seen in Figure 4, the rotation about the Z-axis is through an
angle Ω such that the positive x-axis contains the ascending node N . The rotation about
the x-axis is through the angle ι such that the y-axis lies along the orbital plane; this angle ι
defines the inclination angle of this plane and the z-axis is normal to this plane. A rotation
about the z-axis through an angle ν defines the orbit frame such that the x-axis points
towards the orbiting object.

This sequence of rotations is the Euler angle sequence for orbits. Now, as we have done
or the aerospace sequence, we find the rotation matrix that allows the internally fixed frame
into the orbit frame.

S = SzνS
x
ι S

z
Ω,
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Figure 4. Orbit Euler Angle Sequence Diagram

S = Szν

1 0 0
0 cos ι sin ι
0 − sin ι cos ι

 cosΩ sinΩ 0
− sinΩ cosΩ 0

0 0 1

 ,
S =

 cos ν sin ν 0
− sin ν cos ν 0

0 0 1

 cosΩ sinΩ 0
− sinΩ cos ι cosΩ cos ι sin ι
sinΩ sin ι − cosΩ sin ι cos ι

 ,

S =

 (cosΩ cos ν − sinΩ cos ι sin ν) (sinΩ cos ν + cosΩ cos ι sin ν) sin ι sin ν
−(cosΩ sin ν − sinΩ cos ι cos ν) (− sinΩ sin ν + cosΩ cos ι cos ν) sin ι cos ν

sinΩ sin ι − cosΩ sin ι cos ι

 .
This is the composite rotation matrix for the orbital Euler angle sequence, but what

about the orbit ephemeris sequence?
An orbit ephemeris of an orbiting object is a tabulation of the Earth’s longitude and

latitude of a body as a function of time. The orbit ephemeris specifies, at any time, the
location on the surface of Earth in the geocentric radial direction of a satellite. In Figure 4,
we see that point R represents the radial direction. The longitude and the latitude of point
P are on the surface of the Earth.

The orbital sequence shown in Figure 3 takes the internally fixed reference frame into
the orbit frame with the x-axis through the point P which lies on the geocentric line to the
orbiting object. The orbit ephemeris is the latitude and longitude of point p on the surface
of Earth and to find out what it is we consider the aerospace Euler angle sequence zyx.

The rotation about the Z-axis is through angle σ such that the x-axis overlaps with the
line OQ in Figure 4. The rotation about the y-axis is through an angle −L such that the
x-axis overlaps with the line OR. The rotation about the x-axis is through an angle of α
such that the y-axis rotates into the orbital plane NOR. This result is the same as the orbit
frame in the orbit sequence.

14



Figure 5. Euler Angle Orbit Ephemeris Sequence

We also define λ0 as the locator of the zero longitude on the surface of Earth with
respect to the X-axis of the inertially-fixed frame. The variables ν, α, L, and σ are time-based
functions of the orbital angular rate ω0 and the Earth’s angular rate ωe. To summarize, all
the parameters we have thus far are as follows:

ω = angle to orbit ascending node N,

α = orbit ephemeris path direction angle,

ι = the orbital angle of inclination,

L = Earth-latitude of orbiting object,

λ = Earth-longitude of orbiting object,

λ0 = locator of the zero longitude on the surface of Earth,

σ = λ+ λ0,

ν = the argument of the latitude to the orbiting object.

The orbit ephemeris sequence shown in Figure 5 can be represented by the following
matrix product:

R = Rx
αR

y
−LR

z
σ,

R = Rx
α

 cosL 0 sinL
0 1 0

− sinL 0 cosL

 cosσ sinσ 0
− sinσ cosσ 0

0 0 1

 ,
R =

1 0 0
0 cosα sinα
0 − sinα cosα

 cosL cosσ cosL sinσ sinL
− sinσ cosσ 0

− sinL cosσ − sinL sinσ cosL

 ,

R =

 cosσ cosL sinσ cosL sinL
(− cosσ sinL sinα− sinσ cosα) (− sinσ sinL sinα + cosσ cosα) cosL sinα
(− cosσ sinL cosα + sinσ sinα) (− sinσ sinL cosα− cosσ sinα) cosL cosα

 .
We know that both these angle sequences, R and S are equal so we can set corresponding

elements equal. For example, we can set the element in the first row and third column of
both rotation matrices equal to each other:

sinL = sin ι sin ν.
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Now, we can divide each element in the second row and third column by the element in the
third row and third column, resulting in:

cosL sinα

cosL cosα
= tanα =

sin ι cos ν

cos ι
= tan ι cos ν.

Now, we divide the second element in the first row by the first element in the first row
and set the resulting fractions equal to each other:

sinσ cosL

cosσ cosL
= tanσ =

sinΩ cos ν + cosΩ cos ι sin ν

cosΩ cos ν − sinΩ cos ι sin ν
.

We can divide this last fraction by cosΩ cos ν to get:

tanσ =
tanΩ + cos ι tan ν

1− tanΩ cos ι tan ν
.

We can now use these equations:

sinL = sin ι sin ν,

tanα = tan ι cos ν,

tanσ =
tanΩ + cos ι tan ν

1− cos ι tan ν tanΩ
.

To determine, at any point in time, the latitude l to the orbiting object as well as the
angle σ. With the angle σ and λ0 we can calculate the longitude λ to the orbiting object.
The angle α is related to the path direction of the ephemeris. That is, we can use these
three equations to find the orbit ephemeris at any given time. However, we have only looked
at the Euler angles version of both the orbit Euler angle sequence and the orbit ephemeris
sequence. So, now we will examine the quaternion version.

We shall begin by figuring out the quaternion equivalent for the orbit Euler Angle se-
quence. Much like when we were deriving the quaternion form of the aerospace sequence,
we begin with defining half angles.

ω =
1

2
Ω,

β =
1

2
ι,

γ =
1

2
ν.

The quaternion product necessary to produce the composite rotation operator is done
by:

q = qz,Ωqx,ιqz,ν .

We can find this product by first computing the product of the last two terms:

qy,θqz,ν = (cos β+i sin β)(cos γ+k sin γ) = cos β cos γ+i sin β cos γ−j sin β sin γ+k cos β sin γ.
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Given this, we can compute qz,Ωqx,ιqz,ν as q0 + iq1 + jq2 + kq3. So:

q = q0 + iq1 + jq2 + kq3.

Such that:
q0 = cosω cos β cos γ − sinω sin β sin γ,

q1 = cosω sin β cos γ + sinω sin β sin γ,

q2 = − cosω sin β sin γ + sinω sin β cos γ,

q3 = cosω cos β sin γ + sinω cos β cos γ.

So if the composite rotation angle is δ is:

cos
δ

2
= q0 = cosω cos β cos γ − sinω cos β sin γ.

The rotation axis can be defined by:

v = (v1, v2, v3) = (q1, q2, q3).

Where q1, q2, q3 are defined above. Using this set of equations, we have a relatively easy set of
computations to calculate the orbit sequence. Note that, once again the quaternionic version
immediately provides the expression for the rotation axis whereas the matrix we obtain from
the Euler angle version makes it more difficult to get a rotation axis. We will now examine
the quaternionic version of the orbit ephemeris sequence.

Just like in the previous sequences, we begin by deriving the quaternionic orbit ephemeris
sequence using half-angle identities.

µ =
1

2
σ,

ϵ =
1

2
L,

ρ =
1

2
α.

The quaternions representing the three rotations in the composite rotation operator are:

qz,σ = cosµ+ k sinµ,

q∗y,L = cos ϵ− j sin ϵ,

qx,α = cos ρ+ i sin ρ.

The orbit ephemeris sequence is found by the following product:

(cosµ+ k sinµ)(cos ϵ− j sin ϵ)(cos ρ+ i sin ρ).

= cosµ cos ϵ cos ρ− sinµ sin ϵ sin ρ+ i(cosµ cos ϵ sin ρ+ sinµ sin ϵ cos ρ),

+j(sinµ cos ϵ sin ρ− cosµ sin ϵ cos ρ) + k(cosµ sin ϵ sin ρ+ sinµ cos ϵ cos ρ).
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As we have stated before, ephemeris sequence and the orbit sequence are equivalent, so
we can state that:

qz,σq
∗
y,Lqx,α = qz,Ωqx,iotaqz,nu

If we multiply both sides of the equation by q∗z,σ followed by multiplying both sides by
ψ = 2τ = Ω− σ, we get:

qy,Lqx,α = qz,ψqx,ιqz,ν ,

The quaternions in this product can be defined as follows:

qz,Ω = cosω + k sinω,

qx,ι = cos β + i sin β,

qz,nu = cos γ + k sin γ,

q∗y,L = cos ϵ− j sin ϵ,

qz,ψ = cos τ + k sin τ where τ =
ψ

2
.

If we set p = q∗y,Lqx,α and r = qz,ψqx,ιqz,ν , we can write that:

p = p0 + ip1 + jp2 + kp3 = (cos ϵ− j sin ϵ)(cos ρ+ i sin ρ),

r = r0 + ir1 + jr2 + kr3 = (cos τ + k sin τ)(cos β + i sin β)(cos γ + k sin γ).

We can now form a connection between p and r by equating corresponding terms. When
we do this, we will get:

(1) p0 = cos ϵ cos ρ = cos τ cos β cos γ − sin τ cos β sin γ = r0,

(2) p1 = cos ϵ sin ρ = cos τ sin β cos γ + sin τ sin β sin γ = r1,

(3) p2 = − sin ϵ cos ρ = − cos τ sin β sin γ + sin τ sin β cos γ = r2,

(4) p3 = sin ϵ sin ρ = cos τ cos β sin γ + sin τ cos β cos γ = r3,

We can simplify all of these equations as the following:

(5) cos ϵ cos ρ = cos β cos(γ + τ),

(6) cos ϵ sin ρ = sin β cos(γ − τ),

(7) sin ϵ cos ρ = sin β sin(γ − τ),

(8) sin ϵ sin ρ = cos β sin(γ + τ),

If we divide equations 5 and 6, we get:

(9)
tan ρ

tan β
=

cos(γ − τ)

cos(γ + τ)
,

If we divide equations 7 and 8, we get:

(10) tan ρ tan β =
sin(γ + τ)

sin(γ − τ)
,
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If we divide equation 10 by equation 9, we get:

tan2 β =
sin 2(γ + τ)

sin 2(γ − τ)
.

If we set 2τ = Ω− σ shift the equation around a little and use the correct identities, we can
rewrite the above equation as:

tanσ =
tanΩ + tan ν cos ι

1− tanΩ tan ν cos ι
.

We can now divide equations 8 and 5 to get:

(11) tan ρ tan ϵ = tan(γ + τ),

We also divide equations 7 and 6 to get:

(12)
tan ϵ

tan ρ
= tan(γ − τ).

We can now divide equations 11 and 12 to get:

tan2 ρ =
tan(γ + τ)

tan(γ − τ)
.

Here, we can state that α = 2ρ; the parameter α is associated with the direction of the
orbit ephemeris path at any time. These equations also help us plot the points (λ, L) which
represent the ephemeris path.

4 Conclusion and Acknowledgements

There are many, many more applications for quaternions from video game graphics to
phone orientation. They all involve the unique fact that quaternions are astonishingly good
at modeling things in our three-dimensional world despite being four-dimensional objects.
The rotation operator and the Euler angle sequences mentioned here are used for all sorts
of modeling algorithms and programs and they are essential for the world we know now. I
would like to thank Simon Rubinstein-Salzedo and Sawyer Dobson for all the advice they
have given me without which I could not have written this paper.
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