Bonnet-Myers Theorem

Grace Howard

June 2024

Some History

In 1855, the theorem was proven for surfaces by Pierre Ossian Bonnet.

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

= 990

Some History

- In 1855, the theorem was proven for surfaces by Pierre Ossian Bonnet.
- In 1941, Sumner Byron Myers showed that only a lower bound on Ricci curvature was needed to come to the same conclusion.

イロト 不得 トイヨト イヨト

= nar

Manifold

Informally, a manifold is a topological space that locally resembles Euclidean space near each point.

Manifold

Informally, a manifold is a topological space that locally resembles Euclidean space near each point.

For example, the Earth's surface (approximately a sphere) is a 2- manifold because it locally resembles 2- dimensional Euclidean space.

Tangent Space

The tangent space of a point x on a manifold is a vector space that contains every possible direction you could tangentially pass through x, or a surface that contains every tangent vector of that point.

イロト イポト イヨト イヨト

3

Tangent Space

The tangent space of a point x on a manifold is a vector space that contains every possible direction you could tangentially pass through x, or a surface that contains every tangent vector of that point.

A Riemannian manifold is a smooth manifold equipped with a Riemannian metric, which permits the measurement of geometric quantities like distance and angles.

イロト イポト イヨト イヨト

3

A Riemannian manifold is a smooth manifold equipped with a Riemannian metric, which permits the measurement of geometric quantities like distance and angles.

• For example, the standard Euclidean metric on \mathbb{R}^n ,

$$g=dx_1^2+\cdots+dx_n^2,$$

makes \mathbb{R}^n into a Riemannian manifold.

- A Riemannian manifold is a smooth manifold equipped with a Riemannian metric, which permits the measurement of geometric quantities like distance and angles.
- For example, the standard Euclidean metric on \mathbb{R}^n ,

$$g=dx_1^2+\cdots+dx_n^2,$$

makes \mathbb{R}^n into a Riemannian manifold. Every submanifold of \mathbb{R}^n inherits a metric by restricting the Euclidean metric to M.

- A Riemannian manifold is a smooth manifold equipped with a Riemannian metric, which permits the measurement of geometric quantities like distance and angles.
- For example, the standard Euclidean metric on \mathbb{R}^n ,

$$g=dx_1^2+\cdots+dx_n^2,$$

makes \mathbb{R}^n into a Riemannian manifold. Every submanifold of \mathbb{R}^n inherits a metric by restricting the Euclidean metric to M. S^{n-1} inherits a metric making it into a Riemannian manifold.

Ricci Curvature

The Ricci curvature is a measure of how the geometry of a given metric tensor differs locally from that of Euclidean space.

イロト イボト イヨト イヨト

-

Ricci Curvature

The Ricci curvature is a measure of how the geometry of a given metric tensor differs locally from that of Euclidean space.

$$\begin{aligned} & \mathsf{d}s^2 = R^2 d\theta^2 + R^2 \sin^2 \theta d\varphi^2 \\ & \mathsf{d}g_{ij} = \begin{pmatrix} R^2 & 0 \\ 0 & R^2 \sin^2 \theta \end{pmatrix} (g^{ij}) = \begin{pmatrix} \frac{1}{R^2} & 0 \\ 0 & \frac{1}{R^2 \sin^2 \theta} \end{pmatrix} \\ & \mathsf{F}_{\mu\nu}^{\sigma} = \frac{1}{2} g^{\sigma\rho} (\partial_{\mu} g_{\nu\rho} + \partial_{\nu} g_{\rho\mu} - \partial_{\rho} g_{\mu\nu}) \\ & \mathsf{R}_{\sigma\mu\nu}^{\rho} = \partial_{\mu} \Gamma_{\nu\sigma}^{\rho} - \partial_{\nu} \Gamma_{\mu\sigma}^{\rho} + \Gamma_{\mu\lambda}^{\rho} \Gamma_{\nu\sigma}^{\lambda} - \Gamma_{\nu\lambda}^{\rho} \Gamma_{\mu\sigma}^{\lambda} \\ & \mathsf{F}_{\mu\nu} = \operatorname{Ric} \left(\frac{\partial}{\partial x_{\mu}}, \frac{\partial}{\partial x_{\nu}} \right) = R_{\mu\lambda\nu}^{\lambda}. \end{aligned}$$

Bonnet-Myers Theorem

Grace Howard

Geodesic

A geodesic is a curve which is the "shortest" path between two points in a Riemannian manifold.

・ロト ・回ト ・ヨト ・ヨト

∃ 900

Geodesic

A geodesic is a curve which is the "shortest" path between two points in a Riemannian manifold.

Complete Manifold

- A complete Riemannian manifold is one wherein each geodesic is isometric to the real line.
 - ▶ The *n* dimensional sphere is a compact *n*-manifold.
 - All compact Riemannian manifolds are geodesically complete.

イロト イボト イヨト イヨト

3

Diameter

The diameter of a Riemannian manifold (M, g) is

$$\operatorname{diam}(M,g) = \sup_{p,q \in M} d(p,q).$$

Diameter

The diameter of a Riemannian manifold (M, g) is

$${\sf diam}(M,g) = \sup_{p,q\in M} d(p,q).$$

For example,

$$S^{1}(r) = \{x \in \mathbb{R}^{2} : |x| = r\},\$$

has

$$\operatorname{diam}(S^{1}(r), S^{1}) = \pi r \quad \text{and} \quad \operatorname{diam}(S^{1}(r), \mathbb{R}^{2}) = 2r.$$

Bonnet-Myers Theorem

Grace Howard

Bonnet-Myers Theorem

If M is a complete Riemannian manifold with positive, bounded from below curvature, then M is compact.

Bonnet-Myers Theorem

If M is a complete Riemannian manifold with positive, bounded from below curvature, then M is compact.

Theorem

Let M be complete Riemannian manifold of dimension n whose Ricci curvature satisfies

$$\operatorname{Ric}(u, u) \geq \frac{n-1}{r^2}$$

for all $u \in T_p M$ for all $p \in M$ with r > 0. Then,

 $\mathsf{diam}(M,g) \leq \pi r$

イロト 不同 トイヨト イヨト

= na0

and M is compact.

Proof Outline

▶ By the Hopf-Rinow theorems, any two points p, q ∈ M can be joined by a length minimizing geodesic.

Proof Outline

- ▶ By the Hopf-Rinow theorems, any two points p, q ∈ M can be joined by a length minimizing geodesic.
- If every sufficiently long geodesic, satisfying say ℓ(γ) > L doesn't minimize length, then M is necessarily of diameter at most L.

◆□ > ◆□ > ◆三 > ◆三 > ・□ > ● ●

Bonnet-Myers Theorem

The condition on the Ricci curvature cannot be weakened to Ric(u, u) > 0 for all unit vectors.

Condition

Consider an elliptic paraboloid of revolution given by

$$F(x,y) = x^2 + y^2.$$

Gaussian curvature is given by

$$K = \frac{F_{xx}F_{yy} - F_{xy}^2}{(1 + F_x^2 + F_y^2)^2}.$$

・ロト・白ト・山下・山下・ 白・ シック・

Grace Howard

Bonnet-Myers Theorem

Condition

Consider an elliptic paraboloid of revolution given by

$$F(x,y) = x^2 + y^2.$$

Grace Howard Bonnet-Myers Theorem Gaussian curvature is given by

$$K = \frac{F_{xx}F_{yy} - F_{xy}^2}{(1 + F_x^2 + F_y^2)^2}.$$

$$F_x = 2x \quad F_y = 2y$$

$$F_{xx} = 2 \quad F_{yy} = 2 \quad F_{xy} = 0$$

$$K = rac{4}{(1+4x^2+4y^2)^2}.$$

<ロ> < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < < つ へ の</p>

▶ In this setting, Gaussian and sectional curvatures coincide.

▶ In this setting, Gaussian and sectional curvatures coincide.

イロト 不得 トイヨト イヨト

= nar

► If the sectional curvature satifies K > 0, then the Ricci curvature is greater than 0.

▶ In this setting, Gaussian and sectional curvatures coincide.

イロト 不得 トイヨト イヨト

= na0

- ► If the sectional curvature satifies K > 0, then the Ricci curvature is greater than 0.
- Therefore, the curvature is positive.

- ▶ In this setting, Gaussian and sectional curvatures coincide.
- ► If the sectional curvature satifies K > 0, then the Ricci curvature is greater than 0.
- Therefore, the curvature is positive.
- However, the manifold is not compact because it is unbounded.

= nar

イロト イポト イヨト イヨト

Fundamental Group

This sphere has two loops passing through the point B.

Fundamental Group

This sphere has two loops passing through the point B.

Fundamental Group

Theorem

Let M be complete Riemannian manifold of dimension n whose Ricci curvature satisfies

$$\operatorname{Ric}(u, u) \geq \frac{n-1}{r^2}$$

for all $u \in T_p M$ for all $p \in M$ with r > 0. Then, its fundamental group is finite.

Conclusion

Thank you for listening.

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ● ● ●