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Some History

▶ In 1855, the theorem was proven for surfaces by Pierre Ossian
Bonnet.

▶ In 1941, Sumner Byron Myers showed that only a lower bound
on Ricci curvature was needed to come to the same
conclusion.
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Manifold

▶ Informally, a manifold is a topological space that locally
resembles Euclidean space near each point.

For example, the Earth’s surface (approximately a sphere) is a 2−
manifold because it locally resembles 2− dimensional Euclidean
space.
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Tangent Space

▶ The tangent space of a point x on a manifold is a vector
space that contains every possible direction you could
tangentially pass through x, or a surface that contains every
tangent vector of that point.
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Riemannian Manifold

▶ A Riemannian manifold is a smooth manifold equipped with a
Riemannian metric, which permits the measurement of
geometric quantities like distance and angles.

▶ For example, the standard Euclidean metric on Rn,

g = dx2
1 + · · · + dx2

n ,

makes Rn into a Riemannian manifold. Every submanifold of
Rn inherits a metric by restricting the Euclidean metric to M.
Sn−1 inherits a metric making it into a Riemannian manifold.
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Ricci Curvature

▶ The Ricci curvature is a measure of how the geometry of a
given metric tensor differs locally from that of Euclidean
space.

▶ ds2 = R2dθ2 + R2 sin2 θdφ2

▶ (gij) =
(

R2 0
0 R2 sin2 θ

)
(g ij) =

( 1
R2 0
0 1

R2 sin2 θ

)
▶ Γσ

µν = 1
2 gσρ(∂µgνρ + ∂νgρµ − ∂ρgµν)

▶ Rρ
σµν = ∂µΓρ

νσ − ∂νΓρ
µσ + Γρ

µλΓλ
νσ − Γρ

νλΓλ
µσ

▶ Rµν = Ric
(

∂
∂xµ

, ∂
∂xν

)
= Rλ

µλν .
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Geodesic

▶ A geodesic is a curve which is the “shortest” path between
two points in a Riemannian manifold.
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Complete Manifold

▶ A complete Riemannian manifold is one wherein each
geodesic is isometric to the real line.
▶ The n dimensional sphere is a compact n−manifold.
▶ All compact Riemannian manifolds are geodesically complete.
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Diameter
The diameter of a Riemannian manifold (M, g) is

diam(M, g) = sup
p,q∈M

d(p, q).

r

For example,
S1(r) = {x ∈ R2 : |x | = r},

has

diam(S1(r), S1) = πr and diam(S1(r),R2) = 2r .
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Bonnet-Myers Theorem
If M is a complete Riemannian manifold with positive, bounded
from below curvature, then M is compact.

Theorem
Let M be complete Riemannian manifold of dimension n whose
Ricci curvature satisfies

Ric(u, u) ≥ n − 1
r2

for all u ∈ TpM for all p ∈ M with r > 0.Then,

diam(M, g) ≤ πr

and M is compact.
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Proof Outline

▶ By the Hopf-Rinow theorems, any two points p, q ∈ M can be
joined by a length minimizing geodesic.

▶ If every sufficiently long geodesic, satisfying say ℓ(γ) > L
doesn’t minimize length, then M is necessarily of diameter at
most L.
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Bonnet-Myers Theorem

The condition on the Ricci curvature cannot be weakened to
Ric(u, u) > 0 for all unit vectors.
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Condition
Consider an elliptic paraboloid of revolution given by

F (x , y) = x2 + y2.

x

y

z Gaussian curvature is given by

K =
FxxFyy − F 2

xy
(1 + F 2

x + F 2
y )2.

Fx = 2x Fy = 2y
Fxx = 2 Fyy = 2 Fxy = 0

K = 4
(1 + 4x2 + 4y2)2 .
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Proof.
▶ In this setting, Gaussian and sectional curvatures coincide.

▶ If the sectional curvature satifies K > 0, then the Ricci
curvature is greater than 0.

▶ Therefore, the curvature is positive.
▶ However, the manifold is not compact because it is

unbounded.
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Fundamental Group

This sphere has two loops passing through the point B.

Grace Howard
Bonnet-Myers Theorem



Fundamental Group

This sphere has two loops passing through the point B.

Grace Howard
Bonnet-Myers Theorem



Fundamental Group

Theorem
Let M be complete Riemannian manifold of dimension n whose
Ricci curvature satisfies

Ric(u, u) ≥ n − 1
r2

for all u ∈ TpM for all p ∈ M with r > 0.Then, its fundamental
group is finite.
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Conclusion

Thank you for listening.
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