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Abstract. Bonnet-Myers Theorem says that if a complete Rie-
mannian manifold has positive curvature obeying some bound,
then the manifold is compact. In other words, it relates local prop-
erties of the manifold to the topological properties. Additionally,
it says that if the manifold is complete and has positive curvature
which is bounded from below, then the fundamental group of the
manifold is finite.

1. Introduction

Bonnet-Myers Theorem relates local properties of a Riemannian man-
ifold to the topological properties of the manifold. A manifold is a
topological space that is locally Euclidean. A Riemannian manifold
is a smooth manifold, which broadly means that you can do calculus
on the manifold, with a Riemannian metric. A geodesically complete
manifold, or just a complete manifold, is a Riemannian manifold for
which, starting at any point on the manifold, there are straight paths
extending infinitely in all directions.

Bonnet-Myers Theorem states that if a Riemannian manifold M is
complete and has positive, bounded-below curvature, then M is com-
pact. In 1855, the theorem was proven for surfaces by Pierre Ossian
Bonnet. In this special case, the notions of curvature (Gauss, sectional,
and Ricci) are all the same.

In 1941, Sumner Byron Myers showed that only a lower bound on
Ricci curvature was needed to come to the same conclusion.

More formally, the statement of the theorem is as follows:

Theorem 1.1 (Bonnet-Myers). Let (M, g) be complete Riemannian
manifold of dimension n whose Ricci curvature satisfies

Ric(g) ≥ n− 1

r2

for all v ∈ SM = {w ∈ TM : ||w|| = 1}.Then,

diam(M, g) ≤ πr.
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This can be used in the proof of a similar result:

Theorem 1.2 (Bonnet-Myers). LetM be a compact Riemannian man-
ifold with positive Ricci curvature; then its fundamental group is finite.
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3. Background

To begin, some relevant elementary definitions are recounted. Addi-
tionally, information can be found in [Krö10] and [Gud04].

Definition 3.1 (Einstein Summation Convention). If an index variable
appears twice in an expression, once as an upper index in one term
and again as a lower index in another term, then the expression is a
summation over all possible values of that index. For example,

aib
i =

∑
i

aib
i.

Definition 3.2 (Inner product). In a real vector space, an inner prod-
uct ⟨., .⟩ satisfies the following four properties. Let u, v, and w be
vectors and let α be a scalar, then:

• ⟨u+ v, w⟩ = ⟨u,w⟩+ ⟨v, w⟩.
• ⟨αv, w⟩ = α⟨v, w⟩.
• ⟨v, w⟩ = ⟨w, v⟩.
• ⟨v, v⟩ ≥ 0 with equality if and only if v = 0.

Definition 3.3 (Inner product space). An inner product space is a
vector space V along with an inner product on V .

Definition 3.4 (Orthonormality). Let V be an inner-product space.
A set of vectors

{u1, u2, . . . , un, . . .} ∈ V

is called orthonormal if and only if for all i, j

⟨ui, uj⟩ = δij.
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4. Manifolds

A manifold is locally Euclidean in that every point has a neighbor-
hood, called a chart, homeomorphic to an open subset of Rn. For a
more formal definition, there are some additional definitions which are
helpful.

Definition 4.1 (Open ball). An open ball is the set of all points x ∈ Rn

such that |x− y| < r for some fixed y ∈ Rn and r ∈ R where

|x− y| =

[∑
i

(
xi − yi

)2] 1
2

.

Definition 4.2 (Open set). A set U ⊂ R is open if for every x ∈ U
there exists ϵ > 0 such that(x− ϵ, x+ ϵ) ⊂ U . In other words, an open
set in Rn is a set constructed from an arbitrary union of open balls.
Or, V ⊂ Rn is open if, for any y ∈ V , there is an open ball centered at
y that is completely inside V .

Definition 4.3 (Closed set). A subset A of X is a closed set if and
only if its complement, Ac = X\A, is open.

Definition 4.4 (Topological space). A topology on a nonempty set X
is a collection of subsets of X such that:

• The empty set ∅ and the set X are open.
• The union of an arbitrary collection of open sets is open.
• The intersection of a finite number of open sets is open.

A collection T of subsets of X is a topology on X if:

• ∅, X ∈ T .
• If Gα ∈ T for α ∈ A, then

⋃
α∈AGα ∈ T .

• If Gi ∈ T for i = 1, 2, . . . , n, the
⋂n
i=1Gi ∈ T .

The pair (X, T ) is a topological space.

Definition 4.5 (Topological manifold). A topological space M is a
topological manifold of dimension n if it has the following properties:

• M is a Hausdorff space: For every pair of points p, q ∈M , there
are disjoint open subsets U, V ⊂M such that p ∈ U and q ∈ V .

• M is second countable: There exists a countable basis for the
topology of M .

• M is locally Euclidean of dimension n: Every point has a neigh-
borhood that is homeomorphic to an open subset of Rn.

Definition 4.6 (Smooth). A map is C∞, or smooth, if it is infinitely
differentiable.
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Definition 4.7 (Diffeomorphic). Two setsM and N are diffeomorphic
if there exists a C∞ map ϕ :M → N with a C∞ inverse ϕ−1 : N →M .
The map ϕ is called a diffeomorphism.

Definition 4.8 (Chart). A chart consists of a subset U of a set M ,
along with an injective map ϕ : U → Rn, such that the image ϕ(U) is
open in Rn.

Definition 4.9 (Atlas). A smooth atlas is an index collection of charts
{(Uα, ϕα)} that satisfies:

• The union of the Uα cover M , that is
⋃
α Uα =M .

• If two charts overlap, Uα∩Uβ ̸= ∅, then the map (ϕα◦ϕ−1
β ) takes

all points in ϕβ(Uα ∩Uβ) ⊂ Rn onto an open set ϕα(Uα ∩Uβ) ⊂
Rn, and all of these maps are C∞ where they are defined.

Definition 4.10 (Manifold). A C∞ n−dimensional manifold is a set
M along with a maximal atlas, one that contains every possible com-
patible chart.

With that, consider the following example of a manifold:

Example 4.1. The sphere

Sn = {x ∈ Rn+1 : |x| = 1}
is an n−manifold. Let

U1 = Sn\{(0, . . . , 0, 1)}
and

U2 = Sn\{(0, . . . , 0,−1)}.
Then, U1 ∪ U2 = Sn. Let ϕ1(x1, x2, . . . , xn+1) =

(
x1

1−xn+1
, . . . , xn

1−xn+1

)
.

The map ϕ1 : U1 → Rn is called stereographic projection. The inverse
map, ϕ−1

1 : Rn → U1 is defined by

ϕ−1
1 (y1, . . . , yn) =

(
2y1∑n

i=1 y
2
i + 1

, . . . ,
2yn∑n

i=1 y
2
i + 1

, 1− 2∑n
i=1 y

2
i + 1

)
.

Both ϕ1 and ϕ−1
1 are continuous, and thus ϕ1 is a homeomorphism.

The second coordinate chart (U2, ϕ2), stereographic projection from
the south pole, is given by ϕ2 = −ϕ1◦(−1), where (−1) is multiplication
by −1 on the sphere. Since multiplication by −1 is a homeomorphism
of the sphere to itself, the map ϕ2 : U2 → Rn is a homeomorphism.
Next,

ϕ2 ◦ ϕ−1
1 (y1, . . . , yn) =

1∑n
i=1 y

2
i

(y1, . . . , yn)

and ϕ2 ◦ ϕ−1
1 = ϕ1 ◦ ϕ−1

2 . Hence, Sn is an n− manifold.
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5. Riemannian Manifolds

A Riemannian manifold is a smooth manifold equipped with a Rie-
mannian metric. This is a choice at each point on the manifold of a
positive definite inner product on the tangent space at the point.

Definition 5.1 (Equivalent). Given a Ck n− dimensional manifoldM ,
for any p ∈ M , two C1 curves, γ1 : [−ϵ1, ϵ1] → M and γ2 : [−ϵ2, ϵ2] →
M , through p, meaning γ1(0) = γ2(0) = p, are equivalent if and only if
there is some chart (U,φ) at p so that

(φ ◦ γ1)′(0) = (φ ◦ γ2)′(0).

Definition 5.2 (Tangent vector). Given any Ck n− dimensional man-
ifold M , with k ≥ 1, for any p ∈ M , a tangent vector to M at p is
an equivalence class of C1 curves through p on M , modulo the equiva-
lence relation defined previously. The set of all tangent vectors at p is
denoted Tp(M).

Note that Tp(M) is a vector space of dimension n, the dimension of
the manifold.

Definition 5.3 (Riemannian metric). A Riemannian metric on a smooth
manifold M is a choice at each point x ∈M of a positive definite inner
product ⟨, ⟩ on TxM , the inner products varying smoothly with x .

Example 5.1. Consider the parametrization of the sphere S2 in terms
of angles θ and φ as follows:

x = sin θ cosφ

y = sin θ sinφ

z = cos θ.

Restrict the domain to

V = {(θ, φ) : 0 < θ < π, 0 < φ < 2π}.

To compute the matrix which gives a Riemannian metric, a basis
(u(θ, φ), v(θ, φ)) of the tangent plane TpS

2 at p = (sin θ cosφ, sin θ sinφ, cos θ)
must be found. For this, use

u(θ, φ) =
∂p

∂θ
= (cos θ cosφ, cos θ sinφ.− sin θ)

v(θ, φ) =
∂p

∂φ
= (− sin θ sinφ, sin θ cosφ, 0).
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From this,

⟨u(θ, φ), u(θ, φ)⟩ = 1

⟨u(θ, φ), v(θ, φ)⟩ = 0

⟨v(θ, φ), v(θ, φ)⟩ = sin2 θ.

From this, the metric on TpS
2 with respect to the basis is given by

gp =

(
1 0
0 sin2 θ

)
.

Thus, for any tangent vector w,

gp(w,w) = dθ2 + sin2 θdφ2.

Definition 5.4 (Riemannian manifold). The smooth manifoldM afore-
mentioned is known as a Riemannian manifold.

Definition 5.5 (Pseudo Riemannian manifold). A pseudo-Riemannian
manifold (M, g) is a differentiable manifold M equipped with an ev-
erywhere non-degenerate, smooth, symmetric metric tensor g.

6. Differential Geometry

Definition 6.1 (Tensor). An nth rank tensor in m dimensional space
is an object that has n indices and mn components and obeys certain
transformation rules:

• S = S ′, a scalar, which is a tensor of rank 0, is invariant under
transformations.

• For a contravariant vector, or a tensor of rank 1,

V α = V α′ ∂xα

∂xα′ .

• For a covariant vector, which is a tensor of rank 1,

Vα = Vα′
∂xα

′

∂xα
.

• For a tensor of higher rank with mixed indices,

Tα...β... = Tα
′...

β′...

∂xα

∂xα′

∂xβ
′

∂xβ
.

• Contraction, which is a summation over a pair of one covariant
and one contravariant indices, creates a tensor of a lesser rank.

Definition 6.2 (Christoffel symbols). The Christoffel symbol is defined
as

Γσµν =
1

2
gσρ (∂µgνρ + ∂νgρµ − ∂ρgµν) .
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Definition 6.3 (Riemann Tensor ). The Riemann tensor is defined as

Rρ
σµν = ∂µΓ

ρ
νσ − ∂νΓ

ρ
µσ + ΓρµγΓ

λ
νσ − ΓρνλΓ

λ
µσ

and
Rρσµν = gλρR

λ
σµν .

Definition 6.4 (Ricci tensor). Let M be a Riemannian manifold with
curvature tensor R. For p ∈M , define a linear map Tp(M) → Tp(M),

X → −R(X, Y )Z

that depends on Y, Z ∈ Tp(M). The trace of this linear map is defined
to be the Ricci tensor ρ(Y, Z). The Ricci tensor is also defined as

Rµν = Rλ
µλν .

Definition 6.5 (Metric tensor). A metric tensor at a point p of M is
a bilinear form defined on the tangent space at p.

Definition 6.6 (Connection). A connection on M associates to vec-
tor fields X, Y on M another vector field ∇XY , called the covariant
derivative of Y with repsect to X, satisfying the following conditions:

• ∇ is linear inX over the smooth functions onM , i.e. ∇fX(Y ) =
f∇XY .

• ∇ is a derivation in Y , meaning for f : M → R smooth,
∇X(fY ) = (Xf)Y + f∇XY .

The following is an example of explicitly calculating the aforemen-
tioned values (for more, see [Car04]):

Example 6.1. For example, a metric for the three-sphere in coordi-
nates (ψ, θ, ϕ) is

ds2 = dψ2 + sin2 ψdθ2 + sin2 ψ sin2 θdϕ2.

Since

Γσµν =
1

2
gσρ(∂µgνρ + ∂νgρµ − ∂ρgµν),

the nonzero metric elements are

gψψ = 1 gθθ = sin2 ψ gϕϕ = sin2 ψ sin2 θ.

Consider firstly

Γψµν =
1

2
gψρ(∂µgνψ + ∂νgψµ − ∂ψgµν).

Since the derivatives of gψψ vanish, the first two terms are zero. Trying
both choices for the last term, µ = ν = θ and µ = ν = ϕ,

Γψθθ = − sinψ cosψ
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Γψϕϕ = − sinψ cosψ sin2 θ.

All other symbols with upper ψ index are zero. Next,

Γθµν =
1

2
gθθ(∂µgνθ + ∂νgθµ − ∂θgµν).

The last term is nonzero only if µ = ν = ϕ. From this,

Γθϕϕ = sin θ cos θ.

The only other way this is nonzero is when µ = θ or ν = θ. From this,

Γθθν =
1

2
gθθ(∂θgνθ + ∂νgθθ − ∂θgθν).

By inspection, the first and final term are 0 by inspection. The middle
term is nonzero when ν = ψ. So,

Γθθψ = Γθψθ = cotψ.

Lastly,

Γϕµν =
1

2
gϕϕ(∂µgνϕ + ∂νgϕµ − ∂ϕgµν).

By examination, the last term will always be zero. For the symbol to
be nonzero, it must be the case that either µ = ϕ or ν = ϕ. So,

Γϕψϕ = Γϕϕψ = cotψ

and

Γϕθϕ = Γϕϕθ = cot θ.

So, the nonzero Christoffel symbols are

Γψθθ = − sinψ cosψ Γψϕϕ = − sinψ cosψ sin2 θ

Γθϕϕ = − sin θ cos θ Γθθψ = Γθψθ = cotψ

Γϕψϕ = Γϕϕψ = cotψ Γϕθϕ = Γϕϕθ = cot θ.

From here, the Riemann tensor was defined as

Rρ
σµν = ∂µΓ

ρ
νσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ.

Recall that

Rρσµν = gλρR
λ
σµν ,

so

Rρσµν = −Rρσνµ Rρσµν = −Rσρµν Rρσµν = Rµνρσ Rρ[σµν] = 0

can be used. Firstly, since gψψ = 1, there is no conversion between the
forms with upper index ψ. With that,

Rψσµν = ∂µΓ
ψ
νσ + ∂νΓ

ψ
µσ + ΓψµλΓ

λ
νσ − ΓψνλΓ

λ
µσ.
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The first way to keep the first term nonzero is to set ν = σ = θ and
µ = ψ to get

Rψθψθ = ∂ψ(− sinψ cosψ)− ∂θΓ
ψ
ψθ + ΓψψλΓ

λ
θθ − ΓψθλΓ

λ
ψθ

= sin2 ψ − cos2 ψ + cos2 ψ

= sin2 ψ.

By the symmetries,

Rψθψθ = sin2 ψ Rθψψθ = Rψθθψ = − sin2 ψ Rψψθθ = 0.

Secondly, choose ν = σ = ϕ and µ = ψ for the first term to be nonzero.
Then,

Rψϕψϕ = ∂ψ(− sinψ cosψ sin2 θ)− ∂ϕΓ
ψ
ψϕ + ΓψψλΓ

λ
ϕϕ − ΛψϕλΓ

λ
ψϕ

= sin2 θ(sin2 ψ − cos2 ψ) + cos2 ψ sin2 θ

= sin2 θ sin2 ψ.

Then, the symmetries give

Rψϕψϕ = sin2 θ sin2 ψ Rϕψψϕ = Rψϕϕψ = − sin2 θ sin2 ψ Rψψϕϕ = 0.

Next, consider when ν = σ = ϕ and µ = θ to keep the first term
nonzero, giving

Rψϕθϕ = ∂θ(− sinψ cosψ sin2 θ)− ∂ϕΓ
ψ
θϕ + ΓψθλΓ

λ
ϕϕ − ΓψϕλΓ

λ
θϕ

= −2 sinψ cosψ sin θ cos θ+sinψ cosψ sin θ cos θ+sinψ cosψ sin θ cos θ

= 0.

Every symbol with a nonzero second term has already been calculated
with the symmetries. Similarly, the third term,

ΓψµλΓ
λ
νσ = ΓψµσΓ

θ
νσ + ΓψµϕΓ

ϕ
νσ,

has already been calculated via symmetries. The last term is similar.
So, the nonzero elements are

Rψθψθ = Rθψθψ = sin2 ψ Rθψψθ = Rψθθψ = − sin2 ψ

Rψϕψϕ = Rϕψϕψ = sin2 θ sin2 ψ Rϕψψϕ = Rψϕϕψ = − sin2 θ sin2 ψ

Rθϕθϕ = Rϕθϕθ = sin2 θ sin4 ψ Rϕθθϕ = Rθϕϕθ = − sin2 θ sin4 ψ.

Using the transformation stated above, where

gψψ = 1 gθθ =
1

sin2 ψ
gϕϕ =

1

sin2 ψ sin2 θ
.

So the final Riemann tensor elements are

Rψ
θψθ = sin2 ψ Rψ

θθψ = − sin2 ψ Rψ
ϕψϕ = sin2 θ sin2 ψ Rψ

ϕϕψ = − sin2 θ sin2 ψ

Rθ
ψθψ = 1 Rθ

ψψθ = −1 Rθ
ϕθϕ = sin2 θ sin2 ψ Rθ

ϕϕθ = − sin2 θ sin2 ψ
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Rϕ
ψϕψ = 1 Rϕ

ψψϕ == −1 Rϕ
θϕθ = sin2 ψ Rϕ

θθϕ = − sin2 ψ.

So, for the Ricci tensor, Rµν = Rλ
µλν ,

Rψψ = Rψ
ψψψ +Rθ

ψθψ +Rϕ
ψϕψ

= 0 + 1 + 1 = 2,

Rθθ = Rψ
θψθ +Rθ

θθθ +Rϕ
θϕθ

= sin2 ψ + 0 + sin2 ψ = 2 sin2 ψ,

Rϕϕ = Rψ
ϕψϕ +Rθ

ϕθϕ +Rϕ
ϕϕϕ

= sin2 ψ sin2 θ + sin2 ψ sin2 θ = 2 sin2 ψ sin2 θ,

Rψθ = Rψ
ψψθ +Rθ

ψθθ +Rϕ
ψϕθ

= 0 + 0 + 0 = 0,

Rψϕ = Rψ
ψψϕ +Rθ

ψθϕ +Rϕ
ψϕϕ

= 0 + 0 + 0 = 0,

and

Rθϕ = Rψ
θψϕ +Rθ

θθϕ +Rϕ
θϕϕ

= 0 + 0 + 0 = 0.

With that, the independent components of the Ricci tensor are,

Rψψ = 1

Rθθ = 2 sin2 ψ

Rϕϕ = 2 sin2 ψ sin2 θ

Rψθ = Rψϕ = Rθϕ = 0.

Finally, the Ricci scalar, R = gµνRµν , is

R = gψψRψψ + gθθRθθ + gϕϕRϕϕ = 2 + 2 + 2 = 6.

Definition 6.7 (Affine connection). LetM be a differentiable manifold
and X(M) the set of differentiable vector fields on M . Let X, Y, Z ∈
X(M) and f, g be differentiable real-valued functions on M . Then
∇ : X(M) × X(M) → X(M) is an affine connection if it satisfies the
following properties:

• ∇(fX + gY, Z) = f∇(X,Z) + g∇(Y, Z).
• ∇(X, Y + Z) = ∇(X, Y ) +∇(Y, Z).
• ∇(X, fY ) = f∇(X, Y ) + (Xf)Y .
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Definition 6.8 (Lie bracket). The Lie bracket can be computed as

[X, Y ] :=
n∑
i=1

(X(Y i)− Y (X i))∂i =
n∑
i=1

n∑
j=1

(Xj∂jY
i − Y i∂jX

i)∂i.

Definition 6.9 (Torsion tensor). Let M be a manifold with an affine
connection on the tangent bundle ∇. The torsion tensor of ∇ is the
vector-valued 2−form defined on vector fields X and Y by

T (X, Y ) := ∇XY −∇YX − [X, Y ]

where [X, Y ] is the Lie bracket of two vector fields.

Definition 6.10 (Curvature tensor). Given a connection ∇ on the
manifold M , define the curvature tensor R by

R(X, Y )Z := ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z.

Definition 6.11 (Levi-Civita connection). An affine connection ∇ is
called a Levi-Civita connection if:

• It preserves the metric, ∇g = 0.
• It is torsion free.

Theorem 6.1 (Levi-Civita). Every pseudo Riemannian manifold (M, g)
has a unique Levi-Civita connection ∇.

Proof. Note that a metric g is compatible with ∇ if and only if

∇Xg = 0

for all X. Since covariant differentiation commutes with contractions,

X(g(x1, X2)) = (∇XX1, X2) + g(X1,∇XX2)

for all X,X1, X2. Suppose that M ⊂ Rn and there is a connection
associated to g. Consider that

∂kg(∂i, ∂j) = g(∇∂k∂i, ∂j) + g(∂i,∇∂k∂j).

Then, by cyclic permutation,

∂ig(∂j, ∂k) = g(∇∂i∂j, ∂k) + g(∂j,∇∂i∂k)

and
∂jg(∂k, ∂i) = g(∇∂j∂k, ∂i) + g(∂k,∇∂j∂i).

Define Sij = ∇∂i∂j = ∇∂j∂i and Tijk = ∂ig(∂j, ∂k). These equations
can be written

Tkij = g(Sik, ∂j) + g(Sjk, ∂i),

Tijk = g(Sij, ∂k) + g(Sik, ∂j),

and
Tjki = g(Sjk, ∂i) + g(Sij, ∂k).



12 GRACE HOWARD

The unknowns in this equation are

g(Sik, ∂j) g(Sjk, ∂i) g(Sij, ∂k).

Since the system is nonsingular, there is a unique solution and unique
Sij’s

Next, to show existence, choose Sij to satisfy the system if three
equations where i < j < k. Set Sji = Sij. We have a connection ∇
with ∇∂i∂j = Sij since the vector fields ∂i are a basis at each tangent
space on M . It is symmetric, since the torsion T vanishes on pairs
(∂i, ∂j), and hence identically-since it is a tensor.

Note that the difference between the two terms in

X(g(X1, X2)) = (∇Xg)(X1, X2) + g(∇XX1, X2) + g(X1,∇XX2)

vanishes when X,X1, X2 are of the form ∂i. Compatibility follows from
this, as the difference of the two sides,

(∇Xg)(X1, X2)

is a tensor.

Definition 6.12 (Contravariant tensor). A contravariant tensor is a
tensor which satisfies specific transformation properties. Consider a
vector

dr = dx1x̂1 + dx2x̂2 + dx3x̂3

where

dx′i =
∂x′i
∂xj

dxj.

Let Ai := dxi. Then, any set of quantities Aj which transform in
accordance with

A′
i =

∂x′i
∂xj

Aj

is a contravariant tensor.

Definition 6.13 (Covariant tensor). To turn a contravariant tensor
aν to a covariant tensor aµ, use the metric tensor gµν to write

gµνa
ν = aµ.

Definition 6.14 (Comma derivative). The components of the gradient
of the one-form dA are denoted A,k and are given by

A,k =
∂A

∂xk
.
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Definition 6.15 (Covariant derivative). The covariant derivative of
contravariant tensor Aa is given by

Aa;b =
∂Aa

∂xb
+ ΓabkA

k = Aa,b + ΓabkA
k.

The covariant derivative of a covariant tensor Aa is

Aa;b =
∂Aa
∂xb

− ΓkabAk.

Definition 6.16 (Geodesic). A curve γ(t) on a surface S is called a
geodesic if at every point γ′′(t) is either zero or parallel to its unit
normal n.

Definition 6.17 (Exponential map). Let v ∈ TpM be a tangent vector
to the manifold at p. Then there is a unique geodesic γv : [0, 1] →
M satisfying γv(0) = p with initial tangent vector γ′v(0) = v. The
corresponding exponential map is defined by expp(v) = γv(1).

Definition 6.18 (Geodesically complete). M is geodesically complete
if exp can be defined on all of TM .

Theorem 6.2 (Hopf-Rinow 1). The following are equivalent:

• M is geodesically complete.
• In the metric d on M induced by g, M is a complete metric
space.

Proof. Suppose the second item to be true. Let M be complete in the
appropriate metric. Then, if γ : I → M for I and open interval (a, b)
is a geodesic, consider a sequence bn → b. Then,

d(γ(bn), γ(bm)) ≤ ℓ(γ[bn,bm]) = O(|bn − bm|),

since geodesics move at constant speed. From this, the γ(bn) form a
Cauchy sequence, converging to some point p ∈ M . In local coor-
dinates, we can write γ = (γ1, . . . , γn), when the geodesic property
implies

˙̇γi = −
∑
j,k

Γijkγ̇j γ̇k

for suitable Christoffel symbols Γijk.
Since the first derivatives γ̇j are bounded, the second derivatives are

too. Therefore, γ extends to the interval (a, b] with a right-handed
derivative γ̇ at b. Furthermore, the right-handed derivative at b exists
and is uniformly continuous in a neighborhood of b by the mean value
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theorem (ref). Now there is locally a geodesic γ1 : (b − ϵ, b + ϵ) at p
with γ̇1(b)− γ̇(b). The function

γ2(t) =

{
γ(t) if t ≤ b

γ1(t) otherwise

satisfies the geodesic equation everywhere and is defined on (a, b + ϵ).
So, these geodesics can be extended to the right. The left is handled

in a similar way.

Theorem 6.3 (Hopf-Rinow 2). Suppose expp is defined on all of
Tp(M). Then for any q ∈ M , there is a geodesic γ from p to q that
minimizes length.

Proof. Consider a small sphere

Sr(p) = {x ∈ Rn : |x− p| < r}
with respect to the metric d. Take the point p′ ∈ Sr(p) with d(p′, q)
minimized. From this,

d(p, q) = d(p′, q) + r.

There is a geodesic γ travelling at unit speed with γ(0)p, γ(r) = p′. In
particular,

d(γ(r), q) = d(p, q)− r.

Let S be the set of all s with

d(γ(s), q) = d(p, q)− s.

means that r ∈ S and S is closed. If d(p, q) ∈ S, then we have a
geodesic from p to q that minimizes length. Since S ∩ [0, d(p, q)] is
closed, pick its largest element s ∈ S ∩ [0, d(p, q)), and let u = γ(s).
Choose a small neighborhood D2δ(u). From this, if we pick the point
u′ ∈ Sδ(u) closest to q, we have

d(u′, q) = d(u, q)− δ = d(p, q)− s− δ.

Pick u′ = γ(s+ δ). First,

d(p, u′) ≥ d(q, p)− d(q, u′) = d(p, q)− s+ δ.

The path γ from p to u connected with the geodesic from u to u′ forms
a path from p to u′ of minimizing length

d(p, q) + δ = d(p, q)− s+ δ,

so it is smooth and a geodesic. In particular, s + δ ∈ S, which is a

contradiction.
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Definition 6.19 (Energy). Let c : I → M be a smooth path in M .
The energy is defined as

E(c) :=
1

2

∫
g(c′, c′).

Theorem 6.4 (First Variation Formula ). • For any variationH
of γ, we have

d

ds
E(γs)|s=0 = g(Y (t), γ̇(t))|T0 −

∫ T

0

g

(
Y (t),

∇
dt
γ̇(t)

)
dt.

• The critical points for all variations H of γ are geodesics.
• If |γ̇s(t)| is constant for each fixed s ∈ (−ϵ, ϵ), and |γ̇(t)| = 1,
then

d

ds
E(γs)|s=0 =

d

ds
ℓ(γ)s)|s=0.

• If γ is a critical point of the length, then it must be a reparametriza-
tion of a geodesic.

Proof. • We have

1

2

∂

∂s
g(γ̇s(t), γ̇s(t)) = g

(
∇
ds
γ̇s(t), γ̇s(t)

)
= g

(
∇
ds

∂H

∂s
(t, s),

∂H

∂t
(t, s)

)
=

∂

∂t
g

(
∂H

∂s
,
∂H

∂t

)
− g

(
∂H

∂s
,
∇
dt

∂H

∂t

)
.

Then, by integrating from 0 to T with respect to t with s = 0
gives the desired result since

∂H

∂s
|s=0 = Y and

∂H

∂t
|s=0 = γ̇.

• If γ is a geodesic, then

∇
dt
γ̇(t) = 0.

From this, the integral on the right-hand side vanishes. Sim-
ilarly, since Y (0) = 0 = Y (T ), the rand-hand side vanishes.
Conversely, if γ is a critical point for E, choose H with

Y (t) = f(t)
∇
dt
γ̇(t)
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for some f ∈ C∞[0, T ] such that 0 = f(T ) = f(0). Then, it is
known that ∫ T

0

f(t)

∣∣∣∣∇dtγ̇(t)
∣∣∣∣2 dt = 0

is true for all f . From this,

∇
dt
γ̇ = 0.

• Fix [0, T ]. Then, for all H, it is the case that

E(γs) =
ℓ(γs)

2

2T
.

From this,

d

ds
E(γs)|s=0 =

1

T
ℓ(γs)

d

ds
ℓ(γs)|s=0.

When s = 0, the curve is parameterized by arc-length, so
ℓ(γs) = T .

• Using reparametrization, it can be assumed that |γ̇| = 1. Then,
γ is a critical point for ℓ, hence for E, and is therefore a geodesic.

Theorem 6.5 (Second Variation Formula). Let γ(t) : [0, T ] → M be
a geodesic with |γ̇| = 1. Let H(t, s) be a variation of γ. Let

Y (t, s) =
∂H

∂s
(t, s) = (dH)(t,s)

∂

∂s
.

• We have

d2

ds
E(γs)|s=0 = g

(
∇Y
ds

(t, 0), γ̇

)
|T0 +

∫ T

0

(|Y ′|2 −R(Y, γ̇, Y γ̇))dt.

• We have

d2

ds2
ℓ(γs)|s=0 = g

(
∇Y
ds

(t, 0), γ̇(t)

)
|T0

+

∫ T

0

(|Y ′|2 −R(Y, γ̇, Y, γ̇)− g(γ̇, Y ′)2)dt,

where R is the (4, 0) curvature tensor, and

Y ′(t) =
∇Y
dt

(t, 0).

Letting

Yn = Y − g(Y, γ̇)γ̇
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for the normal component of Y , we can write this as

d2

ds2
ℓ(γs)|s=0 = g

(
∇Yn
ds

(t, 0), γ̇(t)

)
|T0 +

∫ T

0

(|Y ′
n|2 −R(Yn, γ̇, Yn, γ̇))dt.

Proof. Use

d

ds
E(γs) = g(Y (t, s), γ̇s(t))|Tt=0 −

∫ T

0

g

(
Y (t, s),

∇
dt
γ̇s(t)

)
dt.

Taking the derivative (with respect to s) gives

d2

ds2
E(γs) = g

(
∇Y
ds

, γ̇

)
|Tt=0 + g

(
Y,

∇
ds
γ̇)s

)
|Tt=0

−
∫ T

0

(
g

(
∇Y
ds

,
∇
dt
γ̇s

)
+ g

(
Y,

∇
ds

∇
dt
γ̇

))
dt.

From this, use that

∇
ds

∇
dt
γ̇s(t) =

∇
dt

∇
ds
γ̇s(t) +R

(
∂H

∂s
,
∂H

∂t

)
γ̇s

=

(
∇
dt

)2

Y (t, s) +R

(
∂H

∂s
,
∂H

∂t

)
γ̇s.

Now, setting s = 0, this gives

d2

ds2
E(γs) = g

(
∇Y
ds

, γ̇

)
|T0 + g

(
Y,

∇γ̇
ds

)
|T0

−
∫ T

0

[
g

(
Y,

(
∇
dt

)2

Y

)
+R(γ̇, Y, γ̇, Y )

]
dt.

Next, using integration by parts,

−
∫ T

0

g

(
Y,

(
∇
dt

)2

Y

)
dt = −g

(
Y,

∇
dt
Y

)
|T0 +

∫ T

0

∣∣∣∣∇Ydt
∣∣∣∣2 dt.

Noting that
∇
ds
γ̇(s) =

∇
dt
Y (t, s),

d2

ds2
E(γs)|s=0 = g

(
∇Y
ds

, γ̇

)
|T0 +

∫ T

0

(|Y ′|2 −R(Y, γ̇, Y, γ̇))dt.

Differentiating to prove the variation of length,

d

ds
ℓ(γs) =

∫ T

0

1

2
√
g(γ̇s, γ̇s)

∂

∂s
g(γ̇s, γ̇s)dt.
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Taking the derivative again gives

d2

ds2
ℓ(γs)|s=0 =

∫ T

0

[
1

2

∂2

∂s2
g(γ̇s, γ̇s)|s=0 −

1

4

(
∂

∂s
g(γ̇s, γ̇s)

)2
]
dt,

where it is important to note that g(γ̇, γ̇) = 1. Lastly, we have

d2

ds2
ℓ(γs)|s=0 =

d2

ds2
E(γs)|s=0 −

∫ T

0

(
g

(
γ̇s,

∇
ds
γ̇s

)
|s=0

)2

dt.

Definition 6.20 (Complete). AmanifoldM is complete if for all points
p ∈M , the exponential map at p is defined on TpM , the entire tangent
space at p.

Definition 6.21 (Open cover). A set C = {Uα : α ∈ A} of subsets Uα
of a set X is a cover of X if⋃

α

∈ AUα ⊇ X.

An open cover is a cover with each element being an open set. A
subcover of a cover of a set is a subset of the cover that also covers the
set.

Definition 6.22 (Compact). A topological space is compact if every
open cover of X has a finite subcover.

7. Bonnet-Myers Theorem

Definition 7.1 (Diameter). The diameter of a Riemannian manifold
(M, g) is

diam(M, g) = sup
p,q∈M

d(p, q).

Example 7.1. For example, the 2-sphere,

S1(r) = {x ∈ R2 : |x| = r},
has

diam(S1(r), S1) = πr and diam(S1(r),R2) = 2r.

Theorem 7.1 (Bonnet-Myers). Let (M, g) be a complete Riemannian
manifold of dimension n whose Ricci curvature satisfies

Ric(g) ≥ n− 1

r2

for all v ∈ SM = {w ∈ TM : ||w|| = 1}.Then,
diam(M, g) ≤ πr.



BONNET-MYERS THEOREM 19

Proof. Firstly, note that by Hopf-Rinow, for any L < diam(M, g) we
can find points p, q ∈M such that d(p, q) = L and a minimal geodesic
γ ∈ Ω(p, q) with ℓ(γ) = d(p, q) = L. Parameterize γ : [0, L] → M so
that |γ̇| = 1. Consider some vector field Y along γ such that Y (p) =
0 = Y (q). Since γ is a minimal geodesic, it is a critical point for ℓ.
Additionally, since minimal geodesics are critcal points of the length
functional , I(Y, Y )[0,L] ≥ 0. Extend γ̇(0) to an orthonormal basis of
TpM , γ̇(0) = e1, e2, . . . , en. Let Xi be the vector field such that

X ′
i = 0 and Xi(0) = ei.

Then, for i = 1, X1(t) = γ̇(t). For i = 2, . . . , n, set

Yi(t) = sin

(
πt

L

)
Xi(t).

After using integration by parts

I(Yi, Yi)[0,L] = −
∫ L

0

g(Y ′′
i +R(γ̇, Yi)Yi, γ̇)dt.

Since Xi is parallel, this can be written as∫ L

0

sin2 πt

L

(
π2

L2
−R(γ̇, Xi, γ̇, Xi)

)
dt.

Since this is length minimizing, it is also non-negative. Note that
R(γ̇, X1, γ̇, X1) = 0. So,

Ric(γ̇, γ̇).

From this, it is known that
n∑
i

I(Yi, Yi) =

∫ L

0

sin2 πt

L

(
(n− 1)

π2

L
− Ric(γ̇, γ̇)

)
dt ≥ 0.

Recall that by supposition

Ric(γ̇, γ̇) ≥ n− 1

r2
.

From this,
π2

L2
≥ 1

r2

and
L ≤ πr.

By supposition, however, L < diam(M, g). So,

diam(M, g) ≤ πr.
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8. Fundamental Group

Definition 8.1 (Group). A group G is a set together with a group
operation satisfying the following properties:

• If A and B are two elements in G, then the product AB is also
in G.

• The defined multiplication is associative, for all A,B,C ∈ G,

(AB)C = A(BC).

• There is an identity element I such that IA = AI = A for every
element A ∈ G.

• For each element A ∈ G, the set contains an element B = A−1

such that AA−1 = A−1A = I.

Definition 8.2 (Homotopy). A homotopy between two functions f and
g from a space X to a space Y is a continuous map G from X× [0, 1] 7→
Y such that G(x, 0) = f(x) and G(1, x) = g(x).

Definition 8.3 (Loops). If X is a topological space and p ∈ X, a loop
is a continuous map

L : [0, 1] → X

such that L(0) = p and L(1) = p.

Definition 8.4 (Fundamental Group). The fundamental group of set
X is the group formed by the sets of equivalence classes of the set of
all loops, i.e., paths with initial and final points at a given basepoint
p, under the equivalence relation of homotopy.

Theorem 8.1 (Bonnet-Myers). LetM be a compact Riemannian man-
ifold with positive Ricci curvature; then its fundamental group is finite.

Proof. The goal is to show that the universal covering space M̃ of M
is compact. This is due to that fact that if f : M̃ →M is the covering
map, then f−1(x) for x ∈M is closed and discrete. By definition, this
means it is also finite. So, M̃ is finitely-sheeted over M .

Firstly, any covering space of a smooth manifold can be made into
a smooth manifold. Additionally, one can pullback the Riemannian
metric g on M via f to get f ∗ g on M̃ . Furthermore, due to the fact
that f is locally an isometry, it preserves curvature. Moreover, M̃ has
Ricci curvature which is bounded below because M does.

Secondly, M̃ is a complete Riemannian manifold. In general, any
covering space of a complete Riemannian manifold, with the pulled-
back Riemannian metric, is complete. If f is the covering map, a curve
γ is a geodesic if and only if f ◦ γ is one by the local isometry property
of f .
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Thus, if one starts at a point p̃ ∈ M̃ and starts a geodesic from p̃, it
can be projected to M via f , and extended to a geodesic on (−∞,∞)
on M by completeness. Additionally, use the covering space property
to lift it to M̃ to get a geodesic in M̃ . From this, geodesics in M̃
are infinitely extendable, implying completeness. From this, applying
the first theorem to M̃ shows compactness and proves the proposed

theorem.
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[Krö10] Klaus Kröncke. Comparison theorems in riemannian geometry. www.

google.com/url?sa=i&url=https%3A%2F%2Fphaidra.univie.ac.at%

2Fdownload%2Fo%3A1267912&psig=AOvVaw0KZ9kVR47KO4Bp8NVSR42K&

ust=1721081690387000&source=images&cd=vfe&opi=89978449&ved=

0CAYQrpoMahcKEwiopJSPx6eHAxUAAAAAHQAAAAAQBA, 2010.


