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Homomorphism in graphs

Definition

A homomorphism from graph H to graph G is a function
f : V (H) → V (G ) such that if (u, v) is an edge in H, then
(f (u), f (v)) is an edge in G . (preserves adjacency)

We can normalize the counting of homomorphisms by dividing
over the number of all possible mappings from H to G .

Definition

A homomorphism density is a probability that a random map of
V (H) into V (G ) is a homomorphism.

t(H,G ) =
hom(H,G )

|V (G )||V (H)| .
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Important definitions

Definition

A random graph G (n, p) (Erdos-Renyi model) is a graph defined
by n vertices and probability p that any two vertices will be
connected with an edge.

Definition

A measure space is a triple (E , E , µ), where E is some set. It is the
place that we want to ’measure’ parts of. (ex. Rn or a space of all
possible outcomes of a dice). E is called the σ-algebra. A
σ-algebra is a set of subsets of E . These will be the sets which we
can measure. µ : E → [0,∞] is the measure. The notation is often
shortened to only the set and the measure.
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What are graphons?

An analogy with rational and real numbers that helps to think
about graphons

Example

For x ∈ [0, 1], the minimum of x3 − x occurs at x = 1√
3
. But if we

restrict ourselves in Q, a way to express this minimum is to find a
sequence x1, x2, . . . of rational numbers that converges to 1√

3
.

Consider all graphs as a set of discrete objects (analogously
Q), and seek its ”completion” (analogously R)
So the limit object of the sequence of graphs would be a
graphon

Graphons can be considered as an analytic generalization of
graphs.
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Graphon and homomorphism densities

Definition

Graphon is a symmetric measurable function W : [0, 1]2 → [0, 1].

Recall homomorphism density. Can we expand it to graphons?

Definition

Let G be a graph and W a graphon. The G -density in W is
defined to be

t(G ,W ) =

∫
[0,1]V (G)

∏
ij∈E(G)

W (xi , xj)
∏

i∈V (G)

dxi .

We also use the same formula when W is a symmetric measurable
function.
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Graphs to Graphons

We can convert any graph into a graphon, which allow us to start
imagining what the limits of some sequences of graph should look
like.
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Homomorphism into measurable function

The following construction generalizes the homomorphism
function. Every bounded function W : [0, 1]2 → R defines a graph
parameter as follows: For a finite graph F on k nodes, let

t(G ,W ) =

∫
[0,1]k

∏
i ,j∈E(G)

W (xi , xj) dx1 . . . dxk .

(We can think of the interval [0, 1] as the set of nodes, and of the
value W (x , y) as the weight of the edge xy .) While this definition
is meaningful for all graphs F , we will mostly use it for simple
graphs.
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Sidorenko Conjecture

In analytical form:
Denote the Lebesgue measure on [0, 1] by µ. Let a function
h(x , y) be bounded, non-negative and measurable on [0, 1]2. Let G
be a bipartite graph where vertices u1, u2, . . . , un belong to first
partition and v1, v2, . . . , vm belong to the second.
Denote by E the set of edges. |E | is the number of edges.

Conjecture

For any bipartite graph G and any function h:∫ ∏
(i ,j)∈E

h (xi , yj) dµ
n+m ≥

(∫
hdµ2

)|E |
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Sidorenko Conjecture

In terms of graph homomorphisms densities:

Conjecture

We say that a graph H satisfies Sidorenko conjecture if for every
graph G , and every bipartite graph H,

t(H,G ) ≥ t (K2,G )e(H)

Question

Can we formulate the conjecture for graphons?
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Graphon formulation

Sidorenko’s conjecture can be formulated for graphons.

Conjecture

For every bipartite graph G and graphon W ,

t(G ,W ) ≥ t (K2,W )e(G) .
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How to interpret it?

Conjecture

The inequality states that the random graph with fixed number of
vertices and edge density contains the asymptotically minimal
number of copies of G over all graphs of the same order and edge
density.

t(G ,W ) ≥ t (K2,W )e(G)

Question

When left and right-hand side expressions are equal?

Equality occurs when W ≡ p, the constant graphon. The constant
graphon corresponds to a random graph of the Erdos-Renyi model,
which means the lower bound of the inequality is reached for a
random graph.
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Proof for Complete Bipartite graphs

Definition

Hölder’s inequality says that given p1, . . . , pk ≥ 1 with
1/p1 + · · ·+ 1/pk = 1, and real-valued functions f1, . . . , fk on a
common space, we have∫

f1f2 · · · fk ≤ ∥f1∥p1 · · · ∥fk∥pk

where the p-norm of a function f is defined by

∥f ∥p :=

(∫
|f |p

)1/p

.



Sidorenko’s Conjecture

Proof for Complete Bipartite graphs

In practice, the case p1 = · · · = pk = k of Hölder’s inequality is
used often. We can apply Hölder’s inequality to show that Ks,t is
Sidorenko.

Theorem

Complete bipartite graphs are Sidorenko

t (Ks,t ,W ) ≥ t (K2,W )st

Lemma 1
t (Ks,1,W ) ≥ t (K2,W )s

Lemma 2
t (Ks,t ,W ) ≥ t (Ks,1,W )t
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Proof of Lemma 1.

Proof.

Applying Hölder’s inequality: X=x1, x2, . . . xS

t (Ks,1,W ) =

∫
X ,y

s∏
i=1

W (xi , y) =

∫
y

(∫
x
W (x , y) ≥

≥
(∫

x ,y
W (x , y)

)s

= t (K2,W )s

■
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Proof of Lemma 2.

Proof.

Similarly to Lemma 2, write the homomorphism density in integral
form, apply Holder’s inequality and we will get that

t (Ks,t ,W ) ≥ t (Ks,1,W )t

■

Complying Lemma 1 and Lemma 2 we can see that the inequality

t (Ks,t ,W ) ≥ t (K2,W )st

holds true.


