
SIDORENKO’S CONJECTURE

GILYANA DORZHIEVA

Abstract. In this paper we will discuss the Sidorenko’s conjecture. It is a conjecture
from the field of extremal graph theory that provides an intuitive inequality about
the homomorphism densities in graphons. Proofs for a few cases of bipartite graphs
such as paths, trees, forests, complete graphs and even cycles will be provided.

1. Introduction

The Sidorenko’s conjecture states that if H is a bipartite graph then the random
graph with edge density p has in expectation asymptotically the minimum number of
copies of H over all graphs of the same order and edge density.
The problem of finding the minimal number of copies of a graph contained in some

other graph is related to extremal graph theory.
The conjecture was proposed by Alexander Sidorenko in 1986 and proved for several

cases of bipartite graphs such as paths, trees, forests, complete graphs and even cycles.
( [Sid92]) Approaches from different mathematical fields were researched in order to
work with the conjecture, including entropy and information theory. Later, partial
results were obtained for hypercube graphs, more generally, norming graphs, graphs
with a vertex complete to all others. However, the conjecture still remains open for
the general case of all bipartite graphs.

In the Introduction section, we will formulate the conjecture, then in Preliminaries we
will explore the concept of homomorphism counting and its analytical representation, graphons
and its connection to the conjecture. In section 3 we will discuss the analytical inequal-
ities for bipartite graphs and further will prove them for specific types of graphs in section
4.

Conjecture 1.1. The conjecture states that for every graph G, and every bipartite
graph H,

t(H,G) ≥ t (K2, G)
e(H)

Alternatively, we can extend the conjecture to graphons. For every bipartite graph H
and graphon W ,

t(H,W ) ≥ t (K2,W )e(H) .
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Finally, expressing homomorphism densities in terms of integral inequality, the con-
jecture has the following form. For any bipartite graph G and any function h:∫ ∏

(i,j)∈E

h (xi, yj) dµ
n+m ≥

(∫
hdµ2

)|E|

Denote the Lebesgue measure on [0, 1] by µ. Let a function h(x, y) be bounded, non-
negative and measurable on [0, 1]2.

The conjecture states that if H is a bipartite graph then the random graph with
edge density p has in expectation asymptotically the minimum number of copies of
H over all graphs of the same order and edge density.

Remark 1. The number of homomorphisms from H to G does not exactly correspond
to the number of copies of subgraphs H inside G, because the homomorphisms can be
non-injective. However, since the number of non-injective homomorphisms contribute
at most OH

(
n|V (H)−1| ) (where n = |V (G)|), they make a lower order contribution

compared to all homomorphisms(nV (H)) as n→ ∞ when H is fixed. [Zha23]

Indeed, as we set the graphon W to be a constant graphon, W ≡ p, for some
constant p ∈ [0, 1], the equality between left and right-hand sides occurs.

2. Preliminaries

Definition 2.1. A homomorphism from H to G is a function f : V (H) → V (G)
such that if (u, v) is an edge in H, then (f(u), f(v)) is an edge in G, in other words,
a function that preserves adjacency.

Definition 2.2. Define the homomorphism number hom(F,G) to be the number of
homomorphisms from F to G.

We can normalize the counting of homomorphisms by dividing over the number
of all possible mappings from H to G.

Definition 2.3. A homomorphism density is a probability that a random map of
V (H) into V (G) is a homomorphism.

t(H,G) =
hom(H,G)

|V (G)||V (H)| .

Definition 2.4. A random graph G(n, p) (Erdős-Rényi model) is a graph defined by
n vertices and probability p that any two vertices will be connected with an edge.

Graphons, short for graph functions, are the limiting objects for sequences of large,
finite graphs, which reflect properties of the finite large graphs, and vice versa.

Definition 2.5. Graphon is a symmetric measurable function W : [0, 1]2 → [0, 1].

Graphons can be considered as an analytic generalization of graphs.

Definition 2.6. A constant graphon, W (x, y) ≡ p, for some constant p ∈ [0, 1]
corresponds to the random graph G(n, p), the Erdős-Rényi model.
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Homomorphism densities defined earlier can be naturally expanded to graphons.

Definition 2.7. Let F be a graph, and letW be a graphon. Define the homomorphism
density

t(F,W ) =

∫
[0,1]V (F )

∏
ij∈E(F )

W (xi, xj)
∏

i∈V(F )

dxi.

Note that in this context, the injective homomorphism density is insignificant be-
cause when randomly assigning vertices i and j to xi and xj in the interval [0, 1], xi ̸= xj
with probability 1 . Thus, the injective homomorphism density and homomorphism
density are essentially equivalent in this context.

In the context of the conjecture, it is important to mention that any graph can be
converted into a graphon, thus, we can use the homomorphism density Definition 2.7
for graphs.

Definition 2.8. Given a graph G with n vertices (labeled 1, . . . , n ), we define its
associated graphon as WG : [0, 1]2 → [0, 1] obtained by partitioning [0, 1] = I1 ∪ I2 ∪
· · · In with λ (Ii) = 1/n such that if (x, y) ∈ Ii × Ij, then W (x, y) = 1 if i and j are
connected in G and 0 otherwise. (Here λ(I) is the Lebesgue measure of I.)
See example below from [HMRS17].

Definition 2.9. A probability space is a triple (Ω,F ,P), where Ω is a sample space,
F is a sigma-algebra of events and P is a probability measure on F .

• the sample space Ω is the set of all possible outcomes of a probabilistic experiment
• the sigma-algebra F is the collection of all subsets of Ω to which we will assign
probabilities; these subsets are called events

• the probability measure P is a function that associates a probability to each
of the events belonging to the sigma-algebra F .

Definition 2.10. A measure space is a triple (X,A, µ) where X is a set, A a σ-
algebra of its subsets, and µ : A → [0,+∞] a measure. A measure space consists of a
measurable space and a measure. The notation (X,A, µ) is often shortened to (X,µ)
and one says that µ is a measure on X.
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Definition 2.11. Hölder’s inequality says that given p1, . . . , pk ≥ 1 with 1/p1+ · · ·+
1/pk = 1, and real-valued functions f1, . . . , fk on a common space, we have∫

f1f2 · · · fk ≤ ∥f1∥p1 · · · ∥fk∥pk
where the p-norm of a function f is defined by

∥f∥p :=
(∫

|f |p
)1/p

.

Theorem 2.12. Fubini’s Theorem
Suppose A and B are complete measure spaces. Suppose f(x, y) is A×B measurable.

If ∫
A×B

|f(x, y)|d(x, y) <∞

where the integral is taken with respect to a product measure on the space over A×B,
then ∫

A

(∫
B

f(x, y)dy

)
dx =

∫
B

(∫
A

f(x, y)dx

)
dy =

∫
A×B

f(x, y)d(x, y)

the first two integrals being iterated integrals with respect to two measures, respectively,
and the third being an integral with respect to a product of these two measures.

The Hölder’s inequality and Fubini’s theorem will play an important role when
working with integral inequalities.

3. Analytical inequalities for bipartite graphs

In this section we will discuss the analytical inequalities for bipartite graphs obtained
by A. Sidorenko in [Sid92]. The following integral inequalities represent homomorphism
densities in bipartite graphs.

Definition 3.1. Let Ω = (X,µ) be a measure space where µ is a finite σ-additive
measure defined on a σ-algebra of subsets of the set X. We denote by K(Ω) the class
of non-negative, bounded and measurable functions on X. Let K+(Ω) be the subclass
of functions from K(Ω) which are strictly positive almost everywhere (with respect
to the measure). K(Ω) is closed under products.

For a pair of such spaces Ω = (X,µ),Λ = (Y, ν), we will use functions fromK(Ω⊗Λ)
to construct functions which belong to the class K (Ωm ⊗ Λn). Since the considered
functions are bounded and measurable, Fubini’s theorem can be applied. Fubini’s
theorem allows to change the order of integration for multiple integrals.

Example 1. The product of four functions which are copies of the same function
h ∈ K(Ω⊗ Λ) but have different pairs of the arguments:

h (x1, y1)h (x2, y1)h (x3, y1)h (x3, y2) .

This product is a function with arguments x1, x2, x3 ∈ X, y1, y2 ∈ Y and belongs
to the class K (Ω3 ⊗ Λ2). We can think of function h as an indicator of the presence
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of an edge between two vertices xi, yi. The vertices correspond to the arguments
x1, x2, x3, y1, y2, and the edges correspond to the factors of the product. This graph
is bipartite, where xi ∈ X and yi ∈ Y , and no two vertices from the same set are
adjacent.

Definition 3.2. In general, a bipartite graph is a triple G = (V1, V2, E), where V1, V2
are disjoint finite sets, and E ⊆ V1 × V2. The elements of Vi are called vertices of
colour i(i = 1, 2), and the elements of E are called edges.

For instance,

V1 = {u1, u2, u3} , V2 = {w1, w2} , E = {(u1, w1) , (u2, w1) , (u3, w1) , (u3, w2)}
define a graph which is isomorphic to the graph in Fig. 1.

The product of function h(x, y) can be visualized as a diagram. We say that any
bipartite graph can be regarded as a diagram. For any function h ∈ K(Ω ⊗ Λ), a
graph G = ({u1, . . . , um} , {w1, . . . , wn} , E) generates the function∏

(ui,wj)∈E

h (xi, yj)

which belongs to the class K (Ωm ⊗ Λn) and has the arguments x1, . . . , xm, y1, . . . , yn.
Sidorenko obtains a number of integral inequalities for such functions. One of them
is

(3.1)

∫ ∏
(ui,wj)∈E

h (xi, yj) dµ
m dνn ≥

(∫
h(x, y)dµdν

)|E|

dµ(X)m−|E|dν(Y )n−|E|.

The left-hand side of inequality can be considered as a functional on K(Ω ⊗ Λ)
defined by the graph G.

The Sidorenko conjecture states that this inequality holds for any bipartite graph
G, any spaces Ω, Λ, and any function h ∈ K(Ω⊗ Λ). The conjecture can not yet be
proven completely but it was proved for few types of graphs G.

Now we will discuss inequality (1) along with more general inequalities.
Denote by F the class of bipartite graphs G = ({u1, . . . , um} , {w1, . . . , wn} , E)

which satisfy the following conditions:
Condition A. |E| ≥ m, |E| ≥ n.
Condition B. For any spaces Ω,Λ and any functions h ∈ K(Ω⊗Λ), f, f1, . . . , fm ∈

K(Ω), g, g1, . . . , gn ∈ K(Λ)

(3.2)∫ ∏
(ui,wj)∈E

h (xi, yj)
m∏
i=1

fi (xi)
n∏

j=1

gj (yj) dµ
m dνn

(∫
f(x)dµ

)|E|−m(∫
g(y)dν

)|E|−n

≥

∫ h(x, y)

(
f(x)|E|−mg(y)|E|−n

m∏
i=1

fi(x)
n∏

j=1

gj(y)

)1/|E|

dµdν

|E|

.
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We should notice that (3.1) is a particular case of (3.2) when functions f, f1, . . . , fm, g, g1, . . . gn
are constants equal to the unit. However, the domain of definition is wider for inequality
(3.1), since Condition A is not required (see Remark 1 below). There are other cases
of inequality (3.2). If we set

f(x) =

∫ h(x, y)

(
g(y)|E|−n

n∏
j=1

gj(y)

)1/|E|

dν

|E|/m(
m∏
i=1

fi(x)

)1/m

,

the integral in the second factor of the left-hand side of (3.2) coincides with the
integral in the right-hand side. It gives the inequality

(3.3)∫ ∏
(ui,wj)∈E

h (xi, yj)
m∏
i=1

fi (xi)
n∏

j=1

gj (yj) dµ
m dνn

(∫
g(y)dν

)|E|−n

≥

∫
∫ h(x, y)

(
g(y)|E|−n

n∏
j=1

gj(y)

)1/|E|

dν

|E|/m(
m∏
i=1

fi(x)

)1/m

dµ


m

.

In its turn, (3.3) and Hölder’s inequality (using |E| ≥ m ) imply (3.2). Therefore,
(3.2) and (3.3) are equivalent. By analogy, another equivalent form of (3.2) is

(3.4)∫ ∏
(xi,wj)∈E

h (xi, yj)
m∏
i=1

fi (xi)
n∏

j=1

gj (yj) dµ
m dνn

(∫
f(x)dµ

)|E|−m

≥

∫
∫ h(x, y)

(
f(x)|E|−m

m∏
i=1

fi(x)

)1/|E|

dµ

|E|/n(
n∏

j=1

gj(y)

)1/n

dν


n

.

In particular, setting all functions f, f1, . . . , fm, g, g1, . . . , gn equal to the constant
1 in (3.3) and (3.4), we get the inequalities

(3.5)

∫ ∏
(wi,wj)∈E

h (xi, yj) dµ
m dνn ≥

(∫ (∫
h(x, y)dν

)|E|/m

dµ

)m

ν(Y )n−|E|,

(3.6)

∫ ∏
(wi,wj)∈E

h (xi, yj) dµ
m dνn ≥

(∫ (∫
h(x, y)dµ

)|E|/n

dν

)n

µ(X)m−|E|,

which are stronger than (3.1).

Remark 2. Let graph G belong to the class F . Then inequality (3.3) holds. For
proving the future theorems in this paper, we would want for inequality (3.3) be true
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for a graph G when it is extended by adding any number of isolated vertices to it.
Applying Hölder’s inequality we can check that the inequality (3.3) remains valid
for this condition. Since inequality (3.2) is equivalent to (3.3) with m ≤ |E| and to
inequality (3.4) with n ≤ |E|, the property ’belongs to the class F is preserved when
any number of isolated vertices of both colours is added (provided that Condition A
is not violated). Finally, inequality (3.1) for a graph G ∈ F immediately implies that
the same inequality is valid for extensions of G by isolated vertices.

4. Sidorenko’s conjecture for special cases of bipartite graphs

Dealing with bipartite graphs, we will use the following definitions and notation.

4.1. Definitions and notations.
For a bipartite graph G = (V1, V2, E), denote vi(G) = |Vi| (i = 1, 2), e(G) = |E|.

Definition 4.1. If E = V1 × V2, the graph G is called complete bipartite and is
denoted by Km,n where m = v1(G), n = v2(G).

Definition 4.2. A simple graph is an undirected graph without weights, multiple
edges, or loops.

Definition 4.3. Graphs are called independent if they have no common vertices.

Definition 4.4. Let G′ = (V ′
1 , V

′
2 , E

′) and G′′ = (V ′′
1 , V

′′
2 , E

′′) be independent, then
graphs G′ +G′′ and G′ ×G′′ are defined as follows:

G′ +G′′ = (V ′
1 ∪ V ′′

1 , V
′
2 ∪ V ′′

2 , E
′ ∪ E ′′) ,

G′ ×G′′ = (V ′
1 ∪ V ′′

1 , V
′
2 ∪ V ′′

2 , E
′ ∪ E ′′ ∪ (V ′

1 × V ′′
2 ) ∪ (V ′′

1 × V ′
2)) .

Let k = k(G) be the maximal integer such that the bipartite graph G can be
represented asG = G1+G2+. . .+Gk. It is easy to see that this maximal representation
is unique. The independent graphs G1, G2, . . . , Gk in the representation are called
connected components of G. If k(G) = 1, the graph G is called connected.

Definition 4.5. A tree is a connected bipartite graph whose total number of vertices
exceeds the number of edges by 1 (i.e., v1(G) + v2(G) = e(G) + 1 ).

Definition 4.6. A graph is called a forest if all of its connected components are trees.

4.2. Theorems. According to the definition, a bipartite graph belongs to the class
F if it satisfies Conditions A, B. The following theorems obtained and proved by A.
Sidorenko in [Sid92] will be formulated, and their proofs presented in next subsection.

Theorem 4.7. Let a graph G satisfy Condition A. If v1(G) ≤ 3 or v2(G) ≤ 3 then
G ∈ F .

Theorem 4.8. Let a bipartite graph G′′ be obtained from a graph G by adding a new
vertex and a new edge which joins this vertex to a vertex a of the graph G. If G
belongs to F then G′′ also belongs to F .
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Corollary 1. Any tree with more than one vertex belongs to the class F . The defi-
nition of the class F is symmetric with respect to the colours of vertices. This implies the
following assertions.

Theorem 4.9. If independent bipartite graphs G′ and G′′ belong to F , then G′ +G′′

also belongs to F .

Taking into account Remark 2, we get the following corollary.

Corollary 2. If a graph satisfies Condition A and all of its connected components
belong to F , then the graph belongs to F as well.

It can be deduced from theorems 4.8 and 4.9 that all trees (which include paths)
and forests (that satisfy Condition A) belong to the class F .

Theorem 4.10. If H ∈ F then H ×Kp,q ∈ F with any p, q ∈ {0, 1, 2, . . .}.

Theorem 4.10 implies that all complete bipartite graphs belong to the class F .

Theorem 4.11. Let a graph G belong to F . Let us mark some of its vertices (their
colours are not important) such that each edge has at most one marked end. Now we
take k independent copies of G and, for each marked vertex, we identify (glue) all of
its k images. Then the resulting graph G′ belongs to the class F .

Example 2. See image above. A path Pτ of length r is a bipartite graph with vertices
a0, . . . , ar where aj has colour 1 if j is even, or colour 2 if j is odd; the edges are
(a0, a1) , (a2, a1) , (a2, a3) , . . ., and the last edge in this sequence is (ar−1, ar) if r is
odd, or (ar, ar−1) if r is even. Clearly, this graph is a tree, and according to Corollary
1, belongs to the class F . Let us apply Theorem 4.11 with G = Pr, k = 2, choosing a0
and ar as marked vertices. The resulting graph G′ is connected and has 2r vertices;
each of them is an end of two edges. Such a graph is called a cycle of length 2r, and
according to Theorem 4.11 , it belongs to the class F .

Theorem 4.12. Let us consider the graphs G and G′ from the formulation of Theorem
4.11. Let us choose an unmarked vertex a of colour i in the graph G. Let us consider
a graph G1 which belongs to F and satisfies the inequality vi (G1) ≤ k. We identify
(glue) each of its vertices of colour i with one of the k images of the vertex a in the
graph G′. Then the resulting graph G′′ belongs to the class F .
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Example 3. See image above. As mentioned before, Theorem 4.10 yields that all
complete bipartite graphs belong to the class F . Let r ≥ 1. Choose one of the
vertices of colour 1 in the complete bipartite graph K2,r as a marked vertex and the
other as the vertex a. Now apply Theorem 4.12 with G = K2,r, k = 2, G1 = K2,q.
The resulting graph G′′ is denoted by Tr,r,q and is shown in image above. It has three
vertices of colour 1 and 2r + q vertices of colour 2.

Finally, we formulate necessary and sufficient conditions for the equality in (1)
when G is a tree or a forest.

Theorem 4.13. Let a bipartite graph G be a forest. The equality in (1) is attained
if and only if the two following conditions hold simultaneously:

(a) if v2(G) > 1 then the function φ(x) =
∫
h(x, y)dν(y) is equal to a constant

for almost all x with respect to the measure µ;
(b) if v1(G) > 1 then the function ψ(y) =

∫
h(x, y)dµ(x) is equal to a constant

for almost all y with respect to the measure ν.

4.3. Proofs.
We will start with the proof of Theorem 4.12, and Theorems 4.8, 4.10 and 4.11 will

be obtained as special case of Theorem 4.12. Finally we will prove Theorems 4.7 and
4.13.

Proof. Theorem 4.12

Without loss of generality, we may assume that the marked vertices of colour 1 are
u1, u2, . . . , us1 , and the marked vertices of colour 2 are w1, w2, . . . , ws2 . For definiteness,
let the vertex a of the graph G be a vertex u0 of colour 1 , and its copies in G′ are
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u10, u
2
0, . . . , u

k
0. Since, in the general case, G1 may have less than k vertices of colour

1 , let us denote byG2 the graph obtained fromG1 by adding k−v1 (G1) isolated vertices
of colour 1. According to Remark 1 from Section 2, inequality (3) is valid for G2.

Notice that every edge of G produces exactly k edges in the graph G′, since there is
no edge with two marked ends. Let us pick up functions f ∈ K+(Ω), g ∈ K+(Λ), and
functions which correspond to the vertices of the graph G′′. Then the configuration
product can be viewed as the product of the following k + 2 factors: Ai, the product
of the functions which correspond to the edges and the unmarked vertices of the i th
copy of G(i = 1, 2, . . . k); A0, the product of the functions which correspond to the
vertices of colour 2 and to the edges of G2; B0, the product of the functions which
correspond to the marked vertices. Therefore, B0A1A2 . . . AkA0 is the configuration
product for G′′. Denote by D1(y) the product of the functions gj(y) which correspond
to the vertices of colour 2 of G′, and denote by D2(y) the product of the functions
which correspond to the vertices of colour 2 of G2. Let D(y) be the product of
all the functions which correspond to the vertices of colour 2 of G′′ that is D(y) =
D1(y)D2(y).

Denote by Bi (x
i
0, . . .) the integral of Ai over all the variables which correspond to

the unmarked vertices of the i th copy of G, except the vertex ui0 that corresponds
to the variable xi0.
Now we fix the values of the variables which correspond to the marked vertices and

consider Bi as a function of xi0. Then B1B2 . . . BkA0 is the configuration product for
the graph G2 where Bi is a function which corresponds to the vertex ui0. Applying
inequality (3) for G2, we obtain:
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(4.1)

∫
B0A1 . . . AkA0 dµv1(G′′)dνv2(G

′′)

(∫
g dν

)e(G2)−v2(G2)

=

∫
B0A0

(∫
A1 . . . Ak dµk(v1(G′)−s1−1)dνk(v2(G

′)−s2)

)
dµs1+k dνs2+v2(G2)

×
(∫

g dν

)e(G2)−v2(G2)

=

∫
B0A0B1 . . . Bk dµs1+k dνs2+v2(G2)

(∫
g dν

)e(G2)−v2(G2)

=

∫
B0

(∫
A0B1 . . . Bk dµk dνv2(G2)

)(∫
g dν

)e(G2)−v2(G2)

dµs1 dνs2

≥
∫
B0

(∫ (∫
h(x, y)

(
g(y)e(G2)−v2(G2)D2(y)

)1/e(G2)
dν

)e(G2)/k

×

(
k∏

i=1

Bi(x, . . .)

)1/k

dµ(x)

k

dµs1 dνs2

=

∫
B0

∫ f0(x)

(
k∏

i=1

Bi(x, . . .)

)1/k

dµ(x)

k

dµs1 dνs2 ,

where

f0(x) =

(∫
h(x, y)

(
g(y)e(G2)−v2(G2)D2(y)

)1/e(G2)
dν

)e(G2)/k

.

Denote by A the geometric mean of the functions A1, . . . , Ak where, for each unmarked
vertex b of G, instead of k different variables which correspond to k copies of b in G′,
we plug the only variable which corresponds to b. By Hölder’s inequality,

(
k∏

i=1

Bi(x, . . .)

)1/k

≥
∫
A dµv1(G)−s1−1 dνv2(G)−s2 .

Thus

(4.2)
∫
f0(x)

(
k∏

i=1

Bi(x, . . .)

)1/k

dµ(x) ≥
∫
f0(x)A dµv1(G)−s1 dνv2(G)−s2 .
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Applying Hölder’s inequality again, we obtain
(4.3)∫

B0

(∫
f0 (x0)A dµv1(G)−s1 dνv2(G)−s2

)k

dµs1 dνs2
(∫

f dµ

)(k−1)s1 (∫
g dν

)(k−1)s2

=

∫
B0

(∫
f0 (x0)A dµv1(G)−s1 dνv2(G)−s2

)k

dµs1 dνs2

(∫ s1∏
i=1

f (xi)

s2∏
j=1

g (yj) dµ
s1 dνs2

)k−1

≥

∫ (B0)
1/k f0 (x0)A

(
s1∏
i=1

f (xi)

s2∏
j=1

g (yj)

)(k−1)/k

dµv1(G)dνv2(G)

k

We may regard

(B0)
1/k f0 (x0)

(
s1∏
i=1

f (xi)

s2∏
j=1

g (yj)

)(k−1)/k

as the product of functions which correspond to the vertices u0, u1, . . . , us1 , w1, . . . , ws2

of G. Then, multiplying by the function A, we get the configuration product for G.
Denote by C(x) the product of all the functions fi(x) which correspond to the vertices
of colour 1 in the graphG′′. Applying inequality (2) to the integral of the configuration
product of G, we have

∫
A (B0)

1/k f0 (x0)

(
s1∏
i=1

f (xi)

s2∏
j=1

g (yj)

)
dµv1(G)dνv2(G)

(∫
f dµ

)e(G)−v1(G)(∫
g dν

)e(G)−v2(G)

≥
(∫

h(x, y)
(
f(x)αg(y)βf0(x)C(x)

1/kD1(y)
1/k
)1/e(G)

dµdν

)e(G)

=

∫ (f(x)αC(x)1/kf0(x)(∫ h(x, y)
(
g(y)βD1(y)

1/k
)1/e(G)

dν

)e(G)
)1/e(G)

dµ

e(G)

,

where

α = e(G)− v1(G) +
k − 1

k
s1, β = e(G)− v2(G) +

k − 1

k
s2.
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Substituting the expression for f0 and applying Hölder’s inequality, we get

(4.4)

f0(x)

(∫
h(x, y)

(
g(y)βD1(y)

1/k
)1/e(G)

dν

)e(G)

=

(∫
h(x, y)

(
g(y)e(G2)−v2(G2)D2(y)

)1/e(G2)
dν

)e(G2)/k

×
(∫

h(x, y)
(
g(y)βD1(y)

1/k
)1/e(G)

dν

)e(G)

≥
(∫

h(x, y)g(y)β
′
D(y)1/e(G

′′)dν

)e(G′′)/k

,

where

β′ =
β + (e (G2)− v2 (G2)) /k

e (G′′) /k
=
e (G′′)− v2 (G

′′)

e (G′′)
.

Now we again apply Hölder’s inequality:

(4.5)∫ (f(x)αC(x)1/k (∫ h(x, y)g(y)β
′
D(y)1/e(G

′′)dν

)e(G′′)/k
)1/e(G)

dµ

ke(G)(∫
f dµ

)e(G2)

≥
(∫

f(x)α
′
C(x)1/e(G

′′)

(∫
h(x, y)g(y)β

′
D(y)1/e(G

′′)dν

)
dµ

)e(G′′)

where

α′ =
αk + e (G2)

e (G′′)
=
e (G′′)− v1 (G

′′)

e (G′′)
.

Combining inequalities (4.1)-(4.5), we get inequality (2) for the graph G′′.
□

Proof. Theorem 4.8
Apply Theorem 4.12 with k=1, G1 = K1,1 □

Proof. Theorem 4.9
Let G = G′ + G′′. The integral of the configuration product of G is equal to the

product of the integrals of the configuration products of G′ and G′′. The product of
the left-hand sides of inequality (3.2) for G′ and G′′ is equal to the left-hand side of
the same inequality for G. On the other hand, according to Hölder’s inequality, the
product of the right-hand sides of inequality (3.2) for G′ and G′′ is greater than or
equal to the right-hand side of the same inequality for G. Therefore, inequality (3.2)
for G is proved. □

Proof. Theorem 4.10 According to Corollary 1, K1,q, Kp,1 ∈ F . Thus Theorem 4.12
with G = K1,q, k = v1(H), i = 1, G1 = H yields G′′ ∈ F . Notice that G′′ = H ×K0,q.
Now apply Theorem 4.12 with G = Kp,1, k = v2 (H ×K0,q) , i = 2, G1 = H ×K0,q to
get H ×Kp,q = (H ×K0,q)×Kp,0 ∈ F . □
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Proof. Theorem 4.7
We use induction on the total number of vertices of G. The base of the induction

with v1(G) = v2(G) = e(G) = 1 is trivial. Let us prove the induction step: assume
that any graph with less than l vertices belongs to the class F , and consider a bipartite
graph G with l vertices where l ≥ 3, l = m + n, v1(G) = m, v2(G) = n, m ≤ 3. If
G is not connected, we may apply the hypothesis of induction and Corollary 2. If
G has a vertex which is an end of one edge only, we may apply the hypothesis of
induction and Theorem 4.8. Thus we assume that G is connected and any vertex
belongs to at least two edges. Denote by si the number of vertices of colour 2 which
are adjacent to exactly i vertices of colour 1, i = 0, 1, . . . ,m. In particular, s0 =
s1 = 0. If sm > 0, then G can be represented as G = G′ × K0,1 and we may
apply the hypothesis of induction and Theorem 4.10. So we assume sm = 0. Hence,
e(G) = 2s2 + . . . + (m − 1)sm−1. Since e(G) > 0 and m ≤ 3, we have m = 3 and
s2 = n. Let u1, u2, u3 be vertices of colour 1. The vertices of colour 2 are divided
into subsets W12,W13,W23, where Wαβ consists of the vertices adjacent to uα and
uβ. Among |W12| , |W13| , |W23|, one may find either a pair of even or a pair of odd
numbers. Let, for definiteness, |W12| + |W13| = 2r, where r is an integer. As the
vertex u1 is not isolated, r > 0. Set q = |W23|. Without loss of generality, one may
assume

W12 = {w1, . . . , ws} , W13 = {ws+1, . . . , w2r} , W23 = {w2r+1, . . . , w2r+q} .

Let us pick up functions h ∈ K(Ω,Λ), f, f1, f2, f3 ∈ K+(Ω), g, g1, . . . , g2r+q ∈ K+(Λ)
and denote

F12 (x1, x2) =

∫ s∏
j=1

(h (x1, yj)h (x2, yj) gj (yj)) dν
s,

F13 (x1, x3) =

∫ 2r∏
j=s+1

(h (x1, yj)h (x3, yj) gj (yj)) dν
2r−s,

F23 (x2, x3) =

∫ 2r+q∏
j=2r+1

(h (x2, yj)h (x3, yj) gj (yj)) dν
q.

By Hölder’s inequality,

F12 (x1, x2) ≥
(∫

h (x1, y)h (x2, y) g12(y)dν

)s

,

F13 (x1, x3) ≥
(∫

h (x1, y)h (x3, y) g13(y)dν

)2r−s

,

(F12 (x1, x2)F13 (x1, x2))
1/2 ≥ F0 (x1, x2) ,
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where

F0 (x1, x2) =

(∫
h (x1, y)h (x2, y) g0(y)dν

)⊤

,

g12(y) =

(
s∏

j=1

gj(y)

)1/s

,

g13(y) =

(
2r∏

j=s+1

gj(y)

)1/(2r−s)

,

g0(y) =

(
2r∏
j=1

gj(y)

)1/(2r)

.

Denote by I the configuration product of G and estimate

I =I1/2I1/2

=

(∫
F12 (x1, x2)F13 (x1, x3)F23 (x2, x3) f1 (x1) f2 (x2) f3 (x3) dµ

3

)1/2

×
(∫

F13 (x1, x2)F12 (x1, x3)F23 (x2, x3) f1 (x1) f3 (x2) f2 (x3) dµ
3

)1/2

≥
∫

(F12 (x1, x2)F13 (x1, x2))
1/2 (F12 (x1, x3)F13 (x1, x3))

1/2

× F23 (x2, x3) f1 (x1) f0 (x2) f0 (x3) dµ
3

≥
∫
F0 (x1, x2)F0 (x1, x3)F23 (x2, x3) f1 (x1) f0 (x2) f0 (x3) dµ

3,

where

f0(x) = (f2(x)f3(x))
1/2 .

Note that the expression under the last integral is the configuration product of the graph
Tr,r,q from Example 2, where the vertices u1, u2, u3 correspond to the functions f1, f0, f0,
respectively; g0 is the corresponding function for each of the vertices w1, . . . , w2r ad-
jacent to the vertex u1; the vertices w2r+1, . . . , w2r+q correspond to the functions g2r+1, . . . , g2r+q,
respectively. Since Tr,r,q belongs to the class F , inequality (3.2) holds for Tr,r,q. The
second and the third factors in the left-hand side as well as the right-hand side of (3.2) are
identical for Tr,r,q andG. We have shown that the first factor in the left-hand side for the
graph G is greater than or equal to the same expression for Tr,r,q. Therefore, G sat-
isfies (3.2). □

Proof. Theorem 4.11 Note that the case v2 (G1) = v2 (G2) = 0, e (G1) = e (G2) =
0 is admissible in the proof of Theorem 4.12. Indeed, for such a graph G2, the
used inequality (3.3) is valid. Therefore, Theorem 4.11 is a specific case of Theorem
4.12. □
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Proof. Theorem 4.13 Using induction on the number of edges of G, it is easy to check
that conditions (a) and (b) are sufficient. Let us check that the equality in (3.1) with
v2(G) > 1 implies (a). Indeed, according to Theorems 4.8 and 4.9 , inequality (3.5)
holds for G, and its right-hand side is(∫

(φ(x))e(G)/v1(G)dµ

)v1(G)

ν(Y )v2(G)−e(G).

The left-hand sides of (3.1) and (3.5) are identical, and the right-hand side of (3.1)
is (∫

φ(x)dµ

)e(G)

µ(X)v1(G)−e(G)ν(Y )v2(G)−e(G).

Since e(G) = v1(G) + v2(G)− 1 > v1(G), the equality(∫
φ(x)e(G)/v1(G)dµ

)v1(G)

=

(∫
φ(x)dµ

)e(G)

µ(X)v1(G)−e(G)

is attained only if φ is equal to a constant almost everywhere vith respect to the
measure µ. By analogy, if v2(G) > 1, the equality in (3.1) yields (b). □
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