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1. Abstract

This paper will assume basic knowledge of graph theory and dive into expander graphs

first, which gives motivation for Ramanujan graphs. Then, it will proceed to discuss explicit

constructions of Ramanujan graphs as well as the applications of them to the real world.

2. Introduction

One of the most famous (and possibly the first) problems in graph theory is the Bridges

of Königsberg (shown below). Leonhard Euler was believed to attempt finding a path that

crosses through each edge exactly once (also known as an Euler path) , but he later proved

that it was impossible. This was one of the first applications of graph theory.

Euler noted that, when the bridges were represented with edges and pieces of land vertices,

each of the vertices had an odd degree. Vertices with an odd degree have a unique property:

They have to be either a starting or ending vertex of an Euler path.

Since this problem, graph theory has evolved into a diverse and complex field of mathe-

matics. Currently, it has many applications in numerous fields, such as computer and traffic

networking, logistic optimization (shortest path algorithms), and solving puzzles (through

graph coloring).

Much research has been centered on the notion of an ”optimal graph,” the notion of a

graph well-suited for a particular task, bringing up the notion of Ramanujan graphs, which

I will present in this paper.
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3. Basic Definitions

Definition 3.1. A node or vertex is a fundamental unit or object in graph theory, often

contained in a set of vertices denoted V , and an edge is a connection between two nodes,

often contained in a set denoted E. Each element of E is actually a two element subset of

V , denoting the two vertices that the edge is connecting.

Definition 3.2. The degree of a vertex is the number of edges that are attached to that

particular vertex. A regular graph is a graph in which all vertices have the same degree,

often denoted a d-regular graph (each vertex has degree d). In this paper, we will primarily

be focusing on d-regular graphs, as irregular Ramanujan graphs are tough to construct

explicitly.

Definition 3.3. The diameter of a graph is the longest path that can be taken between

two vertices.

Definition 3.4. The adjacency matrix of a graph has the graph’s vertices as rows and

columns. If there is an edge connecting vertex i to vertex j, then the element at row i and

column j will be labelled with a 1. Otherwise, the elements will be labelled with a 0. For

example, the following graph:

1

2

3

4

5 6

has the following adjacency matrix:



0 1 1 0 0 0

1 0 1 1 1 0

1 1 0 0 1 0

0 1 0 0 0 1

0 1 1 0 0 1

0 0 0 1 1 0
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4. Expander Graphs

Expander graphs are have two notable properties: that they are sparse and highly con-

nected.

Definition 4.1. A sparse graph contains close to the minimum number of edges possible

for a given set of n vertices. In a connected, undirected graph, the minimum number of

edges is equal to n− 1, while the maximum number is
(
n
2

)
= n(n−1)

2
. In a CS context, even

as the total number of vertices approaches infinity, the number of edges in a sparse can be

generated in O(n) time.

Definition 4.2. An edge boundary, denoted ∂S, of a set of vertices S is the set of edges

attached to both a vertex in S and a vertex in S.

Definition 4.3. A highly connected graph can be defined in multiple contexts, but the

most common one is a bounded Cheeger constant. Also known as the expansion ratio, it is

denoted:

This is also a measure of how easily it is (the minimum number of edges it takes) to sever

a graph into two pieces, and, in an expander graph, it is bounded to be at least a certain

constant (varies in many cases).

Figure 1. A complete graph

Consider the above two graphs. The complete graph seems like a good contender for an

expander graph due to its high connectivity. However, as we take the number of vertices to

approach infinity, it becomes clear that the number of edges is far from O(n), meaning that

it doesn’t satisfy the sparcity requirement.
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Figure 2. A tree

Conversely, if we consider the case of a tree, it seems like the perfect candidate for sparcity.

However, as we take the number of vertices to be approaching infinity, the Cheeger constant

becomes very small. (The limiting group is the group of nodes {6, 7, 8, 9})
As seen from the above two examples, the two goals of sparcity and high connectivity are

hard to satisfy at once, causing expander graphs to be hard to explicitly construct as the

number of vertices approaches infinity. This motivates us to take a spectral graph theory

route to further analyze these graphs involving concepts such as the spectrum of the graph

and adjacency matrices, as will be discussed in the following sections.

Remark 4.4. Expander graphs have many notable applications, such as in data and road

networks. In these scenarios, the networks often require high connectivity, but the analogs

of edges have heavy costs tied to them, bringing up the importance of a sparse graph.

5. Properties of Adjacency Matrices

Now, we will consider notable properties of the adjacency matrix of a d-regular graph.

Definition 5.1. An eigenvector of a matrix is a vector whose direction is unchanged after

a matrix transformation.

Definition 5.2. An eigenvalue of a matrix is the scalar that gets multiplied to an eigen-

vector during a matrix transformation.

If the matrix A has an eigenvector v and an eigenvalue λ, then the following equation is

satisfied:

Av = λv

It turns out that the first eigenvalue of an adjacency matrix of a d regular graph is d, with a

corresponding eigenvector of all ones. This is because all rows and columns of the adjacency

matrix contain exactly d ones, which means multiplying the matrix by the eigenvector will

return a vector filled with ds.
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0 0 0 1 1 1
0 0 1 0 1 1
0 1 0 1 1 0
1 0 1 0 0 1
1 1 1 0 0 0
1 1 0 1 0 0


Figure 3. The adjacency matrix of a 6-vertex, 3-regular graph.

Definition 5.3. The spectrum of a matrix is the set of eigenvalues of that matrix, where

λ1 ≥ λ2 ≥ λ3 ≥ . . . λn.

Definition 5.4. A spectral gap is defined to be the quantity d− λ2, where d is the degree

of a graph and λ2 is the second eigenvalue.

Theorem 5.5 (Cheeger Inequalities). Given a d-regular graph,

d− λ2

2
≥ h(G) ≥

√
2d(d− λ2).

[2]

From this, we can see that a large spectral gap implies a good expander, and a good

expander implies a large spectral gap.

6. Bound on Spectral Gap

Now, we must look at how large the spectral gap can actually get, which means we must

investigate the upper bound on λ2.

Theorem 6.1 (Alon-Boppana Bound). For d-regular graph G with adjacency matrix A with

eigenvalues λ1, λ2, . . . λn and diameter m,

λ2 ≥ 2
√
d− 1− 2

√
d− 1

⌊m/2⌋
.

This theorem upper bounds how large the spectral gap can get, which offers insight into

why expander graphs are especially difficult to construct. The proof of the full theorem

is beyond the scope of this paper, but we will see a proof of a less restrictive form of the

bound [12]:

Theorem 6.2 (Alon-Boppana Bound Simplified). For d-regular graph G with adjacency

matrix A with eigenvalues λ1, λ2, . . . λn,

λ2 ≥ 2
√
d− 1− o(1).
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Proof. For our proof, we will use a trace argument to upper bound the trace of an adjacency

matrix raised to the 2k power to that of the infinite d-regular tree. We then utilize the

Catalan numbers and approximation to get our bound.

First, we can utilize the trace of the matrix, or the sum of the diagonal entries. From the

definition of the determinant of a matrix and Vieta’s formulas, we can determine that the

trace is also equal to the sum of the eigenvalues, the roots of the characteristic polynomial

of the adjacency matrix.

It turns out that the eigenvalues of a matrix raised to the kth power are eigenvalues of

the original matrix raised to the power k.

From here, we let λ = max(|λ2|, |λn|).
Then,

Tr(A2k) =
n∑

i=1

λ2k
i ≤ d2k + (n− 1)λ2k.

The first term in the right hand side comes from the fact that the first eigenvalue of a

d-regular graph is d, and the second comes from our definition of λ.

Lemma 6.3. The sum of the diagonal entries of Ak represents the number of closed paths

of length k in A.

Proof. We can use induction to prove this lemma. By definition, Ai,j is the number of paths

of length 1 from node i to node j. Assume that Ai,j is the number of paths of length k − 1

from node i to node j. Then,

Ak−1 · A = Ak

Ak
i,j = Ak−1

i,1 A1,j + Ak−1
i,2 A2,j + . . .+ Ak−1

i,n An,j =
n∑

x=1

Ak−1
i,x Ax,j.

Each product in the above sum is nonzero if and only if i and j are both connected to node

x. By the principle of mathematical induction, Ak
i,j = the number of paths of length k from

i to j. Hence, our proposed statement is proven. ■

We then notice that, by Lemma 4.3,

Tr(A2k) = (# of closed paths of length 2k in G) ≥ n · (# closed paths of length 2k in an

infinite d regular tree ).

To see this, we note how when making a closed path in a tree, we can only increase or

decrease the distance to the starting node by 1, due to the fact that there are no cycles.

This limits the number of choices to make compared to a random d-regular graph G, where

cycles are permitted.
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Figure 4. An infinite 3-regular tree

Figure 5. A Dyck path of length 24.

To count the number of possible closed paths in an infinite d-regular tree (above is an

infinite 3-regular tree), we note how the fact that we can only increase or decrease the

distance by 1 makes the closed walk a Dyck path. Therefore, the number of paths would

correspond to the kth Catalan number. Moreover, from each choice, we have d− 1 edges to

pick from (as the tree is d-regular). Hence, we get

d2k + (n− 1)λ2k ≥ n · 1

k + 1

(
2k

k

)
(d− 1)k.

Moving around the terms and dividing by n− 1 from both sides, we get

λ2k ≥ n

n− 1

(
1

k + 1

(
2k

k

)
(d− 1)k

)
− d2k

n− 1
.
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.

After taking the 1
2k
th power of the inequality and utilizing some approximation, we get

λ ≥ 2
√
d− 1− o(1).

. ■

7. Ramanujan Graphs

Definition 7.1. A Ramanujan graph has λ(G) ≤ 2
√
d− 1. This relationship implies that

Ramanujan graphs have small second eigenvalues, making them incredibly good expander

graphs. [10]

An example of a Ramanujan graph is the complete graph Kd+1 (with degree d+ 1). The

spectrum of the graph is d,−1,−1, . . . ,−1, and λ(Kd+1) = 1, making the graph Ramanujan

for d > 1.

Theorem 7.2 (Alon’s Conjecture). Incidentally, for every ϵ > 0 and random (n, d) graph

G, Pr(λ(G) ≤ 2
√
d− 1 + ϵ) = 1− on(1), where limn−>∞ on(1) = 0.

In other words, every d-regular graph has a high probability that it is weakly Ramanujan

[5] [8].

7.1. LPS Construction of Ramanujan Graph.

Theorem 7.3 (Theorem proposed by Lubotzky, Phillips, and Sarnak). For every prime

number p, Infinite sequences of Ramanujan graphs exist for d = p+ 1. [3]

Definition 7.4. A generating set of a group is a subset of the group such that any element

within a group can be constructed through the operation defined by the group applied to

elements of the generating set and their inverses.

Definition 7.5. A Cayley Graph Γ = Γ(G,S) is constructed by:

• A vertex set G

• Each edge s ∈ S assigned a color s belonging to the generating set.

• There is an edge of color s connecting g and gs, where gs represents the operation of

the group applied between g and s.

Remark 7.6. It is possible for a Cayley Graph to have a double edge if s is its own inverse.
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In the Cayley graph above, the red arrows represent the generator of 2 and the blue

arrows represent the generator of 3. Together, they make up the generating set of {2, 3}.
Using the group uoperation of edition, these two generators can generate the vertex set of

all the integers.

Definition 7.7. An integer q is a quadratic residue of p if (∃x)(x2 ≡ q mod p).

Definition 7.8. The Legendre symbol, denoted ( q
p
) satisfies the following:

(1) If ( q
p
) = 1, then q is a quadratic residue of p.

(2) If ( q
p
) = −1, then q is a quadratic nonresidue of p.

Lemma 7.9. Let a and x be integers, and let p be an odd prime such that p ∤ a. Then,

x2 ≡ a mod p has either none or two incongruent solutions modulo p.

Lemma 7.10. Every odd prime p has p−1
2

quadratic residues and p−1
2

quadratic nonresidues.

Proof. Suppose that p has k incongruent quadratic residues. By Lemma 5.9, each one of

them has 2 solutions, meaning that there are 2k solutions total. The set of least positive

residues 1 through p− 1 make up a solution set, so 2k = p− 1, which means that k = p−1
2
.

From here, we get that there are p−1
2

quadratic nonresidues as well, completing our proof. ■

Theorem 7.11 (Wilson’s Theorem). For any prime p, (p− 1)! ≡ −1 (mod p).

Proof. Any number other than numbers that are 1 (mod p) or −1 (mod p) has a unique

modular inverse. Hence, we can say that (p − 1)! ≡ (p − 1) · 1 (mod p) ≡ −1 (mod p), as

we can pair up all of the numbers other than p− 1 and 1. ■

Theorem 7.12. For an odd prime p, there exists an integer i such that i2 ≡ 1 (mod 4).
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Proof. By Wilson’s Theorem, since p− 1 divides 4,(p− 1)! ≡ ((p−1
2
)!)2(−1)

p−1
2 ≡ ((p−1

2
)!)2 ≡

−1 (mod 4) The value of ((p−1
2
)!)2 can serve as our i. ■

Definition 7.13. The center of a group G, often denoted Z(G) is the set of elements within

G such that the commutative property is preserved. In other words Z(G) = {z ∈ G|∀g ∈
G, zg = gz}

Definition 7.14 (Prime Fields). Prime fields, often denoted to be Fp, are finite fields (finite

set on which the operations are defined and satisfy basic rules) in which all the elements are

integers (mod p)

Definition 7.15. We consider GL(n,Fp) to be the group of all n × n invertible matrices

over Fp. Its projective group is known as PGL(n,Fp) = GL(n,Fp/Z(G), where Z(G) is the

group of identity matrices multiplied by a certain constant λ. Because of this, all matrices

that are scalar multiples of each other are in the same equivalence class in the projective

group. Moreover, the special linear group SL(n,Fp) consists of all matrices that are part of

GL(n,Fp) that have determinant 1. Its projective group, PSL(n,Fp), has Z(G) consisting

of the positive and negative identity matrices.

It turns out that there are p(p2 − 1) elements in PGL(2,Fp) and
p(p2−1)

2
in PSL(2,Fp)

The Construction:

Let p and q be two distinct primes, both 1 (mod 4) and i an integer such that i2 ≡ −1

(mod p). There are a total of 8(q + 1) integer solutions to α2
0 + α2

1 + α2
2 + α2

3 = q. There are

q + 1 solutions such that α0 > 1 and is odd, and the others are even. Associate with each

set of solutions the following:

α =

[
α0 + iα1 α2 + iα3

−α2 + iα3 α0 − iα1

]
Taking this set of matrices as the generating set S of a Cayley graph, there is both a bipartite

and a non-bipartite construction of a q + 1 regular Ramanujan graph:

• if ( q
p
) = −1, then the Cayley graph of PGL(2,Fp) with generating set S generates a

bipartite Ramanujan graph with p(p2 − 1) vertices

• if ( q
p
) = 1,, the Cayley graph of PSL(2,Fp) will generate a non-bipartite Ramanujan

graph with p(p2−1)
2

vertices.

It turns out that the eigenvalue bound is 2
√
q.

Morgernstern later generalized a construction for degree d = pk + 1, where p is a prime

and k a positive integer. However, an open problem in the field of Ramanujan graphs is if
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Figure 6. A 6-regular, 12180 vertex LPS Graph

we can construct arbitrarily large Ramanujan graphs for any degree d. The current smallest

value for d that cannot satisfy this yet is d = 7.

8. Bipartite Ramanujan Graphs

Definition 8.1. A bipartite graph is a graph in which all the vertices can be divided into

two disjoint sets such that all the edges connect a vertex in one set to a vertex in the other

disjoint set.

Figure 7. A bipartite graph.

It turns out that we can construct infinitely many d-regular bipartite Ramanujan graphs

through a process called a 2-lift [13] [1] [4].

Definition 8.2. A 2-lift is a process that takes a graph and duplicates its vertices to con-

struct a new graph. The process is as follows:

(1) Duplicate the graph (all edges and vertices)

(2) For each pair of vertices connected by an edge {v1, v2}, either leave them as is or

cross them over. That is, if {v′1, v′2} are the duplicate vertices, then the edges will

either remain as is or connect v1 to v′2 and v2 to v′1.
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Figure 8. A 2-lift process.

We can now denote the original graph as G and the resulting graph G′. Suppose that the

adjacency matrix of G looked like the following:

0 0 0 1 1 1

0 0 1 0 1 1

0 1 0 1 1 0

1 0 1 0 0 1

1 1 1 0 0 0

1 1 0 1 0 0


Then, instead of creating a whole new separate 2n×2n matrix for G′, we can instead replace

1 values with −1 values in the above adjacency matrix if the edges crossed over. An example

of such a matrix would look like this:

0 0 0 −1 1 1

0 0 1 0 1 1

0 1 0 −1 1 0

−1 0 −1 0 0 −1

1 1 1 0 0 0

1 1 0 −1 0 0
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We call this matrix the signed matrix of G′, As Although it is not immediately obvious

why we would do this, as we will soon see, the signed matrix has some unique relations with

the eigenvalues of G′.

Lemma 8.3. The eigenvalues of G′ are the union of the eigenvalues of A and the eigenvalues

of As, counting multiplicities.

Proof. We can define two more matrices, A1 and A2 such that they satisfy the following:

(A1)ij =

{
x if Aij = 1 and (As)ij = 1

0 otherwise

(A2)ij =

{
x if Aij = 1 and (As)ij = −1

0 otherwise

Because A1 only has a 1 if a specific edge did not cross during the 2-lift and A2 only has a

1 if a specific edge did cross, A = A1 + A2, where A was the original matrix of G. Utilizing

similar reasoning, As = A1 − A2. Moreover, we have

A′ =

[
A1 A2

A2 A1

]
.

To understand why this is true, note that the A1 matrices, which are in the top left corner

and bottom right corner, represent all of the edges that connect vertices within the original

and duplicated graphs, respectively. Conversely, the A2 graphs represent all of the crossed

over edges.

Now, we can define the action of vector concatenation. In this process, [v1, v2] represents

copying v2 onto the end of v1. We can also confirm, by definition of matrix-vector multi-

plication, that if v is an eigenvector of A, then [v, v] is an eigenvector of A′ with the same

eigenvalue. Similarly, we can confirm that if u is an eigenvector of As, then [u,−u] is an

eigenvector of A′ with the same eigenvalue.

From here, we utilize the fact that the eigenvectors of symmetric matrices are orthog-

onal. Since the relationship that v1 ⊥ v2 implies that [v1, v1] ⊥ [v2, v2] (because the dot

product remains to be 0 and, for the same reason, the relationship that u1 ⊥ u2 implies

that [u1,−u1] ⊥ [u2,−u2], we can say that all pairs of [v, v] (where v is an eigenvector of

A are orthogonal, and all pairs of [u,−u] (where u is an eigenvector of As are orthogonal

as well. Moreover, if we take the dot product of any [v, v] and any [u,−u], we get that

[v, v] · [u,−u] = v · u + v · (−u) = 0. Hence, all eigenvectors in A′ are pairwise orthogonal.
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Since A and As both have n orthogonal eigenvectors and A′ has 2n orthogonal eigenvectors,

we have proven our lemma.

■

As for constructing bipartite Ramanujan graphs from 2-lifts, we know that all complete

d-regular bipartite Ramanujan graphsKd,d are Ramanujan due to the fact that the nontrivial

eigenvalues are all 0 (the trivial ones being d and −d). We must look at the 2m possible

2-lifts of the graph in order to determine if we can utilize a 2-lift to preserve the Ramanujan

property of the bipartite graph. By the previous theorem we have proved, this boils down to

checking whether the eigenvalues of As fall within the Ramanujan bound. As for the other

two properties of being d-regular and bipartite, a 2-lift will preserve them due to how it is

creating a duplicate of the current graph. In order to analyze the eigenvalues of the signed

Figure 9. An example of a complete bipartite graph.

adjacency matrix, we must take a look at another concept: the matching polynomial.

Definition 8.4. For a graph G, a graph matching is a certain subset of the edge set E of G

such that no two of the edges share the same vertex.

For a graph with n vertex, the graph matching can contain a maximum of n
2
edges (due

to the fact that any more edges will lead to intersecting vertices.

As an example, consider the following graph:

1

2 3

4

56
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A possible graph matching could be the following:

1

2 3

4

56

Definition 8.5. The matching polynomial for G, where mi(G) represents the number of

graph matchings possible for a certain number of edges i and m0(G) = 1, is defined as

µG(x) =
∑
i≥0

xn−2i(−1)imi(G).

Note how when i surpasses n
2
, mi(G) becomes 0.

We can utilize the matching polynomial through the following relation, where As(x) is the

characteristic polynomial of As and Es represents the expected value :

Es[As(x)] = µG(x).

From here, the problem boils down to bounding the roots of the matching polynomial.

Lemma 8.6. Denote G with vertex i removed as the graph G\i. Then,

µG(x) = xµG\i(x)−
∑

{i,j}∈E

µG\i\j(x).

Proof. Since the number of k-size graph matchings over G that do not involve the vertex

i is mk(G\i). Moreover, the number of matchings over G that do involve the vertex i is∑
{i,j}∈E mk−1(G\i\j). Now, by definition,

mk(G) = mk(G\i) +
∑

{i,j}∈E

mk−1(G\i\j)

Plugging this into the equation of the definition of µG(x) and performing some manipulation,

we can get the statement we wanted to prove. ■

Lemma 8.7. Suppose that δ ≥ d > 1. If deg(i) < δ, then

x > 2
√
δ − 1 ⇒ µG(x)

µG\i(x)
>

√
δ − 1
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Proof. We can prove this utilizing the principle of mathematical induction (over the number

of vertices n. We can start with the base case of n = 1. Then, there are no edges, so we

have that µG(x) = x because there is one matching with no edges. We also have that

µG\i(x) = 1. The lemma does hold in this case due to the fact that

x > 2
√
δ − 1 ⇒ µG(x)

µG\i(x)
= x > 2

√
δ − 1 >

√
δ − 1.

To proceed, we assume at the lemma holds for the case of n = k vertices. By Lemma 6.6,

we can say that:

µG(x) = xµG\i(x)−
∑

{i,j}∈E

µG\i\j(x).

After plugging in our assumption for x and utilizing the fact that the lemma is satisfied for

n = k, we get the following:

µG(x)

µG\i(x)
> 2

√
δ − 1− 1√

δ − 1

∑
{i,j}∈E

1 = 2
√
δ − 1− deg(i)√

δ − 1
.

From here, we remember how we made the assumption that deg(i) < δ. This gives us the

following: µG(x)
µG\i(x)

> 2
√
δ − 1− δ−1√

δ−1
=

√
δ − 1. This proves the lemma for n = k+ 1. By the

principle of mathematical induction, our lemma is proven. ■

Theorem 8.8. All real roots of µG(x) lie in the interval [−2
√
d− 1, 2

√
d− 1].

Proof. We can use the two lemmas above to prove this theorem. It suffices to show that

there are no roots for x > 2
√
d− 1 We again utilize the principle of mathematical induction.

For the base case, the n = 1 graph has µG(x) = x, and the zero (which is 0), is within the

desired interval. Thus, the base case is proven. Now we move on to the case of n = k.

From Lemma 6.6, we get that

µG(x)

µG\i(x)
= x−

∑
{i,j}∈E

µG\i\j(x)

µG\i(x)

Substituting in our assumption for x, we get

µG(x)

µG\i(x)
> 2

√
d− 1−

∑
{i,j}∈E

µG\i\j(x)

µG\i(x)
.

Now we must consider two cases to prove this, case one being if there are no edges between

i and j in G. This brings the the equation of

µG(x)

µG\i(x)
> 2

√
d− 1.
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By the induction assumption, µG\i(x) has no zeroes for x > 2
√
d− 1. This implies that µG(x)

has no zeroes for x > 2
√
d− 1 as well because if that were so, the left hand side would be 0,

violating the inequality.

Now we must consider case two: if there is an edge between i and j. Now, we have the

following relation:

degG\i(j) ≤ d− 1 < d.

This is because one of the edges that was connected to vertex j is removed alongside vertex

i. We can utilize Lemma 6.7 to simplify this equation:

µG(x)

µG\i(x)
= x−

∑
{i,j}∈E

µG\i\j(x)

µG\i(x)

To this equation:
µG(x)

µG\i(x)
= x−

∑
{i,j}∈E

1√
d− 1

.

This gives us the following:

µG(x)

µG\i(x)
> 2

√
d− 1− degG(i)√

d− 1
≥ 2

√
d− 1− d√

d− 1
.

Now, we take the following derivative:

d

dt
(2
√
d− 1− d√

d− 1
) =

d

2(d− 1)
3
2

We note that the derivative is always greater than 0 when d ≥ 2. Hence, we get that
µG(x)
µG\i(x)

> 0 whenever x > 2
√
d− 1 We can now make the same argument we made during

the proof of the base case: Since the denominator is never zero, we get that the numerator

is never zero in order to ensure that the LHS remains positive. Hence, our theorem is

proven. ■

Now, we run into some trouble. Although it would seem like we are finished with proving

the existence of infinitely bipartite Ramanujan graphs, we utilized the concept of expected

value on our characteristic polynomial of As. It turns out that the maximum root of all the

polynomials in the characteristic polynomial can actually be above the maximum root of the

expected characteristic polynomial. Hence, we must introduce a new concept: interlacing

families.

Definition 8.9. We can say a polynomial with real roots α1, . . . , αn−1 and degree n − 1

interlaces a real-rooted degree n polynomial f with roots β1, . . . , βn if β1 ≤ α1 ≤ . . . ≤
αn−1 ≤ βn.
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Definition 8.10. If there exists a polynomial that interlaces each of hte polynomials f1, f2, . . . , fk,

then we can say that f1, . . . , fk have a common interlacing.

It turns out that all possible characteristic polynomials do have a common interlacing,

and there does exist a largest root of a certain polynomial that is the largest real root of the

expected polynomial.

We can now proceed on to the proof of existence.

Theorem 8.11. There exist infinite families of bipartite Ramanujan graphs of all d ≥ 3.

Proof. Select a certain degree d ≥ 3. Then we can start off the 2-lift process with Kd,d, the

complete bipartite graph of degree d, which is Ramanujan. After performing the 2-lift, the

new graph is Ramanujan if the eigenvalues of As, the signed adjacency matrix, satisfy the

Ramanujan bound. There exists a certain polynomial that has its largest root at least the

largest root of Es[As(x)], which equals µG(x). The largest root of the matching polynomial

is at most 2
√
d− 1. Hence, the largest root of As(x) is at most 2

√
d− 1. Because a 2-lift

gives yet another bipartite graph, the smallest eigenvalue is 2
√
d− 1. Thus, we know that

the new graph after the 2-lift is still Ramanujan. Hence, by continuing the process, we can

generate an infinite family of bipartite Ramanujan graphs of degree d. ■

9. Applications

Because of their connectivity properties, Ramanujan graphs have many applications in

fields such as computer science and pure mathematics. We will now explore them in the

context of hash functions [7] [6].

Definition 9.1. A hash function is a function well studied in cryptography that takes a

string of variable length and converts it to a string of fixed length.

Definition 9.2. A hash collision is when two messages have the same hash code. This

becomes problematic when a collision can easily be artificially generated, which breaks a hash

function (as there can be no certainty of the exact message that is stored from a specific

hash code).

For the context of Ramanujan graphs, we are concerned with unkeyed hash functions,

which do not require a specific key to decode, that are collision resistant.
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Figure 10. An example of a hash function.

One might wonder how exactly an input is transformed into an output for a hash function.

It turns out that the input gives directions for a walk on the Ramanujan graph that is non-

backtracking, and the output would be the ending vertex of the walk. Since there isn’t any

backtracking, for any d-regular graph, there are d− 1 choices for the next edge to take. To

make the right choice, the input message is split into e chunks, where 2e ≤ k − 1, and each

succeeding chunk dictates the edge that is taken.

Definition 9.3. A girth of a graph is the length of the shortest cycle. It turns out that

causing a collision in a hash code generated by a graph boils down to finding the shortest

girth.

The girth of the LPS graph is optimal, and it is much larger than the girth of a random

d-regular graph (which is already considered to be pretty large and is widely agreed to be

hard to find).
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