# Brownian Motion

### Emma Zhang

July 2024

・ロト ・回ト ・ヨト ・ヨト

∃ 990

Erratic movements of particles in fluids, now used to model many random processes

• first observed by Robert Brown when studying pollen in water: random sporadic movements

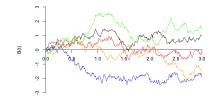
Erratic movements of particles in fluids, now used to model many random processes

- first observed by Robert Brown when studying pollen in water: random sporadic movements
- Einstein's 1905 paper on Brownian motion: "thermal molecular motion in the liquid environment" → kinetic and atomic theory

Erratic movements of particles in fluids, now used to model many random processes

- first observed by Robert Brown when studying pollen in water: random sporadic movements
- Einstein's 1905 paper on Brownian motion: "thermal molecular motion in the liquid environment" → kinetic and atomic theory
- $\bullet\,$  mathematically formalized by Norbert Wiener  $\rightarrow$  Wiener Process

# Applications of Brownian Motion



Time (t)

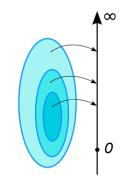
Important in biology(movements of liquids, evolution), chemistry(kinetic theory, stability), physics(heat diffusion, conduction,etc), finance (modeling stock prices), etc

# Measure Theory

### Definition

Let a measurable space be  $(X, A, \mu)$ 

- X : set
- A: special collection of subsets of X
- μ : a measure, maps the sample space onto [0, ∞], giving it a generalized length/volume



# **Probability Space**

### Definition

In probability theory, a probability space is a measure space used to define random processes. It looks like  $(\Omega, A, \mathbb{P})$ , and consists of three elements:

**(**)  $\Omega$ : the **sample space** of all possible outcomes.

# **Probability Space**

### Definition

In probability theory, a probability space is a measure space used to define random processes. It looks like  $(\Omega, A, \mathbb{P})$ , and consists of three elements:

- **(**)  $\Omega$ : the **sample space** of all possible outcomes.
- **2** A: a **sigma-algebra**, a collection of subsets of  $\Omega$ . Each set is called an event.

# **Probability Space**

### Definition

In probability theory, a probability space is a measure space used to define random processes. It looks like  $(\Omega, A, \mathbb{P})$ , and consists of three elements:

- **(**)  $\Omega$ : the **sample space** of all possible outcomes.
- **2** A: a **sigma-algebra**, a collection of subsets of  $\Omega$ . Each set is called an event.
- P: probability measure that maps events onto their probability values from 0 to 1, with 0 being impossible\* and 1 being certain. Because all events are "cut out" of Ω,
   P(Ω) = 1.

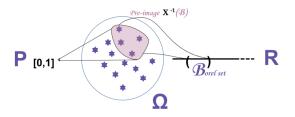
## Random Variables

### Definition

A random variable on the probability space  $(\Omega, A, \mathbb{P})$  is an  $\sigma$ -measurable function from the set of all possible outcomes to the set of real numbers:  $X : \Omega \to \mathbb{R}$ .

A random variable is a function:

 $X: \Omega \rightarrow R$ 



∢ ≣⇒

Emma Zhang

Brownian Motion

## **Probability Preliminaries**

### Expectation

$$\mathbb{E}(X) = \int_{\Omega} X d\mathbb{P}$$
 (0.1)

The bounds  $\Omega$  being the set of all functions in  $\Omega$  from  $(-\infty, \infty)$ .

### Variance

$$Var(X) = E((X - E(X))^2),$$
 (0.2)

denoted as  $\sigma^2$ .

### Covariance

$$Cov(X,Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]. \tag{0.3}$$

イロン 人間 とくほとう ほとう

2

Emma Zhang

Brownian Motion

### Definition

A **normal distribution** or **Gaussian distribution** is a continuous probability for a real valued random variable, typically shown a bell curve. The probability density function is as follows:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$
 (0.4)

э.

### Definition

A **normal distribution** or **Gaussian distribution** is a continuous probability for a real valued random variable, typically shown a bell curve. The probability density function is as follows:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$
 (0.4)

#### Definition

A stochastic process  $X_t$  is a collection of random variables indexed by time.

### Definition

A stochastic process  $(B_t)_{t\geq 0}$  is a Standard Brownian Motion if it satisfies the following properties:

•  $B_0 = 0$  (with probability 1). Brownian Motion starts at 0 when t = 0.

### Definition

- $B_0 = 0$  (with probability 1). Brownian Motion starts at 0 when t = 0.
- ② Independent Increments: If  $0 \le q < r \le s < t$ , then  $B_t B_s$  is independent of  $B_r B_q$ .

### Definition

- $B_0 = 0$  (with probability 1). Brownian Motion starts at 0 when t = 0.
- ② Independent Increments: If  $0 \le q < r \le s < t$ , then  $B_t B_s$  is independent of  $B_r B_q$ .
- Stationary Increments of Normal Distribution: Each interval of B<sub>(s+t)</sub> − B<sub>s</sub>, given that s < t, is normally distributed with expectation 0 and variance s shown by ~ N(0, t), and independent of starting time s.</p>

### Definition

- $B_0 = 0$  (with probability 1). Brownian Motion starts at 0 when t = 0.
- ② Independent Increments: If  $0 \le q < r \le s < t$ , then  $B_t B_s$  is independent of  $B_r B_q$ .
- Stationary Increments of Normal Distribution: Each interval of B<sub>(s+t)</sub> − B<sub>s</sub>, given that s < t, is normally distributed with expectation 0 and variance s shown by ~ N(0, t), and independent of starting time s.</p>
- Continuous paths:  $t \mapsto B(t)$  is continuous, with probability 1.

### Definition

- $B_0 = 0$  (with probability 1). Brownian Motion starts at 0 when t = 0.
- ② Independent Increments: If  $0 \le q < r \le s < t$ , then  $B_t B_s$  is independent of  $B_r B_q$ .
- Stationary Increments of Normal Distribution: Each interval of B<sub>(s+t)</sub> − B<sub>s</sub>, given that s < t, is normally distributed with expectation 0 and variance s shown by ~ N(0, t), and independent of starting time s.</p>
- Continuous paths:  $t \mapsto B(t)$  is continuous, with probability 1.

# Let's Construct Brownian Motion!

• BM is constructed from random walks

### Definition

A **random walk** is a stochastic process formed by successive summation of independent, identically distributed random variables (i.i.d.s).

ex: drunkard's walk, a fair die



#### Theorem

Standard Brownian motion exists, and satisfies the above conditions.

We can divide the real line  $[0, \infty)$  into tiny intervals of length  $\delta$ . Each sub-interval is a time slot of length  $\delta$ .  $[0, \delta), [\delta, 2\delta), [2\delta, 3\delta) \dots [(k - 1\delta), k\delta)$  for  $k < \infty$ . We toss a fair coin. Random variables  $X_i$ :

$$X_{i} = \begin{cases} +\sqrt{\delta}, \text{ with probability 1/2,} \\ -\sqrt{\delta}, \text{ with probability 1/2,} \end{cases}$$
(0.5)

where  $X_i$ s are independent (i.i.d's).

We toss a fair coin. Random variables  $X_i$ :

$$X_{i} = \begin{cases} +\sqrt{\delta}, \text{ with probability } 1/2, \\ -\sqrt{\delta}, \text{ with probability } 1/2, \end{cases}$$
(0.5)

where  $X_i$ s are independent (i.i.d's).

$$E(X_i) = 0$$
 due to being symmetrical (0.6)  
 $Var(X_i) = \delta$  (0.7)

▲□▶▲□▶▲≡▶▲≡▶ ≡ のQ@

## $B_0 = 0$

Define W(t) where W(0) = 0. Then,

$$W(t) = W(n\delta) = \sum_{i=1}^{n} X_i. \qquad (0.8)$$

## $B_0 = 0$

Define W(t) where W(0) = 0. Then,

$$W(t) = W(n\delta) = \sum_{i=1}^{n} X_i.$$
(0.8)

Since W(t) is the sum of *n* i.i.d. variables,

$$E(W(t)) = \sum_{i=1}^{n} E(X_i)$$
 (0.9)

$$Var(W(t)) = \sum_{i=1}^{n} Var(X_i)$$
(0.11)

 $= n\delta$ 

$$= nVar(X_1) \tag{0.12}$$

 $\langle \Box \rangle \langle B \rangle \langle E \rangle \langle E \rangle \langle B \rangle \langle B$ 

Emma Zhang

Brownian Motion

### Independent Increments

For  $0 \le t_1 < t_2 < t_3 \dots < t_n$ ,  $W(t_2) - W(t_1), W(t_3) - W(t_2), \dots W(t_n) - W(t_{n-1})$  (0.15) are independent.

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 回 ▶

### Independent Increments

For  $0 \le t_1 < t_2 < t_3 \ldots < t_n$ ,  $W(t_2) - W(t_1), W(t_3) - W(t_2), \ldots W(t_n) - W(t_{n-1})$  (0.15) are independent. For  $t \in (0, \infty)$ , as  $n \to \infty$ ,  $\delta \to 0$ . By the Central Limit Theorem:

$$W(t) \sim \mathcal{N}(0, t). \tag{0.16}$$

Emma Zhang

Brownian Motion

## Stationary Increments

W(t) must only depend on the length of the interval:  $W(t_2) - W(t_1)$  must be equal to  $W(t_2 + s) - W(t_1 + s)$ .

・ロト・西・・田・・田・ うぐら

## Stationary Increments

W(t) must only depend on the length of the interval:  $W(t_2) - W(t_1)$  must be equal to  $W(t_2 + s) - W(t_1 + s)$ . For  $0 \le t_1 < t_2$ , let  $t_1 = n_1 \delta$  and  $t_2 = n_2 \delta$ , we see that

$$W(t_1) = \sum_{i=1}^{n_1} X_i, \qquad (0.17)$$

$$W(t_2) = \sum_{i=1}^{n_2} X_i.$$
 (0.18)

### Stationary Increments

W(t) must only depend on the length of the interval:  $W(t_2) - W(t_1)$  must be equal to  $W(t_2 + s) - W(t_1 + s)$ . For  $0 \le t_1 < t_2$ , let  $t_1 = n_1 \delta$  and  $t_2 = n_2 \delta$ , we see that

$$W(t_1) = \sum_{i=1}^{n_1} X_i, \qquad (0.17)$$

$$W(t_2) = \sum_{i=1}^{n_2} X_i.$$
 (0.18)

イロト イポト イヨト イヨト

3

Then, to find the interval in between,

$$W(t_1) - W(t_2) = \sum_{i=1+n_1}^{n_2} X_i.$$
 (0.19)

$$E(W(t_1) - W(t_2)) = E(\sum_{1+n_1}^{n_2} X_i)$$
(0.20)  
= 0 (0.21)

$$Var(W(t_1) - W(t_2)) = Var(\sum_{1+n_1}^{n_2} X_i)$$
 (0.22)

$$= (n_2 - n_1) Var(X_1)$$
 (0.23)

$$= (n_2 - n_1)\delta \qquad (0.24)$$

$$= t_2 - t_1$$
 (0.25)

$$E(W(t_1) - W(t_2)) = E(\sum_{1+n_1}^{n_2} X_i)$$
(0.20)  
= 0 (0.21)

$$Var(W(t_1) - W(t_2)) = Var(\sum_{1+n_1}^{n_2} X_i)$$
 (0.22)

$$= (n_2 - n_1) Var(X_1)$$
 (0.23)

$$= (n_2 - n_1)\delta \qquad (0.24)$$

$$= t_2 - t_1$$
 (0.25)

э

Hence,  $W(t_2) - W(t_1)$  converges to  $\mathcal{N}(0, t_2 - t_1)$ , normally distributed with expectation 0 and variance *t*.

Emma Zhang

Brownian Motion

# Continuity

 $\mathbb{P}(\omega \in \Omega : B_{\omega}(t) \text{ is a continuous function of t}) = 1$ 

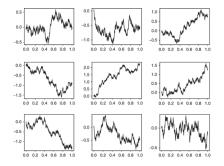


Figure: Sample paths of Brownian motion on [0, 1]

イロト イヨト イヨト イヨト

2

Brownian motion is both a Markov process and a Martingale.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 ─の�?

Brownian motion is both a Markov process and a Martingale.

### Definition

A Markov process  $(X_t)_{t\geq 0}$  can be mathematically represented if

$$P((X_{t+s} \le y) | X_u, 0 \le u \le s) = P((X_{t+s} \le y) | X_s)$$
 (0.26)

for all s, t > 0 and real y.

Brownian motion is both a Markov process and a Martingale.

#### Definition

A Markov process  $(X_t)_{t\geq 0}$  can be mathematically represented if

$$P((X_{t+s} \le y) | X_u, 0 \le u \le s) = P((X_{t+s} \le y) | X_s)$$
 (0.26)

for all s, t > 0 and real y.

This means the probability of state X time t after s only depends on the state at  $X_s$ , not anything in between.

## Martingale Properties

### Definition

A stochastic process  $(Y_t)_{t\geq 0}$  is a martingale if:

- $E(Y_t|Y_r, 0 \le r \le s) = Y_s$  for all  $0 \le s \le t$ .
- $e (|Y_t|) < \infty.$

▲口 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

## Martingale Properties

### Definition

A stochastic process  $(Y_t)_{t\geq 0}$  is a martingale if:

• 
$$E(Y_t|Y_r, 0 \le r \le s) = Y_s$$
 for all  $0 \le s \le t$ .  
•  $E(|Y_t|) < \infty$ .

future expectation of an event is equal to it's current value:

$$E(Y_0) = E(E(Y_t|Y_{0+s})) = E(Y_s).$$

See paper for BM and random walks proof  $+\ensuremath{\,\text{optional stopping}}$  theorem

## BM in Quantative Genetics

Mean value of a trait  $\overline{z}$ , population with size  $N_e$ , mutations (random variables) mean 0 and variance  $\sigma_m^2$ . The population evolves purely based on this mutation and genetic drift (random chance). The limit of these random walks, the mean value of the trait, is thus a Brownian motion path as time *t* increases.

< ロ > < 同 > < 三 > < 三 >

э

## BM in Quantative Genetics

Mean value of a trait  $\overline{z}$ , population with size  $N_e$ , mutations (random variables) mean 0 and variance  $\sigma_m^2$ . The population evolves purely based on this mutation and genetic drift (random chance). The limit of these random walks, the mean value of the trait, is thus a Brownian motion path as time *t* increases.

$$\mathbb{E}[\overline{z}_t]=\overline{z}_0.$$

< ロ > < 同 > < 三 > < 三 >

э

## BM in Quantative Genetics

Mean value of a trait  $\overline{z}$ , population with size  $N_e$ , mutations (random variables) mean 0 and variance  $\sigma_m^2$ . The population evolves purely based on this mutation and genetic drift (random chance). The limit of these random walks, the mean value of the trait, is thus a Brownian motion path as time *t* increases.

$$\mathbb{E}[\overline{z}_t] = \overline{z}_0.$$

$$\sigma_B^2(t) = \frac{h^2 \sigma_W^2 t}{N_e}$$

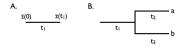
イロト イポト イヨト イヨト

3

# Phylogenetic Trees



## Phylogenetic Trees

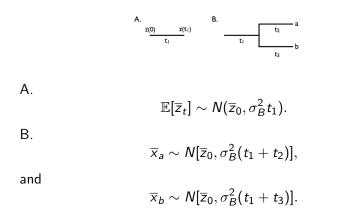


Α.

 $\mathbb{E}[\overline{z}_t] \sim N(\overline{z}_0, \sigma_B^2 t_1).$ 

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへで

## Phylogenetic Trees



$$x_{a} = \Delta x_{1} + \Delta x_{2}$$
$$\overline{x}_{b} = \Delta \overline{x}_{1} + \Delta \overline{x}_{3}$$
$$Cov(\overline{x}_{b}, \overline{x}_{b}) = Var(\Delta \overline{x}_{1}) = \sigma_{B}^{2} t_{1}.$$
 (0.27)

$$\begin{bmatrix} \sigma^2(t_1+t_2) & \sigma^2 t_1 \\ \sigma^2 t_1 & \sigma^2(t_1+t_3) \end{bmatrix} = \sigma^2 \begin{bmatrix} t_1+t_2 & t_1 \\ t_1 & t_1+t_3 \end{bmatrix} = \sigma^2 \mathbf{C}$$

### Figure: Variance-Covariance Matrix

### More in my paper!

Thank you for listening!

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへぐ