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What is Brownian Motion?

Erratic movements of particles in fluids, now used to model many
random processes

first observed by Robert Brown when studying pollen in water:
random sporadic movements

Einstein’s 1905 paper on Brownian motion: “thermal
molecular motion in the liquid environment”→ kinetic and
atomic theory

mathematically formalized by Norbert Wiener → Wiener
Process
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Applications of Brownian Motion

Important in biology(movements of liquids, evolution),
chemistry(kinetic theory, stability), physics(heat diffusion,
conduction,etc), finance (modeling stock prices), etc
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Measure Theory

Definition

Let a measurable space be
(X ,A, µ)

1 X : set

2 A: special collection of
subsets of X

3 µ : a measure, maps the
sample space onto [0,∞],
giving it a generalized
length/volume
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Probability Space

Definition

In probability theory, a probability space is a measure space used to
define random processes. It looks like (Ω,A,P), and consists of
three elements:

1 Ω: the sample space of all possible outcomes.

2 A: a sigma-algebra, a collection of subsets of Ω. Each set is
called an event.

3 P: probability measure that maps events onto their
probability values from 0 to 1, with 0 being impossible* and 1
being certain. Because all events are “cut out” of Ω,
P(Ω) = 1.
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Random Variables

Definition

A random variable on the probability space (Ω,A,P) is an
σ-measurable function from the set of all possible outcomes to the
set of real numbers: X : Ω −→ R .
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Probability Preliminaries

Expectation

E(X ) =

∫
Ω
XdP (0.1)

The bounds Ω being the set of all functions in Ω from (−∞,∞).

Variance

Var(X ) = E ((X − E (X ))2), (0.2)

denoted as σ2.

Covariance

Cov(X ,Y ) = E[(X − E[X ])(Y − E[Y ])]. (0.3)
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Definition

A normal distribution or Gaussian distribution is a continuous
probability for a real valued random variable, typically shown a bell
curve. The probability density function is as follows:

f (x) =
1√
2πσ2

e−
(x−µ)2

2σ2 . (0.4)

Definition

A stochastic process Xt is a collection of random variables indexed
by time.
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Standard Brownian Motion

Definition

A stochastic process (Bt)t≥0 is a Standard Brownian Motion if it
satisfies the following properties:

1 B0 = 0 (with probability 1). Brownian Motion starts at 0
when t = 0.

2 Independent Increments: If 0 ≤ q < r ≤ s < t, then
Bt − Bs is independent of Br − Bq.

3 Stationary Increments of Normal Distribution: Each
interval of B(s+t) − Bs , given that s < t, is normally
distributed with expectation 0 and variance s shown by
∼ N(0, t), and independent of starting time s.

4 Continuous paths: t 7→ B(t) is continuous, with probability
1.
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Let’s Construct Brownian Motion!

BM is constructed from random walks

Definition

A random walk is a stochastic process formed by successive
summation of independent, identically distributed random variables
(i.i.d.s).

ex: drunkard’s walk, a fair die
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Theorem

Standard Brownian motion exists, and satisfies the above
conditions.

We can divide the real line [0,∞) into tiny intervals of length δ.
Each sub-interval is a time slot of length δ.
[0, δ), [δ, 2δ), [2δ, 3δ) . . . [(k − 1δ), kδ) for k < ∞.
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We toss a fair coin. Random variables Xi :

Xi =

{
+
√
δ, with probability 1/2,

−
√
δ, with probability 1/2,

(0.5)

where Xi s are independent (i.i.d’s).

E (Xi ) = 0 due to being symmetrical (0.6)

Var(Xi ) = δ (0.7)
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B0 = 0

Define W (t) where W (0) = 0. Then,

W (t) = W (nδ) =
n∑

i=1

Xi . (0.8)

Since W (t) is the sum of n i.i.d. variables,

E (W (t)) =
n∑

i=1

E (Xi ) (0.9)

= 0, (0.10)

Var(W (t)) =
n∑

i=1

Var(Xi ) (0.11)

= nVar(X1) (0.12)

= nδ (0.13)

= t. (0.14)
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Independent Increments

For 0 ≤ t1 < t2 < t3 . . . < tn,

W (t2)−W (t1),W (t3)−W (t2), . . .W (tn)−W (tn−1) (0.15)

are independent.

For t ∈ (0,∞), as n → ∞, δ → 0. By the
Central Limit Theorem:

W (t) ∼ N (0, t). (0.16)

Figure: Dobrow 2016
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Stationary Increments

W (t) must only depend on the length of the interval:
W (t2)−W (t1) must be equal to W (t2 + s)−W (t1 + s).

For 0 ≤ t1 < t2, let t1 = n1δ and t2 = n2δ, we see that

W (t1) =

n1∑
i=1

Xi , (0.17)

W (t2) =

n2∑
i=1

Xi . (0.18)

Then, to find the interval in between,

W (t1)−W (t2) =

n2∑
i=1+n1

Xi . (0.19)
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E (W (t1)−W (t2)) = E (

n2∑
1+n1

Xi ) (0.20)

= 0 (0.21)

Var(W (t1)−W (t2)) = Var(

n2∑
1+n1

Xi ) (0.22)

= (n2 − n1)Var(X1) (0.23)

= (n2 − n1)δ (0.24)

= t2 − t1 (0.25)

Hence, W (t2)−W (t1) converges to N (0, t2 − t1), normally
distributed with expectation 0 and variance t.
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Continuity

P(ω ∈ Ω : Bω(t) is a continuous function of t) = 1

Figure: Sample paths of Brownian motion on [0, 1]
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Markov and Martingale Properties

Brownian motion is both a Markov process and a Martingale.

Definition

A Markov process (Xt)t≥0 can be mathematically represented if

P((Xt+s ≤ y)|Xu, 0 ≤ u ≤ s) = P((Xt+s ≤ y)|Xs) (0.26)

for all s, t > 0 and real y .

This means the probability of state X time t after s only depends
on the state at Xs , not anything in between.
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Martingale Properties

Definition

A stochastic process (Yt)t≥0 is a martingale if:

1 E (Yt |Yr , 0 ≤ r ≤ s) = Ys for all 0 ≤ s ≤ t.

2 E (|Yt |) < ∞.

future expectation of an event is equal to it’s current value:

E (Y0) = E (E (Yt |Y0+s) = E (Ys).

See paper for BM and random walks proof + optional stopping
theorem
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BM in Quantative Genetics

Mean value of a trait z , population with size Ne , mutations
(random variables) mean 0 and variance σ2

m. The population
evolves purely based on this mutation and genetic drift (random
chance). The limit of these random walks, the mean value of the
trait, is thus a Brownian motion path as time t increases.

E[z t ] = z0.

σ2
B(t) =

h2σ2
W t

Ne
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Phylogenetic Trees

A.
E[z t ] ∼ N(z0, σ

2
Bt1).

B.
xa ∼ N[z0, σ

2
B(t1 + t2)],

and
xb ∼ N[z0, σ

2
B(t1 + t3)].
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xa = ∆x1 +∆x2

xb = ∆x1 +∆x3

Cov(xb, xb) = Var(∆x1) = σ2
Bt1. (0.27)

Figure: Variance-Covariance Matrix

More in my paper!
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Thank you for listening!
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