Lotka-Volterra equations in Superinfection

Elizabeth Siva

July 12, 2024

Elizabeth Siva **[Lotka-Volterra equations in Superinfection](#page-14-0)** July 12, 2024 1/15

Þ

∢ 何 ≯ →

 $\mathbf{A} \times \mathbf{B}$

 \leftarrow \Box

э

The most simple Lotka-Volterra model is a set of first order ordinary differential equations used to describe predator-prey dynamics:

$$
\dot{x} = \alpha x - \beta xy
$$

$$
\dot{y} = -\delta y + \gamma xy
$$

 \leftarrow \Box

Þ

Equilibria of Basic Lotka-Volterra Model

The system has the following equilibria:

$$
\bar{x} = 0, \qquad \bar{y} = 0 \tag{1}
$$

$$
\bar{x} = \frac{\delta}{\gamma}, \qquad \bar{y} = \frac{\alpha}{\beta} \tag{2}
$$

4日下

δ

{ n →

 $\leftarrow \equiv +$

э

Solutions to Basic Lotka-Volterra Model

Figure: A phase portrait of the Predator-Prey Lotka-Volterra Equations. Note the periodic orbits surrounding a critical point.

Figure: Solutions to the Lotka-Volterra Equations with red representing predators, blue representing prey. The parameters used here are[:](#page-2-0) $x_0 = 8$ $x_0 = 8$ $x_0 = 8$, $y_0 = 12$ $y_0 = 12$, $\alpha = 20$, and α = $\frac{1}{20}$ [Lotka-Volterra equations in Superinfection](#page-0-0)

Logistic Equation

Basic Logistic Equation modelling population growth

$$
\dot{y}(t) = ry(t)\bigg(1 - \frac{y(t)}{K}\bigg)
$$

Figure: A phase portrait of the Logistic Population Model. The parameters are $r = \frac{1}{2}$ and $K = 10$. Note the change in concavity at $\frac{K}{2} = 5$.

Competitive Lotka-Volterra Equation

This is the competitive Lotka-Volterra Model describing population dynamics between two species in an environment with a carrying capacity, K.

$$
\dot{y}_1(t) = r_1 y_1 \left(\frac{K_1 - y_1 - a_{12} y_2}{K_1} \right) \tag{3}
$$

$$
\dot{y}_2(t) = r_2 y_2 \left(\frac{K_2 - y_2 - a_{21} y_1}{K_2} \right) \tag{4}
$$

The generalized Lotka-Volterra Equation has since been used to describe more complex evolutionary systems and dynamics across a theoretically infinite amount of species.

$$
\frac{dy_i}{dt}=y_i(r_i+\sum_{j=1}^n y_i b_{ij}),\ i=1,\ldots,n.
$$
 (5)

Basic Model of Infection

This is the basic model of infection with a single virus within a population split into infected and susceptible

$$
\frac{dx}{dt} = k - ux - \beta xy \tag{6}
$$

$$
\frac{dy}{dt} = y(\beta x - u - v) \tag{7}
$$

 \leftarrow \Box

Competitive Model of Infection

This is the competitive model of infection with multiple viruses within a population split into infected and susceptible

$$
\frac{dx}{dt} = k - ux - x(\beta_1 y_1 + \beta_2 y_2)
$$
 (8)

$$
\frac{dy_1}{dt} = y_1(\beta_1 x - u - v_1) \tag{9}
$$

$$
\frac{dy_2}{dt} = y_2(\beta_2 x - u - v_2)
$$
 (10)

The Basic Model of Superinfection

Superinfection is the scenario in which an already-infected host is infected with a second virus strain. It can be represented with the following ODE system:

$$
\dot{x} = k - ux + x \sum_{i=1}^{n} \beta_i y_i
$$

$$
\dot{y} = y_i \left(\beta_i x - u - v_i + s\beta_i \sum_{j=1}^{i-1} -s \sum_{j=i+1}^{n} \beta_i y_j \right)
$$

Reproductive Ratio in Superinfection

The reproductive ratio is the number of new cases generated if a single infected individual should enter a susceptible population.

$$
R_0=\frac{akv_i}{u(c+v_i)(u+v_i)}
$$

This gives us that optimal virulence is:

$$
v_{opt} = \sqrt{cu}
$$

An Analytical Model of Superinfection

If we assume $k = ux + uy + \sum_{i=1}^{n} v_i y_i$ and $x + y = 1$, we have

$$
\dot{y} = y_i \left(\beta_i (1 - y) - u - v_i + s \left(\beta_i \sum_{j=1}^{i-1} y_i - \sum_{j=i+1}^n \beta_i y_i \right) \right), \qquad i = 1, 2, ..., n
$$
\n(11)

●■▶

 \leftarrow \Box

不重 的人 G.

An Analytical Model of Superinfection Cont.

This can be rewritten as a Generalized Lotka-Volterra Equation of the form

$$
\dot{y}=y_i\bigg(R_i+\sum_{j=1}^n A_{ij}y_j\bigg), \quad i=1,2,\ldots,n
$$

Where $R_i = \beta_i - v_i - u_i$ and

$$
A = -\begin{bmatrix} \beta_i & \beta_1 + s\beta_2 & \beta_1 + s\beta_3 & \dots & \beta_1 + s\beta_n \\ \beta_2(1-s) & \beta_2 & \beta_2 + s\beta_3 & \dots & \beta_2 + s\beta_n \\ \beta_3(1-s) & \beta_3(1-s) & \beta_3 & \dots & \beta_3 + s\beta_n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ n(1-s) & \beta_n(1-s) & \beta_n(1-s) & \dots & \beta_n \end{bmatrix}
$$

÷.

Competitive Lotka-Volterra Equation in Virology

If we set all infection rates to be equivalent, so $\beta_i = \beta$, we see that

$$
\dot{y}_i = y_i \beta \left(1 - y - \frac{v_i + u}{\beta} + s \left(\sum_{j=1}^{i-1} y_{ij} - \sum_{j-i+1}^n y_j \right) \right)
$$

(This is a competitive Lotka-Volterra equation). Additionally, the matrix A becomes $A = \lceil$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array} \end{array}$ $1 + s + s + s + s + s + s + s + s$ $1 - s$ 1 $1 + s$... $1 + s$ $1 - s$ 1 - s 1 ... 1 + s $1 - s$ $1 - s$ $1 - s$... 1 1 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \end{array}$

Equilibrium of the Model

If we set $f_i = 1 - \frac{ {\sf v}_i + {\sf u}}{\beta} - (1-s) {\sf y} - 2 {\sf s} \sum_{j=i+1}^n {\sf y}_j$ then the model can be rewritten as

$$
\dot{y}=y_i\beta(f_i-sy_i)
$$

So, the equilibria can be seen to require that either $y_n = 0$ or $y_n = \frac{f_n}{s}$. Through this, we can define y_n recursively as:

$$
y_n=\max\{0,f_n/s\}
$$

Hofbauer and Sigmund show that this is the only equilibrium.