The Gershgorin Circle Theorem

Dragos Gligor

July 2024

[The Gershgorin Circle Theorem](#page-50-0) July 2024 $1/15$

4 D F

Þ

A vector space V over a field $\mathbb F$ is a non-empty set closed under two operations: vector addition and scalar multiplication.

4 0 8

A vector space V over a field $\mathbb F$ is a non-empty set closed under two operations: vector addition and scalar multiplication. The classical case is a vector space over \mathbb{R}^n .

A vector space V over a field $\mathbb F$ is a non-empty set closed under two operations: vector addition and scalar multiplication. The classical case is a vector space over \mathbb{R}^n .

$$
(1,2) + (2,1) = (2,1) + (1,2) = (3,3)
$$

$$
\frac{1}{3}(3,3) = (1,1)
$$

A matrix is a rectangular array of numbers (or any other mathematical object)

4 D F

э

A matrix is a rectangular array of numbers (or any other mathematical object). Most commonly, a matrix over a field \mathbb{F} .

4 0 8

Þ

A matrix is a rectangular array of numbers (or any other mathematical object). Most commonly, a matrix over a field $\mathbb F$. The set of matrices with m rows and n columns over the field $\mathbb F$ is denoted as $M_{m\times n}(\mathbb F)$.

A matrix is a rectangular array of numbers (or any other mathematical object). Most commonly, a matrix over a field \mathbb{F} . The set of matrices with m rows and n columns over the field $\mathbb F$ is denoted as $M_{m\times n}(\mathbb F)$. For an example, take $A \in M_{3\times 2}(\mathbb{R})$

$$
A = \left[\begin{array}{cc} 1 & \pi \\ e & -1 \\ \frac{1}{2} & 0 \end{array} \right]
$$

Say we have two matrices $A \in M_{m \times n}$ and $B \in M_{n \times p}$, and we want to multiply them to get the matrix C.

4 0 8

Say we have two matrices $A \in M_{m \times n}$ and $B \in M_{n \times p}$, and we want to multiply them to get the matrix C . Then C is comprised of the entries $c_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j}.$

An eigenvalue $\lambda \in \mathbb{C}$ comes with a corresponding non-zero eigenvector $x \in V$.

4 D F

Þ

An eigenvalue $\lambda \in \mathbb{C}$ comes with a corresponding non-zero eigenvector $x \in V$. The pair (λ, x) are an eigenpair of a matrix $A \in M_n(\mathbb{F})$ if $Ax = \lambda x$. For this operation, we treat x as an $M_{n \times 1}(\mathbb{F})$.

An eigenvalue $\lambda \in \mathbb{C}$ comes with a corresponding non-zero eigenvector $x \in V$. The pair (λ, x) are an eigenpair of a matrix $A \in M_n(\mathbb{F})$ if $Ax = \lambda x$. For this operation, we treat x as an $M_{n \times 1}(\mathbb{F})$. The matrix A has n eigenvalues.

Theorem

$$
Let A = [a_{i,j}] \in M_n
$$

Theorem

Let $A=[a_{i,j}]\in M_n$ and let

$$
R_i(A) = \sum_{j \neq i}^n |a_{i,j}|
$$

denote the absolute deleted row sum.

Theorem

Let $A=[a_{i,j}]\in M_n$ and let

$$
R_i(A) = \sum_{j \neq i}^n |a_{i,j}|
$$

denote the absolute deleted row sum. Let the set

$$
G_i(A) = \{ z \in \mathbb{C} \mid |z - a_{i,i}| \leq R_i(A) \}
$$

which denotes a disk in the complex plane with the center $a_{i,j}$ and radius $R_i(A)$.

Theorem

Let $A=[a_{i,j}]\in M_n$ and let

$$
R_i(A) = \sum_{j \neq i}^n |a_{i,j}|
$$

denote the absolute deleted row sum. Let the set

$$
G_i(A) = \{ z \in \mathbb{C} \mid |z - a_{i,i}| \leq R_i(A) \}
$$

which denotes a disk in the complex plane with the center $a_{i,j}$ and radius $R_i(A)$. We call $G_i(A)$ the *i*-th Gershgorin circle.

Theorem

Let $A=[a_{i,j}]\in M_n$ and let

$$
R_i(A) = \sum_{j \neq i}^n |a_{i,j}|
$$

denote the absolute deleted row sum. Let the set

$$
G_i(A) = \{ z \in \mathbb{C} \mid |z - a_{i,i}| \leq R_i(A) \}
$$

which denotes a disk in the complex plane with the center $a_{i,j}$ and radius $R_i(A)$. We call $G_i(A)$ the *i*-th Gershgorin circle. Then the eigenvalues of A are in the set

$$
G(A) = \bigcup_{i=1}^n G_i(A)
$$

Let (λ, x) be an eigenpair of $A = [a_{i,j}] \in M_n$.

э

化重 经一

K ロ ▶ K 母 ▶ K

重

Let (λ,x) be an eigenpair of $\mathcal{A}=[a_{i,j}]\in M_n.$ Let $p\in\{1,2,\ldots,n\}$ such that $|x_p| \ge |x_i|$ for all $i \in \{1, 2, \ldots, n\}$.

イロト

- ← 冊 →

э

∋ k i

Let (λ,x) be an eigenpair of $\mathcal{A}=[a_{i,j}]\in M_n.$ Let $p\in\{1,2,\ldots,n\}$ such that $|x_\rho|\geq |x_i|$ for all $i\in\{1,2,\ldots,n\}.$ Equating the ρ -th entry of $Ax = \lambda x$ we reach $\lambda x_p = \sum_{j=1}^n a_{p,j}x_j$

4 D F

э

Let (λ,x) be an eigenpair of $\mathcal{A}=[a_{i,j}]\in M_n.$ Let $p\in\{1,2,\ldots,n\}$ such that $|x_\rho|\geq |x_i|$ for all $i\in\{1,2,\ldots,n\}.$ Equating the ρ -th entry of $Ax = \lambda x$ we reach $\lambda x_\rho = \sum_{j=1}^n a_{\rho,j} x_j$, which can be written as

$$
x_p(\lambda - a_{p,p}) = \sum_{j \neq p} a_{p,j} x_j.
$$

4 D F

э

Let (λ,x) be an eigenpair of $\mathcal{A}=[a_{i,j}]\in M_n.$ Let $p\in\{1,2,\ldots,n\}$ such that $|x_\rho|\geq |x_i|$ for all $i\in\{1,2,\ldots,n\}.$ Equating the ρ -th entry of $Ax = \lambda x$ we reach $\lambda x_\rho = \sum_{j=1}^n a_{\rho,j} x_j$, which can be written as

$$
x_p(\lambda - a_{p,p}) = \sum_{j \neq p} a_{p,j} x_j.
$$

Due to the triangle inequality:

$$
\left|x_{\rho}\right|\left|\lambda-a_{\rho,\rho}\right|\leq\sum_{j\neq p}\left|a_{\rho,j}\right|\left|x_j\right|\leq\left|x_{\rho}\right|\sum_{j\neq p}\left|a_{\rho,j}\right|=\left|x_{\rho}\right|R_{\rho}(A)
$$

Let (λ,x) be an eigenpair of $\mathcal{A}=[a_{i,j}]\in M_n.$ Let $p\in\{1,2,\ldots,n\}$ such that $|x_\rho|\geq |x_i|$ for all $i\in\{1,2,\ldots,n\}.$ Equating the ρ -th entry of $Ax = \lambda x$ we reach $\lambda x_\rho = \sum_{j=1}^n a_{\rho,j} x_j$, which can be written as

$$
x_p(\lambda - a_{p,p}) = \sum_{j \neq p} a_{p,j} x_j.
$$

Due to the triangle inequality:

$$
|x_p| |\lambda - a_{p,p}| \leq \sum_{j \neq p} |a_{p,j}| |x_j| \leq |x_p| \sum_{j \neq p} |a_{p,j}| = |x_p| R_p(A)
$$

and since $|x_p| > 0$, we reach that $|\lambda - a_{p,p}| \le R_p(A)$ and therefore $\lambda \in G_p(A)$ and the larger set $G(A)$.

重

 299

Well, it depends!

4 D F

э

Well, it depends! More precisely, it depends on how many circles are disjoint and what circles intersect.

4 0 8

Well, it depends!

More precisely, it depends on how many circles are disjoint and what circles intersect.

If k Gershgorin circles intersect, then there are k eigenvalues in that area.

Let
$$
A = \begin{bmatrix} i & 0.5 \\ 0.5 & 1 \end{bmatrix}
$$
 and $B = \begin{bmatrix} 7 & 9 \\ -5 & -5 \end{bmatrix}$

イロメ イ部メ イヨメ イヨメー

造

Let
$$
A = \begin{bmatrix} i & 0.5 \\ 0.5 & 1 \end{bmatrix}
$$
 and $B = \begin{bmatrix} 7 & 9 \\ -5 & -5 \end{bmatrix}$

(a) Gershgorin circles for A

重

 2990

イロト イ部 トイヨ トイヨト

(a) Gershgorin circles for A

(b) Gershgorin circles for B

(a) Gershgorin circles for A

(b) Gershgorin circles for B

4 D F

 $\leftarrow \equiv$ \rightarrow

э

As you saw, while the Gershgorin circle theorem does give a pretty good approximation, there is still a lot of "space".

As you saw, while the Gershgorin circle theorem does give a pretty good approximation, there is still a lot of "space". Is there something we could do to the matrix A such that we improve our bound and keep the eigenvalues the same?

As you saw, while the Gershgorin circle theorem does give a pretty good approximation, there is still a lot of "space". Is there something we could do to the matrix A such that we improve our bound and keep the eigenvalues the same?

Turns out, there is, $S^{-1} A S$ has the same eigenvalues as A .

As you saw, while the Gershgorin circle theorem does give a pretty good approximation, there is still a lot of "space". Is there something we could do to the matrix A such that we improve our bound and keep the eigenvalues the same?

Turns out, there is, $S^{-1} A S$ has the same eigenvalues as A . We can take Н

$$
S = \left[\begin{array}{cccc} p_1 & 0 & \ldots & 0 \\ 0 & p_2 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & p_n \end{array}\right] \text{ with } p_1, p_2, \ldots, p_n \in \mathbb{R}_{>0}.
$$

G.

Take $A \in M_n$.

K ロ ▶ K 御 ▶ K 舌

重

Take $A \in M_n$. Say we then take a $E \in M_n$.

D

4 0 F

- ← 冊 →

重

Take $A \in M_n$. Say we then take a $E \in M_n$. What can we say about the eigenvalues of $A + E$?

This is the main question of my paper.

4 0 8

∍

Take $A \in M_n$. Say we then take a $E \in M_n$. What can we say about the eigenvalues of $A + E$?

This is the main question of my paper. If we look at matrices with certain properties, we get quite some interesting results.

 QQ

Let's take $D, E \in M_n$, $D = diag(\lambda_1, \lambda_2, ..., \lambda_n)$. What can we say about the eigenvalues of $A + E$?

4 0 8

∍

Let's take $D, E \in M_n$, $D = diag(\lambda_1, \lambda_2, ..., \lambda_n)$. What can we say about the eigenvalues of $A + E$?

Well, every eigenvalue of $D + E$ is in the set

$$
G(D+E)=\bigcup_{i=1}^n\left\{z\in\mathbb{C}\mid |z-\lambda_i-e_{i,i}|\leq \sum_{j\neq i}|e_{i,j}|\right\}
$$

Let's take $D, E \in M_n$, $D = diag(\lambda_1, \lambda_2, ..., \lambda_n)$. What can we say about the eigenvalues of $A + E$?

Well, every eigenvalue of $D + E$ is in the set

$$
G(D+E)=\bigcup_{i=1}^n\left\{z\in\mathbb{C}\mid\left|z-\lambda_i-e_{i,i}\right|\leq\sum_{j\neq i}\left|e_{i,j}\right|\right\}
$$

but this set is included in

$$
\bigcup_{i=1}^n \left\{ z \in \mathbb{C} \mid |z - \lambda_i| \leq \sum_{j=1}^n |e_{i,j}| \right\}.
$$

Let's take $D, E \in M_n$, $D = diag(\lambda_1, \lambda_2, ..., \lambda_n)$. What can we say about the eigenvalues of $A + E$?

Well, every eigenvalue of $D + E$ is in the set

$$
G(D+E)=\bigcup_{i=1}^n\left\{z\in\mathbb{C}\mid |z-\lambda_i-e_{i,i}|\leq \sum_{j\neq i}|e_{i,j}|\right\}
$$

but this set is included in

$$
\bigcup_{i=1}^n \left\{ z \in \mathbb{C} \mid |z - \lambda_i| \leq \sum_{j=1}^n |e_{i,j}| \right\}.
$$

therefore, if $\hat{\lambda}$ is an eigenvalue of $D + E$ there is an eigenvalue of D such that

$$
\left|\hat{\lambda} - \lambda\right| \leq \max_{1 \leq i \leq n} \sum_{j=1}^n |e_{i,j}|.
$$

 Ω

Thank you for listening to my talk!

 \Rightarrow

4 ロト 4 何 ト

É