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What is a vector space?

A vector space V over a field F is a non-empty set closed under two
operations: vector addition and scalar multiplication.

The classical case is
a vector space over Rn.

(1, 2) + (2, 1) = (2, 1) + (1, 2) = (3, 3)

1

3
(3, 3) = (1, 1)
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What is a matrix?

A matrix is a rectangular array of numbers (or any other mathematical
object)

. Most commonly, a matrix over a field F. The set of matrices
with m rows and n columns over the field F is denoted as Mm×n(F). For
an example, take A ∈ M3×2(R)

A =

 1 π
e −1
1
2 0
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Matrix multiplication

Say we have two matrices A ∈ Mm×n and B ∈ Mn×p, and we want to
multiply them to get the matrix C .

Then C is comprised of the entries
ci ,j =

∑n
k=1 ai ,kbk,j .
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What is an eigenvalue?

An eigenvalue λ ∈ C comes with a corresponding non-zero eigenvector
x ∈ V .

The pair (λ, x) are an eigenpair of a matrix A ∈ Mn(F) if
Ax = λx . For this operation, we treat x as an Mn×1(F). The matrix A has
n eigenvalues.
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Gershgorin Circle theorem

Theorem

Let A = [ai ,j ] ∈ Mn

and let

Ri (A) =
n∑
j ̸=i

|ai ,j |

denote the absolute deleted row sum. Let the set

Gi (A) = {z ∈ C | |z − ai ,i | ≤ Ri (A)}

which denotes a disk in the complex plane with the center ai ,i and radius
Ri (A). We call Gi (A) the i-th Gershgorin circle.
Then the eigenvalues of A are in the set

G (A) =
n⋃

i=1

Gi (A)
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Proof

Let (λ, x) be an eigenpair of A = [ai ,j ] ∈ Mn.

Let p ∈ {1, 2, . . . , n} such
that |xp| ≥ |xi | for all i ∈ {1, 2, . . . , n}. Equating the p-th entry of
Ax = λx we reach λxp =

∑n
j=1 ap,jxj , which can be written as

xp(λ− ap,p) =
∑
j ̸=p

ap,jxj .

Due to the triangle inequality:

|xp| |λ− ap,p| ≤
∑
j ̸=p

|ap,j | |xj | ≤ |xp|
∑
j ̸=p

|ap,j | = |xp|Rp(A)

and since |xp| > 0, we reach that |λ− ap,p| ≤ Rp(A) and therefore
λ ∈ Gp(A) and the larger set G (A).
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Example

Say we have the matrix A =

 1 2 −1
0 i 1
1 i −i − 1



−i − 1

−

|
1

i

λ1

λ2

λ3

Figure: G (A)
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How many eigenvalues are in a Gershgorin circle?

Well, it depends!

More precisely, it depends on how many circles are disjoint and what
circles intersect.
If k Gershgorin circles intersect, then there are k eigenvalues in that area.
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Example

Let A =

[
i 0.5
0.5 1

]
and B =

[
7 9
−5 −5

]

|

−
i

1

λ1

λ2

(a) Gershgorin circles for A

||
7−5

λ1

λ2

(b) Gershgorin circles for B
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How can we get better bounds?

As you saw, while the Gershgorin circle theorem does give a pretty good
approximation, there is still a lot of “space”.

Is there something we could
do to the matrix A such that we improve our bound and keep the
eigenvalues the same?

Turns out, there is, S−1AS has the same eigenvalues as A. We can take

S =


p1 0 . . . 0
0 p2 . . . 0
...

...
. . .

...
0 0 . . . pn

 with p1, p2, . . . , pn ∈ R>0.
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Example

We take A =

 1 2 −1
0 i 1
1 i −i − 1

 and S =

 3 0 0
0 1 0
0 0 2

, we get

−i − 1

−

|
1

i

λ1

λ2

λ3

(a) G(A)

−i − 1
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|
1

i
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A perturbed matrix

Take A ∈ Mn.

Say we then take a E ∈ Mn. What can we say about the
eigenvalues of A+ E?

This is the main question of my paper. If we look at matrices with certain
properties, we get quite some interesting results.
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A perturbed diagonal matrix

Let’s take D,E ∈ Mn, D = diag(λ1, λ2, . . . , λn). What can we say about
the eigenvalues of A+ E?

Well, every eigenvalue of D + E is in the set

G (D + E ) =
n⋃

i=1

z ∈ C | |z − λi − ei ,i | ≤
∑
j ̸=i

|ei ,j |


but this set is included in

n⋃
i=1

z ∈ C | |z − λi | ≤
n∑

j=1

|ei ,j |

 .

therefore, if λ̂ is an eigenvalue of D + E there is an eigenvalue of D such
that ∣∣∣λ̂− λ

∣∣∣ ≤ max
1≤i≤n

n∑
j=1

|ei ,j | .

Dragos Gligor The Gershgorin Circle Theorem July 2024 14 / 15



A perturbed diagonal matrix

Let’s take D,E ∈ Mn, D = diag(λ1, λ2, . . . , λn). What can we say about
the eigenvalues of A+ E?
Well, every eigenvalue of D + E is in the set

G (D + E ) =
n⋃

i=1

z ∈ C | |z − λi − ei ,i | ≤
∑
j ̸=i

|ei ,j |



but this set is included in

n⋃
i=1

z ∈ C | |z − λi | ≤
n∑

j=1

|ei ,j |

 .

therefore, if λ̂ is an eigenvalue of D + E there is an eigenvalue of D such
that ∣∣∣λ̂− λ

∣∣∣ ≤ max
1≤i≤n

n∑
j=1

|ei ,j | .

Dragos Gligor The Gershgorin Circle Theorem July 2024 14 / 15



A perturbed diagonal matrix

Let’s take D,E ∈ Mn, D = diag(λ1, λ2, . . . , λn). What can we say about
the eigenvalues of A+ E?
Well, every eigenvalue of D + E is in the set

G (D + E ) =
n⋃

i=1

z ∈ C | |z − λi − ei ,i | ≤
∑
j ̸=i

|ei ,j |


but this set is included in

n⋃
i=1

z ∈ C | |z − λi | ≤
n∑

j=1

|ei ,j |

 .

therefore, if λ̂ is an eigenvalue of D + E there is an eigenvalue of D such
that ∣∣∣λ̂− λ

∣∣∣ ≤ max
1≤i≤n

n∑
j=1

|ei ,j | .

Dragos Gligor The Gershgorin Circle Theorem July 2024 14 / 15



A perturbed diagonal matrix

Let’s take D,E ∈ Mn, D = diag(λ1, λ2, . . . , λn). What can we say about
the eigenvalues of A+ E?
Well, every eigenvalue of D + E is in the set

G (D + E ) =
n⋃

i=1

z ∈ C | |z − λi − ei ,i | ≤
∑
j ̸=i

|ei ,j |


but this set is included in

n⋃
i=1

z ∈ C | |z − λi | ≤
n∑

j=1

|ei ,j |

 .

therefore, if λ̂ is an eigenvalue of D + E there is an eigenvalue of D such
that ∣∣∣λ̂− λ

∣∣∣ ≤ max
1≤i≤n

n∑
j=1

|ei ,j | .

Dragos Gligor The Gershgorin Circle Theorem July 2024 14 / 15



Thank you!

Thank you for listening to my talk!
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