
ON THE PERTURBATION OF EIGENVALUES

DRAGOS, GLIGOR

1. Introduction

The study of eigenvalues has long been a subject of great interest for both applied and pure
mathematicians. In 1931, Soviet mathematician Semyon Aranovich Gershgorin published a
paper that proved a sensational result: the eigenvalues of a matrix lie in a collection of discs
in the complex plane, which captured the attention of many mathematicians and was quickly
expanded upon. This is the main theorem we will discuss, as well as the perturbation bounds
facilitated by it.
We begin with sections on important preliminary knowledge that will be helpful, if not
outright necessary for understanding and talking about our subject. If you are already
comfortable with the concepts discussed in sections 2, 3, and 4, feel free to skip them.
Section 5 discusses the Gershgorin circle theorem, introducing ways to help improve the
approximation and notions that are related to it, as well as featuring plenty of visualizations
to showcase its inherent geometric beauty.
We conclude in section 6 by discussing what happens to the eigenvalues of a matrix if we
perturb it, as in, adding another relatively small matrix to it. How much do the eigenvalues
change, and can we approximate the eigenvalues of either the original matrix or the perturbed
one by knowing the eigenvalues of the other? These are all questions we shall answer.

2. Permutations

Definition 2.1. A permutation of degree n is a bijective function σ : {1, 2, . . . , n} −→ {1, 2, . . . , n}.

The set of all permutations of degree n is noted as Sn. The cardinal of Sn is n!. A
permutation of degree n is often represented as such:

σ =

(
1 2 . . . k . . . n

σ(1) σ(2) . . . σ(k) . . . σ(n)

)
Permutations are usually denoted using lowercase Greek letters. A permutation of particular
interest is the identity permutation, denoted by ϵ, defined as:

ϵ =

(
1 2 . . . k . . . n
1 2 . . . k . . . n

)
In short, ϵ(k) = k for all k ∈ {1, 2, . . . , n}.

Definition 2.2. The product of two permutations σ, τ ∈ Sn is the composition of their
respective function. More clearly στ = σ ◦ τ = σ(τ(x)) for all x ∈ {1, 2, . . . , n}. The
multiplication of two permutations has the following properties for any α, β, γ ∈ Sn:

(1) Associativity : (αβ)γ = α(βγ)
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(2) Neutral element : There is a permutation such that αϵ = ϵα = α for all α ∈ Sn. The
identity element for the multiplication of permutations is the identity permutation ϵ.

(3) Inverse: for any permutation α, there exist a permutation α−1 such that αα−1 =
α−1α = ϵ (the identity element). α−1 is called the inverse of permutation α.

Remark 2.1. A quick way of finding the inverse of a permutation σ ∈ Sn represented as

such σ =

(
1 2 . . . k . . . n

σ(1) σ(2) . . . σ(k) . . . σ(n)

)
is by switching the top and bottom rows

σ−1 =

(
σ(1) σ(2) . . . σ(k) . . . σ(n)
1 2 . . . k . . . n

)
and then ordering the top row increasingly.

Definition 2.3. For a permutation σ ∈ Sn, an inversion is a pair (i, j) such that σ(i) > σ(j).
The number of inversions of the permutation σ is noted as m(σ).

As a short note, the smallest deviation(as in, the one that changes the least amount of
elements) from ϵ is an inversion. This is intuitive, for if you try to change only one element,
the function would no longer be a bijection.

Definition 2.4. The signature of a permutation σ ∈ Sn is defined as −1 to the power of
the number of inversions and noted as sgn(σ) = (−1)m(σ)

If sgn(σ) = 1 then it is called an even permutation.
If sgn(σ) = −1 then it is called an odd permutation.

Example. For the permutation σ =

(
1 2 3 4
2 4 1 3

)
we have the inversions (1, 3), (2, 3), (2, 4).

As such m(σ) = 3 and sgn(σ) = −1 and thus σ is an odd permutation.

3. The Characteristic polynomial of a matrix

If you are reading this paper, then you are already familiar with the equation that defines
the eigenvalues of a matrix:

Ax = λx

where (λ, x) is an eigenpair of A and A ∈ Mn(C), the set of matrices of size n × n with
elements in the complex plane. Also recalled that σ(A) denotes the set of the eigenvalues of
A.
It does not take much to see that this equation is equivalent to λx − Ax = 0n×1 ⇔ (λIn −
A)x = 0n×1. Since the vector 0n×1 is by definition not considered an eigenvector, then we
conclude that the matrix λIn − A is singular. As such, det(λIn − A) = 0.

Definition 3.1. For a matrix A ∈ Mn(C) the determinant

pA(t) = det(tIn − A), t ∈ C,

is the characteristic polynomial of the matrix A. We refer to the equation pA(t) = 0 as the
characteristic equation of the matrix A.

Observation 3.1. The characteristic polynomial of the matrix A = [ai,j] is a polynomial of
degree n and pA(t) = tn − Tr(A)tn−1 + · · · + (−1)n det(A). Moreover, pA(t) = 0 if and only
if λ ∈ σ(A).



ON THE PERTURBATION OF EIGENVALUES 3

Proof. The definition of a determinant is det(A) =
∑

τ∈Sn
sgn(τ)

∏n
i=1 ai,τ(i). As such, each

element of the sum is the product of n elements of tIn − A, which has the following form

tIn − A =


t− a1,1 −a1,2 . . . −a1,n
−a2,1 t− a2,2 . . . −a2,n
...

...
. . .

...
−an,1 −an,2 . . . t− an,n


To be more explicit, the diagonal elements are of the form t−ai,i and the off-diagonal elements
are of the form −ai,j. The product of n elements of this matrix produces a polynomial of
t with a maximum degree of n. Moreover, the only summand of degree n is the product of
the elements of the matrix’s diagonal, which corresponds to the identity permutation ϵ:

(t− a1,1)(t− a2,2) . . . (t− an,n) = tn − (a1,1 + a2,2 + · · ·+ an,n)t
n−1 + . . .

Any other summand will include at least one −ai,j term, corresponding to a permutation
different from ϵ. As such, the summand cannot include the terms t − ai,i and t − aj,j, and
will therefore have a maximum degree of n− 2.
For t = 0, we have det(−A) = (−1)n det(A), which is the constant term.
With Tr(A) = a1,1 + a2,2 + a3,3 + . . . an,n, we reach the form

pA(t) = det(tIn − A) = tn − Tr(A)tn−1 + · · ·+ (−1)n det(A)

and the first conclusion of our observation has been proved.
As previously stated, det(λIn − A) = 0 for all eigenvalues of A. This can also be written
as pA(λ) = 0. Therefore, λ is a root of the polynomial pA(t). It follows that all eigenvalues
of A are roots of pA(t), and since pA(t) is a polynomial of degree n, which means it has
exactly n roots in the complex plane and A has n eigenvalues, then all the roots of pA(t) are
eigenvalues of A. ■

Definition 3.2. The algebraic multiplicity of an eigenvalue of A is its multiplicity as a root
of pA(t).

Due to the property of the roots of the characteristic polynomial coinciding with the
eigenvalues of A, it is an important notion in the study of eigenvalues.

Example. Say you want to find the eigenvalues of the matrix A =

[
6 −1
1 4

]
. For a matrix of

size 2, its characteristic polynomial has the rather simple form: pA(t) = t2−Tr(A)t+det(A).
For our example, pA(t) = t2− 10t+25 = (t− 5)2. As it is clear, the roots of this polynomial
are 5 and well, 5. As such, σ(A) = {5}, and the eigenvalue 5 has an algebraic multiplicity
of 2.

4. Vector and matrix norms

Definition 4.1. Let V be a vector space over the field C. A function ∥·∥ : V −→ R is a norm
(sometimes called a vector norm) if, for all x, y ∈ V and all c ∈ C,

(1) ∥x∥ ≥ 0
(1a) ∥x∥ = 0 if and only if x = 0
(2) ∥cx∥ = |c| ∥x∥
(3) ∥x+ y∥ ≤ ∥x∥+ ∥y∥
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Examples of vector norms for a vector x = [x1 . . . , xn]
T ∈ Cn that may be used in this

paper are:

∥x∥p = (|x1|p + |x2|p + · · ·+ |xn|p)1/p (the lp-norm)

∥x∥∞ = max {|x1| , . . . , |xn|} (the max norm or l∞-norm)

Definition 4.2. A function ∥|·|∥ : Mn −→ R is a matrix norm if, for all A, B ∈ Mn, it satisfies
the same 4 properties as a vector norm in addition to the following one:

(4) ∥|AB|∥ ≤ ∥|A|∥ ∥|B|∥

The matrix norms that may be used for any matrix in this paper A ∈ Mn are:

∥|A|∥1 = max1≤2≤n

∑n
i=1 |ai,j| (the maximum column sum norm)

∥|A|∥∞ = max1≤i≤n

∑n
j=1 |ai,j|(the maximum row sum norm)

∥|A|∥2 = max∥x∥2=1 ∥Ax∥2 where x is a vector (the spectral matrix norm). It is also
equivalent to the largest singular value of the matrix A.

∥|A|∥F =
√∑n

i=1

∑n
j=1 |ai,j|

2 =
√
Tr(A∗A) where A∗ = AT denotes the conjugate

transpose of the matrix A(the Frobenius norm)

Observation 4.1. The Frobenius norm of a matrix A ∈ Mn is the same as its conjugate
transpose:

∥|A|∥F = ∥|A∗|∥F
Proof. ∥|A∗|∥F =

√
Tr((A∗)∗A∗ =

√
Tr(AA∗) =

√
Tr(A∗A) = ∥|A|∥F ■

The Frobenius norm has some interesting properties, that will be useful in the last chapter
of this paper. To express them, we must first define another notion.

Definition 4.3. A matrix A ∈ Mn is unitary if it satisfies the condition A∗A = AA∗ = In,
as in its conjugate transpose is its own inverse.

Remark 4.2. As it is observable in the definition, the conjugate transpose of a unitary matrix
is also unitary.

Lemma 4.3. The Frobenius norm ∥|·|∥F is unitary invariable. As in, if A ∈ Mn and a
unitary matrix U ∈ Mn, then ∥|AU |∥F = ∥|UA|∥F = ∥|A|∥F .

Proof. Let A ∈ Mn and U ∈ Mn. Therefore

∥|UA|∥F =
√
Tr((UA)∗(UA)) =

√
Tr(A∗U∗UA) = Tr(A∗A) = ∥|A|∥F

and since U∗ is also unitary

∥|AU |∥F = ∥|(U∗A∗)∗|∥F = ∥|U∗A∗|∥F = ∥|A∗|∥F = ∥|A|∥F
■

Definition 4.4. The condition number of matrix norm ∥|·|∥ for a matrix S ∈ Mn, denoted
as κ(S), is defined as

κ(S) =

{
∥|S−1|∥ ∥|S|∥ if S is nonsingular

∞ if S is singular

Observation 4.4. If A ∈ Mn and ∥|·|∥ such that ∥|A|∥ < 1, then In − A is nonsingular.
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Proof. Let A ∈ Mn such that ∥|A|∥ < 1 let us assume that In − A is singular. Then there
exists a vector x such that (In −A)x = 0. Then x−Ax = 0 ⇔ x = Ax. Applying the norm
we get ∥|x|∥ = ∥|Ax|∥ ≤ ∥|A|∥ ∥|x|∥ and since x is a nonzero vector we get that ∥|x|∥ > 0
and therefore 1 ≤ ∥|A|∥, which is a contradiction. ■

5. The Gershgorin Circle theorem

Theorem 5.1 (Gershgoin Circle Theorem). [Ger31] Let A = [ai,j] ∈ Mn and let

Ri(A) =
∑
j ̸=i

|ai,j| , i ∈ {1, 2, . . . , n}

denote the deleted absolute row sums of A, and consider the following n Gershgorin discs
defined as:

{z ∈ C | |z − ai,i| ≤ Ri(A)}, i ∈ {1, 2, . . . , n}
The eigenvalues of A are in the union of Gershgorin discs

G(A) =
n⋃

i=1

{z ∈ C | |z − ai,i| ≤ Ri(A)}.

Proof. Consider the eigenpair (λ, x) such that Ax = λx and x = [xi] ̸= 0. Let p ∈
{1, 2, . . . , n} such that |xp| = ∥x∥∞. Therefore, |xp| ≥ |xi| , for all i ∈ {1, 2, . . . , n}. Equating
the p-th entries of the equation Ax = λx gives us λxp =

∑n
j=1 ap,jxj, which will be written

as:

xp(λ− ap,p) =
∑
j ̸=p

ap,jxj.

Due to the triangle inequality and how we chose p:

|xp| |λ− ap,p| =

∣∣∣∣∣∑
j ̸=p

ap,jxj

∣∣∣∣∣ ≤ ∑
j ̸=p

|ap,jxj| =
∑
j ̸=p

|ap,j| |xj| ≤ |xp|
∑
j ̸=p

|ap,j| = |xp|Rp(A)

Since |xp| ̸= 0, we reach that |λ− ap,p| ≤ Rp(A) and therefore λ ∈ {z ∈ C | |z − ap,p| ≤
Rp(A)} and the larger set G(A). ■

This theorem brings a geometric element to the location of eigenvalues. Each set describes
a disc in the complex plane with center ai,i and radius Ri(A). As such, G(A) can very easily
be visualized.

Corollary 5.2. Let Cj(A) =
∑

j ̸=i |ai,j| denote the absolute deleted column sum of a column
j of the matrix A. Then the eigenvalues of A are in the union of Gershgorin discs

n⋃
j=1

{z ∈ C | |z − aj,j| ≤ Cj(A)} .

Proof. Apply Theorem 5.1 to the matrix AT , where AT denotes the transpose of A. As AT

has the same eigenvalues as A, we reach the conclusion outlined above. ■

Corollary 5.3. [HJ13] If the union of k discs form a set Gk(A) that is disjoint from the
remaining n−k discs, then Gk(A) contains exactly k eigenvalues, counted with their algebraic
multiplicities.
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The proof of this corollary is outside the scope of this paper. Refer to Chapter 6.1, page
388, Theorem 6.1.1 in the cited work for a proof. As the theorems and corollaries discussed
so far have an intrinsic geometric element, they are best understood with the help of visuals.

Example. Using the matrix as in the example in section 3, A =

[
6 −1
1 4

]
. Using Theorem

5.1. we get the following picture. We denote the positions of the eigenvalues with red.

Re(x)

Im(x)

|
4

|
65

For a more complicated example, we could take a look at the matrixB =

 3i 0 −1
i 2− i 1
4 0 1

:

Re(x)

Im(x)

2− i

− 3i

|
1

λ1

λ2

λ3

The eigenvalues of B are a lot “messier” than those of A, and as such do not lie neatly
on the boundaries of the Gershgorin circles. While λ1 may appear so visually, upon closer
inspection we find that λ1 ≈ 0.191543 + 3.96242i which is not on the circle’s bound.
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To exemplify corollary 5.2, let’s take the matrix C =

 i 3 2
3i 2 2
1 1 0

. It gives us a nice image,

where the area shaded with blue represents G(CT ) while the non-shaded circles represent
G(A).

Re(x)

Im(x)

− i

0
|
2

λ1

λ2

λ3

While Theorem 5.1 approximates nicely where the eigenvalues lie, we would still like to
try and do better. One way could be to take the set G(A) and G(AT ) to see which gives us
a better approximation, as we did above, since again, AT and A have the same eigenvalues.
Another pathway is shown to us by the following lemma.

Lemma 5.4. Let A,S ∈ Mn and S nonsingular. Then, S−1AS has the same eigenvalues as
A, where S−1 denotes the inverse of the matrix S.
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Proof. We shall prove this by proving they have the same characteristic polynomial and
using the properties of determinants.

pA(t) = det(tIn − A) = det(In) det(tIn − A) = det(S−1S) det(tIn − A)

= det(S−1) det(tIn − A) det(S) = det(S−1(tIn − A)S)

= det(tS−1S − S−1AS) = det(tIn − S−1AS) = pS−1AS(t)

As the roots of the characteristic polynomial are equivalent to the eigenvalues, and since
pA(t) = pS−1AS(t) we reach that A and S−1AS have the same eigenvalues.

■

Using this lemma, we can choose a S such S−1AS gives us more favorable Gershgorin cir-

cles. In particular, choosing S = D =


p1 0 . . . 0
0 p2 . . . 0
...

...
. . .

...
0 0 . . . pn

 with all pi > 0. The inverse is of

the formD−1 =


1
p1

0 . . . 0

0 1
p2

. . . 0
...

...
. . .

...
0 0 . . . 1

pn

 and we reach thatD−1AD =


a1,1

a1,2p2
p1

. . . a1,npn
p1

a2,1p1
p2

a2,2 . . . a2,npn
p2

...
...

. . .
...

an,1p1
pn

an,2p2
p

. . . an,n

.
To be explicit, any element of this matrix is of the form

ai,jpj
pi

where i represents the row

index and j the column index of the matrix. Applying Gershgorin’s circle theorem to it, we
reach the following result.

Corollary 5.5. Let A = [ai,j] ∈ Mn and let p1, p2, ..., pn ∈ R>0. The eigenvalues of A are
in the union of n discs

n⋃
i=1

{
z ∈ C | |z − ai,i| ≤

1

pi

∑
j ̸=i

pj |ai,j|

}
= G(D−1AD).

Remark 5.6. Corollary 5.2. and 5.3. can also be applied to this matrix. In particular,
applying 5.2. implies the eigenvalues of A lie in the set

n⋃
i=1

{
z ∈ C | |z − ai,i| ≤ pj

∑
j ̸=i

1

pi
|ai,j|

}
= G((D−1AD)T ) = G(DATD−1).

Example. Say we have the matrix A =

[
1 1
4 i

]
. If we were to apply Theorem 5.1. directly,

we would get a rather wide approximation. If we instead apply it using corollary 5.5. taking
p1 = 1 and p2 = 2 we get a more accurate approximation.

Another method for getting tighter approximations for certain matrixes is revealed in the
paper [BS17]. Before we reach the main result, we need to define another notion.

Definition 5.1. Let A = [ai,j] ∈ Mn be a matrix and λ an eigenvalue of A. The dimension
of the eigenspace of A associated with λ is the geometric multiplicity of λ.

In simpler terms, the geometric multiplicity of an eigenvalue λ is the number of linearly
independent vectors x such that Ax = λx.
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Re(x)

Im(x)

|

−

1

i λ1
λ2

(a) Using Theorem 5.1.

Re(x)

Im(x)

|

−

1

i λ1
λ2

(b) Using Corollary 5.5.

Figure 1. The corresponding Gershgorin circles for the matrix A =

[
1 1
4 i

]
Theorem 5.7. [BS17] Let A = [ai,j] ∈ Mn(R≥0) and λ an eigenvalue of A with geometric
multiplicity of at least 2 and let ri(A) denote the absolute deleted row sum of the largest ⌊ n

/2
⌋

terms. Then λ is in a half Gershgorin disc {z ∈ C | |z − ai,i| ≤ ri(A)}, for some i.

The proof for this theorem is outside the scope of this paper and can be found in the cited
work.

Example. Let A =

 3 1 1
1 3 1
1 1 3

. This matrix has the pA(t) = (t − 5)(t − 2)2 so it has the

eigenvalues λ1 = 5 and λ2,3 = 2 with an algebraic multiplicity of 2. The linearly independent
vectors that verify Ax = 2x are v1 = [−1, 0, 1]T and v2 = [−1, 1, 0]T and such 2 has an
geometric multiplicity of 2 and we can apply 5.7.

Definition 5.2. A matrix A = [ai,j] ∈ Mn is diagonally dominant if

|ai,i| ≥
∑
j ̸=i

|ai,j| = Ri(A) for all i ∈ {1, 2, . . . , n}

and strictly diagonally dominant if

|ai,i| >
∑
j ̸=i

|ai,j| = Ri(A) for all i ∈ {1, 2, . . . , n}.

Theorem 5.8. Let a matrix A = [ai,j] ∈ Mn be strictly diagonally dominant. Then A is
nonsingular.
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Re(x)

Im(x)

|
3 λ1λ2,3

Figure 2. The half-circle of the matrix A

Proof. Let us take a matrix A = [ai,j] ∈ Mn that is strictly diagonally dominant and assume
it is singular. That implies λ = 0 is one of its eigenvalues. Using the Gershgorin circle
theorem, we get that for an eigenvalue λ that is in the i-th circle

(1) |λ− ai,i| ≤ Ri(A)

but strict diagonal dominance implies

(2) Ri(A) < |ai,i|

Using (1) and (2) we get

(3) |λ− ai,i| < |ai,i|

As we made no assumption on the nature of λ and i, this applies to any eigenvalue in the
Gershgorin circle where they are located. As such, the same would apply to λ = 0 that is
located in the k-th Gershgorin circle. Applying (3) we reach that |ak,k| < |ak,k|, which is a
contradiction. Therefore, the matrix A is nonsingular.

■

One may wonder if non-strict diagonal dominance is enough to imply nonsingularity.

Unfortunately, the quick counterexample A =

[
1 1
1 1

]
dispels that notion.

Lemma 5.9. Let A = [ai,j], and let z ∈ C be given, then

(a) z is not in the interior of any Gershgorin disc if and only if

(5.9a) |z − ai,i| ≥ Ri(A), for all i ∈ {1, 2, . . . , n}.

(b) z is on the boundary of G(A), then it satisfies the inequality 5.9a.
(c) A is diagonally dominant, if and only if z = 0 satisfies 5.9a.

Proof. (a) z is in the interior of a Gershgorin circle if and only if there exists an i ∈
{1, 2, . . . , n} such that |z − ai,i| < Ri(A). Its direct negation is the conclusion we
want to reach, and as the initial statement is true, so is its direct negation.
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(b) z is on the boundary, then it must satisfy |z − ai,i| = Ri(A), for a k ∈ {1, 2, . . . , n}
number of i′s ∈ {1, 2, . . . , n} and |z − ai,i| > Ri(A), for n − k number of i′s ∈
{1, 2, . . . , n}. As such, it satisfies 5.9a.

(c) Let A be diagonally dominant, and let’s assume z = 0 does not satisfy 5.9a. That
would imply that there is an i such that |ai,i| < Ri(A), which is a contradiction. As
such, if A is diagonally dominant, z = 0 must satisfy 5.9a.

■

Lemma 5.10. Let (λ, x) be an eigenpair of A = [ai,j] and suppose that λ satisfies 5.9a. Then

(a) if p ∈ {1, 2, . . . , n} satisfies |xp| = ∥x∥∞ then |λ− ap,p| = Rp(A). To be clear, this
means that the p-th Gershgorin circle of A passes through λ.

(b) if p, q ∈ {1, 2, . . . , n}, |xp| = ∥x∥∞ and ap,q ̸= 0 then |xq| = ∥x∥∞.

Proof. Take a p ∈ {1, 2 . . . , n} such that |xp| = ∥x∥∞. Then using Theorem 5.1

|λ− ap,p| ∥x∥∞ = |λ− ap,p| |xp| =

∣∣∣∣∣∑
j ̸=p

ap,jxj

∣∣∣∣∣ ≤ ∑
j ̸=p

|ap,j| |xj| ≤
∑
j ̸=p

|ap,j| ∥x∥∞ = Rp(A) ∥x∥∞ .

Therefore |λ− ap,p| ≤ Rp(A), but λ satisfies 5.9a, and we reach that |λ− ap,p| = Rp(A) and
as such, conclusion (a). Revisiting the relation above, we get that

|λ− ap,p| ∥x∥∞ =
∑
j ̸=p

|ap,j| |xj| =
∑
j ̸=p

|ap,j| ∥x∥∞ = Rp(A) ∥x∥∞ .

Particularly, the equality
∑

j ̸=p |ap,j| |xj| =
∑

j ̸=p |ap,j| ∥x∥∞ leads us to∑
j ̸=p

|ap,j| (∥x∥∞ − |xj|) = 0.

As each element of the sum is nonnegative, they must all be 0. ap,q ̸= 0 leads to |xq| = ∥x∥∞
and conclusion (b). ■

Theorem 5.11. Let A ∈ Mn and (λ, x) an eigenpair of A such that λ satisfies 5.9a. If every
entry of A is nonzero, then

(a) Every Gershgorin circle of A passes through λ.
(b) |xi| = ∥x∥∞ for all i ∈ {1, 2, . . . , n}.

Proof. We take p ∈ {1, 2, . . . , n} such that |xp| = ∥x∥∞. Applying lemma 5.10 (b) for each
i ∈ {1, 2 . . . , n} \ {p} we reach conclusion (b). Since |xi| = ∥x∥∞ for all i ∈ {1, 2 . . . , n}, we
can apply lemma 5.10(a) for each i and reach conclusion (a). ■

Example. Say we have the matrix A =

 1 2 1
1 1 2
1 1 2

. The eigenvalues of A are λ1 = 4,

λ2,3 = 0. As such, λ1 satisfies 5.9a. Taking a look at their Gershgorin disks we get the
following image:
As you can see, both Gershgorin circles pass through λ1.

Corollary 5.12. Let A = [aij] ∈ Mn with every entry of A nonzero. If A is diagonally
dominant and there is a k ∈ {1, 2, . . . , n} such that |ak,k| > Rk(A) then A is nonsingular.
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Re(x)

Im(x)

| |
1 2 λ1λ2,3

Proof. Since A is diagonally dominant, that means that z = 0 satisfies the inequalities 5.9a.
Assume 0 was an eigenvalue of A. Our hypothesis ensures that the previous theorem would
apply to it and that every Gershgorin circle would pass through 0. However, |ak,k| > Rk(A)
tells us that the k-th Gershgorin circle does not pass through 0. Therefore, 0 is not an
eigenvalue of and as such the matrix A is nonsingular. ■

Next, we will introduce a notion that might seem strange at first glance.

Definition 5.3. A matrix A ∈ Mn is said to have property SC if for each pair of distinct
integers p, q ∈ {1, 2, . . . , n} there is a sequence of distinct integers k1 = p, k2, . . . , km = q such
that each entry of ak1,k2 , ak2,k3 . . . , akm−1,km is nonzero, where m is the number of integers in
the sequence.

Example. Say we have the matrices A =

 0 4 5
3 0 i
2 −i 1

 and B =

 i −2 4
0 4 6

3i+ 2 0 7

. Since

the definition asks for a sequence of distinct integers, the entries of ak1,k2 , ak2,k3 will not
include diagonal elements of the matrix(this goes for any matrix) and as all the off-diagonal
elements are nonzero, it is clear that A has property SC. On the other hand for p = 1 and
q = 2, the only possible sequence is k1 = 1, k2 = 3, k3 = 2 and the entries bk1,k2 , bk2,k3 are
equal to b1,3, b3,2, which are not all nonzero since b3,2 = 0 and thus B does not have property
SC.

Using the notion of property SC, we can improve the previous theorem and corollary.

Theorem 5.13. Let A = [ai,j] ∈ Mn and (λ, x) an eigenpair such that λ satisfies 5.9a. If A
has property SC, then:

(a) every Gershgorin disc passes through λ.
(b) |xi| = ∥x∥∞ for all i ∈ {1, 2, . . . , n}.
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Proof. Let p ∈ {1, 2, . . . , n} such that |xp| = ∥x∥∞. Applying 5.10(a) gives us that |λ− ap,p| =
Rp(A) so the p-th Gershgorin circle passes through A. Let q ∈ {1, 2, . . . , n} \ {p}. Because
A has SC property, then there is a sequence of distinct integers k1 = p, k2, . . . , km = q such
that each entry ak1,k2 , ak2,k3 , . . . , akm−1,km is nonzero. Since ak1,k2 ̸= 0, applying 5.10(b) tells
us that |xk2| = ∥x∥∞ and applying 5.10(a) again gives us |λ− ak2,k2| = Rk(A). Repeating
this process for ak2,k3 and so forth gives us both conclusion (a) and conclusion (b).

■

Corollary 5.14. Let A = [aij] ∈ Mn and A has property SC. If A is diagonally dominant
and there is a k ∈ {1, 2, . . . , n} such that |ak,k| > Rk(A) then A is nonsingular.

Proof. The proof is the same as that for 5.12, but referring to theorem 5.13 instead of theorem
5.11. ■

Now we will have a series of definitions to help us visualize and more concretely deal with
property SC. If you are familiar with directed graphs, then most of the definitions will
already be known.

Definition 5.4. For any given matrix A = [ai,j] ∈ Mm,n define |A| = [|ai,j|] and M(A) =
[ui,j], in which ui,j = 1 if ai,j ̸= 0 and ui,j = 0 if ai,j = 0. The matrix M(A) is the indicator
matrix of A.

Definition 5.5. The directed graph of A ∈ Mn, denoted by Γ(A) is the directed graph of
n nodes P1, P2, . . . , Pn such that there is a directed arc in Γ(A) from Pi to Pj if and only if
ai,j ̸= 0. We denote the arc from Pi to Pj using the notation (Pi, Pj).

Example. Say we have the matrices

A =

[
0 1
1 1

]
, B =

 0 0 i
0 1 −3
1 3 0

 , C =


0 1 2 0 0
0 0 −1 4i 0
1 0 0 2 0
0 2 0 4 7
−5 0 0 0 0

 .

Then we get the corresponding graphs for each matrix:

P1 P2

Figure 3. Graph corresponding to matrix A

Definition 5.6. A directed path γ is a sequence of arcs (Pi1 , Pi2), (Pi2 , Pi3), . . . in Γ. The
length of a directed path is the number of arcs in it if it is finite, or ∞ if it is not. A cycle
is a path that begins and ends at the same node, this node must appear twice and all other
nodes must appear only once. A cycle of length 1 is a loop.

Definition 5.7. A directed graph Γ is strongly connected if between each pair of distinct
nodes Pi, Pj, there is a directed path that begins in Pi and ends in Pj.

Theorem 5.15. Let A ∈ Mn. Then A has SC property if and only if Γ(A) is strongly
connected.
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P1 P2

P3

Graph corresponding to matrix B

P1 P2 P3

P4 P5

Graph corresponding to matrix C

Proof. If A ∈ Mn has property SC, then property SC tell us that for any p, q ∈ {1, 2, . . . , n}
there is a sequence k1 = p, k2, . . . , km = q such that all elements ak1,k2 , ak2,k3 , . . . ,km−1,km are
nonzero. With the definition of Γ(A), then this is equivalent to there being a path between
all pairs of nodes Pp and Pq, and thus Γ(A) is strongly connected.
A similar rationale can be used to prove that if Γ(A) is strongly connected, then A has
property SC, and as such we reach our conclusion. ■

To see if A ∈ Mn has SC, one may simply look Γ(A). For smaller n’s, you can check by
looking at it. For larger n’s, using computational algorithms is a more viable option.

Theorem 5.16. Let A ∈ Mn and let Pi and Pj to be nodes in Γ(A). The following are
equivalent.

(a) There is a directed path of length m between Pi and Pj.
(b) The i, j entry of |A|m is nonzero.
(c) The i, j entry of M(A)m is nonzero.

Proof. We prove this by induction. For m = 1, it is obvious. For m = 2 we have

(|A|2)i,j =
n∑

k=1

|A|i,k |A|k,j =
n∑

k=1

|ai,k| |ak,j|

. Therefore, |A|2i,j ̸= 0 if and only if there is at least one element of the sum that is nonzero.
But this is equivalent to there being a path of length 2 between Pi and Pj.
Suppose we have proved the assertion for m = q. Then

(|A|q+1)i,j =
n∑

k=1

|A|qi,k |A|k,j =
n∑

k=1

|A|qi,k |ak,j|

. But an element |A|q+1 is nonzero if and only if there is a k ∈ 1, 2, . . . , n such that |A|qi,k ̸= 0

and |a|k,j ̸= 0. But this implies there is a path of length q + 1 between Pi and Pj, and by

induction, we get conclusion (b). Using the same argument for M(A) we conclude (c). ■

Definition 5.8. Let A ∈ Mn. We say that A is nonnegative if every entry ai,j is real and
nonnegative. We say that A is positive if every entry ai,j is real and positive. We denote
them using A ≥ 0 and A > 0 respectively.
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Corollary 5.17. Let A ∈ Mn. Then |A|m > 0 if and only if there is a directed path of length
m from every node Pi to every other node Pj. The same is true for M(A).

Proof. The result is derived easily from theorem 5.16. ■

Corollary 5.18. Let A ∈ Mn. The following are equivalent:

(a) A has property SC.
(b) (In + |A|)n−1 > 0.
(c) (In +M(A))n−1 > 0.

Proof. As In and |A| commute (as in, In |A| = |A| In),we can apply the binomial expansion
to (In − |A|)n−1 = In + (n − 1) |A| +

(
n−1
2

)
|A|2 + · · · + |A|n−1 > 0 if and only if for each

pair i, j at least one of the matrices |A| , . . . , |A|n−1 has a positive entry in position i, j. But
theorem 5.16 ensures this happens if and only if there is a directed path in Γ(A) from Pi to
Pj for all pairs i, j. Thus, Γ(A) is strongly connected. By theorem 5.15, that is equivalent
to A having property SC.
The same argument works for M(A), and thus we reach our conclusion. ■

We shall introduce one more notion that will help us characterize property SC, that being
the notion of irreducibility.

Definition 5.9. A matrix P ∈ Mn is a permutation matrix if in each row and each column,
there is only one entry of 1 and the rest are 0.

There is a correspondence between permutations and permutation matrices. To be general,
for a permutation matrix P = [pi,j] ∈ Mn, pi,j = 1 if and only if j = τ(i), τ ∈ Sn.

Remark 5.19. The transpose of a permutation matrix is also a permutation matrix.

Remark 5.20. Multiplying a matrix A ∈ Mn with a permutation matrix P ∈ Mn only
permutes the rows and columns of the matrix, and does not modify the value of the entries
of A.

Remark 5.21. The transpose of a permutation matrix is its own inverse.

Proof. Suppose we have a permutation matrix P ∈ Mn and its associated permutation
τ ∈ Sn. The inverse of a the permutation τ−1 corresponds to permutation matrix Q =
[qi,j] ∈ Mn such that qi,j = 1 if and only if j = τ−1(i) which is equivalent to τ(i) = j, which
is the transpose of P1. As such, the permutation matrix corresponding to τ−1 is P T and the
conclusion is trivial. ■

Example. Say we have the permutation τ =

(
1 2 3 4
2 4 1 3

)
. Its corresponding permutation

matrix is Pτ =


0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

.
Definition 5.10. A matrix A ∈ Mn is reducible if there is a permutation matrix P ∈ Mn

such that

P TAP =

[
B C

0n−r,r D

]
and 1 ≤ r ≤ n− 1

where B,C,D are blocks of size at least 1× 1 and 0n−r,r is a block of size n− r× r with all
elements 0.
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Definition 5.11. The matrix A ∈ Mn is irreducible if it is not reducible.

Theorem 5.22. Let A ∈ Mn. Then the following are equivalent.

(a) A is irreducible.
(b) (In + |A|)n−1 > 0.
(c) (In +M(A))n−1 > 0.

Proof. To show that (a) and (b) are equivalent, it is enough to prove that A is reducible if
and only if (In+ |A|)n−1 has a zero entry. Let’s suppose that A is reducible and that for some

permutation matrix P we have P TAP =

[
B C

0n−r,r D

]
= Ã, in which B ∈ Mr, D ∈ Mn−r

and 1 ≤ r ≤ n− 1. We notice that P T |A|P =
∣∣P TAP

∣∣ = ∣∣∣Ã∣∣∣ since P does not modify the

value of the entries of A. We further notice that each of the matrices
∣∣∣Ã∣∣∣2 , ∣∣∣Ã∣∣∣3 , . . . , ∣∣∣Ã∣∣∣n−1

has lower left block 0n−r,r. Thus

P T (In + |A|)n−1P = (In + P T |A|P )n−1 = (In +
∣∣∣Ã∣∣∣)n−1

= In + (n− 1)
∣∣∣Ã∣∣∣+ (

n− 1

2

) ∣∣∣Ã∣∣∣2 + · · ·+
∣∣∣Ã∣∣∣n−1

in which each summand has a lower left 0n−r,r block. As such, (In + |A|)n−1 is reducible,
so it has a zero entry. Suppose we take two indices p, q such that p ̸= q and p, q entry of
(In + |A|)n−1 is zero. That implies there is no directed path between from the node Pp to
the node Pq. Denote the set of nodes Pi such that there is a directed path in Γ(A) from
Pi to Pq as S1 and the set of all other nodes as S2, clearly, S1

⋃
S2 = {P1, P2, . . . , Pn}

and Pq ∈ S1 ̸= ∅. Therefore, S2 ̸= {P1, P2, . . . , Pn}. If there were a path from any node
in Pi ∈ S2 to any node in S1, there would be by definition a path between PiandPq. As
such, there are no paths from any node in S2 to any node in S1. Now, relabeling the nodes
such that S1 = {P̃1, . . . , P̃r} and S2 = { ˜Pr+1, . . . , P̃n} and let P be the permutation matrix
corresponding to that relabeling, then:

Ã = P TAP =

[
B C

0n−r,r D

]
, B ∈ Mr, D ∈ Mn−r

and therefore A is irreducible. The same argument works for M(A) and we have reached our
conclusion. ■

All properties and interpretations of property SC can be summed up in one theorem.

Theorem 5.23. Let A ∈ Mn. Then the following are equivalent:

(a) A has property SC.
(b) Γ(A) is strongly connected.
(c) (In + |A|)n−1 > 0.
(d) (In +M(A))n−1 > 0
(e) A is irreducible.

Proof. The result is trivially derived as a consequence of theorem 5.15, corollary 5.18, and
theorem 5.22. ■
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6. Eigenvalue perturbation theorems

Let D = diag(λ1, λ2, . . . , λn) ∈ Mn be a matrix, where diag denotes a matrix with all
off-diagonal elements 0 and the i-th diagonal entry equal to the i-th entry in the sequence.
Let E = [ei,j] ∈ Mn. Looking at the perturbed matrix D + E and applying theorem 5.1 to
it, we get the following result

n⋃
i=1

{z ∈ C | |z − λi − ei,i| ≤ Ri(E)}

which is contained in the set

n⋃
i=1

{
z ∈ C | |z − λi| ≤

n∑
j=1

|ei,j|

}
.

Thus, if λ̂ is an eigenvalue of D + E then there is some eigenvalue λi of D such that∣∣∣λ̂− λi

∣∣∣ ≤ ∥|E|∥∞.

Observation 6.1. Let A ∈ Mn be diagonalizable and suppose that A = SΛS−1, in which
S is nonsingular and Λ is diagonal. Let E ∈ Mn, and consider the perturbed matrix A+E.
If λ̂ is an eigenvalue A+ E, then there is an eigenvalue λ of A such that∣∣∣λ̂− λ

∣∣∣ ≤ ∥|S|∥∞
∥∥∣∣S−1

∣∣∥∥
∞ ∥|E|∥ = κ∞(S) ∥|E|∥∞

in which κ∞ is the condition number with respect to them ∥|·|∥∞

Proof. Since A + E has the same eigenvalues as S−1(A + E)S = S−1(SΛS−1 + E)S =
Λ+ S−1ES and since Λ is diagonal, we can apply the previous argument and we reach that∣∣∣λ̂− λ

∣∣∣ ≤ ∥|S−1ES|∥ and applying property (4) of matrix norms we get our conclusion. ■

While this observation gives us a nice bound for the perturbation of the eigenvalues, we
can generalize our previous observation in the following theorem.

Theorem 6.2 (Bauer–Fike theorem). [BF60] Let A ∈ Mn be a diagonalizable matrix and
suppose that A = SΛS−1, in which S is nonsingular and Λ is diagonal. Let E ∈ Mn and
∥|·|∥ that is induced by an absolute norm on Cn. If λ̂ is an eigenvalue of A+ E, then there
is an eigenvalue λ of A such that∣∣∣λ̂− λ

∣∣∣ ≤ ∥|S|∥
∥∥∣∣S−1

∣∣∥∥ ∥|E|∥ = κ(S) ∥|E|∥

in which κ(·) is the condition number with respect to the matrix norm ∥|·|∥ .

Proof. If λ̂ is an eigenvalue of A + E, then it s also an eigenvalue of S−1(A + E)S =

Λ + S−1ES then λ̂In − Λ − S−1ES is singular. If λ̂ is also an eigenvalue of A, then the
conclusion is obvious. If λ̂ is not an eigenvalue of A, then λ̂In − A is nonsingular. (λ̂In −
A)−1(λ̂In − Λ − S−1ES) = In − (λ̂In − A)−1S−1ES is singular. By observation 4.4, that
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implies
∥∥∥∣∣∣(λ̂In − A)−1S−1ES

∣∣∣∥∥∥ ≥ 1

1 ≤
∥∥∥∣∣∣(λ̂In − A)−1S−1ES

∣∣∣∥∥∥ ≤
∥∥∣∣S−1ES

∣∣∥∥ ∥∥∥∣∣∣(̂λIn − Λ)−1
∣∣∣∥∥∥

=
∥∥∣∣S−1ES

∣∣∥∥ max
1≤i≤n

∣∣∣λ̂− λi

∣∣∣−1

=
∥|S−1ES|∥

min1≤i≤n

∣∣∣λ̂− λi

∣∣∣
and due since λ̂ is not an eigenvalue of A, we can divide by min1≤i≤n

∣∣∣λ̂− λi

∣∣∣ and we get

min
1≤i≤n

∣∣∣λ̂− λi

∣∣∣ ≤ ∥∥∣∣S−1ES
∣∣∥∥ ≤

∥∥∣∣S−1
∣∣∥∥ ∥|S|∥ ∥|E|∥ = κ(S) ∥|E|∥

■

Remark 6.3. All the previous matrix norms we have defined in this paper are induced by an
absolute norm on Cn. What this notion means, more rigorously, is outside the scope of this
paper. If you want to learn more, refer to chapter 5 of [HJ13].

The preceding theorem can also be written as∣∣∣λ̂− λ
∣∣∣

∥|E|∥
≤ κ(S).

Say we compute the eigenvalue λ̂ of the perturbed matrix A + E and we want to use the
above relation to estimate an eigenvalue λ of A. Then we notice that if κ(S) is small,

especially if it’s near 1 or lower, then the changes between λ and λ̂ are relatively small. But
if κ(S) is large, this estimation is likewise broad and therefore poor.
Investigating the perturbation bound of certain kinds of matrices can yield some interesting
results.

Definition 6.1. A matrix A ∈ Mn is normal if AA∗ = A∗A, as in, it commutes with its own
conjugate transpose.

Theorem 6.4. If U is a unitary matrix, then the sum of the squares of the absolute value
of each element of each row and column is 1.

Proof. Let us denote the [ui,j] as the entries of U . From UU∗ = In we get that for any i ̸= j,∑n
k=1 uk,iuk,j = 0 and that for all i = j, the row sum

∑n
k=1 uk,iuk,i =

∑n
k=1 |uk,i|2 = 1.

A similar argument shows us that
∑n

k=1 |uj,k|2 = 1. ■

Theorem 6.5. If A ∈ Mn is a normal matrix if and only if there exists a unitary matrix
U ∈ Mn such that A = UΛU∗ where Λ is a diagonal matrix.

The proof for this theorem is unfortunately outside the scope of this paper. If you want
to learn more, refer to Chapter 2 of [HJ13].

Using the preceding theorem, we get the following corollary.

Corollary 6.6. Let A,E ∈ Mn, and suppose that A is normal. If λ̂ is an eigenvalue of

A+ E then there is an eigenvalue λ of A such that
∣∣∣λ̂− λ

∣∣∣ ≤ ∥|E|∥F .
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Proof. Using the decomposition A = UΛU∗ where U ∈ Mn is unitary and the Frobenius
norm in 6.2 and due to the unitary invariance of the Frobenius norm we get∣∣∣λ̂− λ

∣∣∣ ≤ ∥|U∗EU |∥F = ∥|E|∥F .

■

Theorem 6.7 (Hoffman and Wielandt). [HW53] Let A,E ∈ Mn, such that A and A+E are

both normal. Let λ1, λ2, . . . , λn be the eigenvalues of A in some given order and λ̂1, λ̂2, . . . , λ̂n

be the eigenvalues of A+E in some given order. Then there is a permutation τ(·) ∈ Sn such
that

n∑
i=1

∣∣∣λ̂τ(i) − λi

∣∣∣2 ≤ ∥|E|∥2F .

Proof. Let V,W ∈ Mn be the unitary matrices such that A = V ΛV ∗ and A + E = W Λ̂W ∗

where Λ and Λ̂ are the diagonal matrices containing the eigenvalues of A and A+E respec-
tively and let U = V ∗W = [ui,j]. Then

∥|E|∥2F = ∥|A+ E − A|∥2F =
∥∥∥∣∣∣W Λ̂W ∗ − V ΛV ∗

∣∣∣∥∥∥2

F

=
∥∥∥∣∣∣V ∗W Λ̂− ΛV ∗W

∣∣∣∥∥∥2

F
=

∥∥∥∣∣∣U Λ̂− ΛU
∣∣∣∥∥∥2

F

=
n∑

i,j=1

∣∣∣λ̂i − λj

∣∣∣2 |ui,j|2 .

As U∗ = W ∗V which means that U is also unitary, and as such the sum of the squares of
the absolute values of each element of each row and column is 1. Let S ∈ Mn be a class of
matrices, not necessarily unitary, such that the sum of the squares of the absolute values of
each element of each row and column is 1. Therefore

∥|E|∥2F =
n∑

i,j=1

∣∣∣λ̂i − λj

∣∣∣2 |ui,j|2

≥ min{
n∑

i,j=1

∣∣∣λ̂i − λj

∣∣∣2 si,j : S = [si,j]}.

If we define the function f(S) =
∑n

i,j=1

∣∣∣λ̂i − λj

∣∣∣2 si,j, we can observe that is a linear function

on the set of matrices of class S. Therefore, f attains its minimum for a permutation matrix
P = [pi,j]. If P

T corresponds to the permutation τ ∈ Sn, then

∥|E|∥2F ≥
n∑

i,j=1

∣∣∣λ̂i − λj

∣∣∣2 pi,j = n∑
i=1

∣∣∣λ̂τ(i) − λi

∣∣∣ .
■

For our last theorem, we shall refer back to diagonalizable matrices.

Theorem 6.8. Let A ∈ Mn be a diagonalizable matrix with A = SΛS−1 where Λ is a
diagonal matrix. Let ∥|·|∥ be a matrix norm on Mn that is induced by an absolute vector

norm ∥·∥ on Cn. Let x̂ ∈ Cn be a nonzero vector, let λ̂ and let r = Ax̂− λ̂x̂. Then
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(a) There is an eigenvalue λ of A such that∣∣∣λ̂− λ
∣∣∣ ≤ ∥|S|∥

∥∥∣∣S−1
∣∣∥∥ ∥r∥

∥x̂∥
= κ(S)

∥r∥
∥x̂∥

.

in which κ(·) is the condition number with respect to norm ∥|·|∥.
(b) If A is normal, then there is an eigenvalue of A such that∣∣∣λ̂− λ

∣∣∣ ≤ ∥r∥2
∥x̂∥2

.

Proof. The bound is easily shown if λ̂ is an eigenvalue of A. If λ̂ is not an eigenvalue of A,
then r = Ax̂− λ̂x̂ = S(Λ− λ̂In)S

−1x̂ and x̂ = S(Λ− λ̂In)
−1S−1r. Therefore

∥x̂∥ =
∥∥∥S(Λ− λ̂In)

−1S−1r
∥∥∥ ≤

∥∥∥∣∣∣S(Λ− λ̂In)
−1S−1

∣∣∣∥∥∥ ∥r∥
≤ ∥|S|∥

∥∥∣∣S−1
∣∣∥∥ ∥∥∥∣∣∣(Λ− λ̂− In)

−1
∣∣∣∥∥∥ ∥r∥ = κ(S)

∥∥∥∣∣∣(Λ− λ̂− In)
−1
∣∣∣∥∥∥ ∥r∥

= κ(S) max
λ∈σ(A)

∣∣∣λ− λ̂
∣∣∣−1

∥r∥ .

And as such, we reach that

∥x̂∥ min
λ∈σ(A)

∣∣∣λ− λ̂
∣∣∣ ≤ κ(A) ∥r∥ ⇔ min

λ∈σ(A)

∣∣∣λ− λ̂
∣∣∣ ≤ κ(A)

∥r∥
∥x̂∥

We conclude (b) by using the same method with decomposition A = UΛU∗. ■
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Further reading

For a deeper dive into prerequisite knowledge, [HJ13] is an excellent textbook for the
subject of matrix analysis. For a book more centered on the Gershgorin circle theorem(5.1)
and other similar eigenvalue inclusion sets, I point you towards [Var04].
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