
On the Polynomial Hierarchy, PSPACE, and Descriptive
Complexity

Derek Aoki

June 2024

Abstract

We discuss the complexity class PSPACE, the problems that can be solved by
Turing machines in polynomial space, as well as the classes composing the polynomial
hierarchy, a generalization of P, NP, and coNP. We introduce the basic complexity-
theoretic notions as well as the basic notions of finite model theory and close with
logical characterizations of PSPACE and the polynomial hierarchy.

1 Introduction

The theory of computation in general has been studied since the 1930s, even before the
advent of the electronic computer, begun with the study of what we could ”compute” with
algorithmic systems. The first of these systems to be studied were Church’s lambda cal-
culus and Turing’s Turing machines, both formalizations of the notion of an algorithm or
computer program later shown to be equivalent. The first problems of interest were those
of computability (what the limits of computation are as a whole), and famously this led to
investigation of the halting problem.

However, once actual computers had been developed and had begun to see practical use,
the natural notion of the “difficulty” or “complexity” of problems that were being attacked
arose: what kind of resources do computers need to solve different “problems”? For example,
what is the minimum number of steps required in an algorithm that breaks a given encryption
scheme? How hard is it to verify that two graphs are isomorphic using a computer? How
much memory does a computer need to be able to find the best strategy in a Go position?

This notion of verification specifically gave rise to the class (or collection) NP, the set
of problems we can verify solutions to with a computer “easily” and the class P, the set of
problems we can solve “easily”. The relationship between these two classes can be gener-
alized into an entire hierarchy of classes, each of which contain problems more difficult for
computers to solve, requiring more time and space. Containing this entire hierarchy is the
class PSPACE, the set of problems that can be solved by algorithms that use fairly little
computer memory. This hierarchy, called the “polynomial hierarchy”, and PSPACE have

1

various interesting relationships, and both have been the subject of much study throughout
the history of the field of “computational complexity”.

Finally, because the objects computers deal with are necessarily finite, the computers
themselves being finite, the field of “finite model theory” sees much application to complexity.
Specifically, we see later that the tools of logic and model theory allow us to gain a new
perspective on the capabilities of computers.

2 Complexity Preliminaries

Before we can address such questions as the difficulty of breaking encryption or playing Go,
we need to rigorously define a notion of “computer” to have mathematical frame to work in.
We will begin by introducing our model of computation.

2.1 Turing Machines

Rigorously, a Turing machine (which from here we will abbreviate TM) is defined as follows:

Definition 1 (Turing Machine). A Turing machine is a tuple (Γ, Q, ∂) such that

1. Γ is a set of “symbols”; We assume that Γ contains a “start” symbol △, a “blank”
symbol □, and the numbers 0 and 1

2. Q is a finite set of “states”; We assume Q contains the states qstart and qhalt

3. ∂ is a function from Q × Γk to Q × Γk−1 × {L, S,R}k (where L stands for “left”, S
stands for “stay”, and R stands for “right”)

More intuitively, we can think of a Turing machine as the following:

• A “scratch pad” consisting of k tapes, each of which are sequences of symbols from Γ.
One of the tapes is the “input tape”, another is the ”output tape”, and the rest are
called “work tapes”. The work and output tapes start with all of the elements being
the blank □, and the start tape starts with the start symbol △ at the beginning, a
finite tuple of 0s and 1s, and the rest are blank. Each tape has a “tape head” that
starts at the beginning of the tape. The tape head can move between symbols in the
sequence, check the symbol in the sequence under them, and change the symbol under
them (except for the input head).

• A finite set of “rules” that it follows. At a given time, the machine is in one of the states
in Q. Given this state, it will perform its next computational step, which consists of

1. Reading the symbols under each of the heads

2. Changing the symbol under each of the heads (the new symbol can be the same
as the old symbol, and the input tape head does not change symbols)

2

3. Changing the state of the TM

4. Moving each of the heads one place its tape

Each step is analogous to an application of ∂. ∂ takes in a state (an element of Q) and
the symbols under each of the heads (an element of Γk). It outputs a new state (an
element of Q), what to write under each of the tape heads on each of the work tapes
(an element of Γk−1), and which direction to move each of the heads (an element of
{L, S,R}k, where L stands for left, S stands for stay, and R stands for right).

A diagram of a TM can be seen below:

We say the the finite tuple of 0s and 1s on the input tape is the “input”. If the TM
reaches the state qhalt, there will be a finite initial segment of the output tape that is only
0s and 1s; we will call this initial segment the “output”. If the output is 1 on a given input,
we say the TM “accepts” on that input, and likewise it “rejects” if the output is 0.

A nondeterministic Turing machine (which will from now on be refered to as an NDTM)
is the same as a TM except at each step, the NDTM makes a “choice”. More rigorously,
instead of being a tuple (Γ, Q, ∂), it is a tuple (Γ, Q, ∂1, ∂2). At each step, instead of applying
∂, the NDTM can either apply ∂1 or ∂2. If, on a given input, there is some finite sequence of
applications of ∂1 and ∂2 such that the output is 1, we say that the NDTM accepts on that
input. We say it rejects if it outputs 0 on all paths.

2.2 Problems and Complete Problems

Now that we have formalized the notion of a computer, we must now formalize the notion
of a “problem” that a computer can solve.

3

Definition 2 (Language). The set {0, 1}n is the set of n-tuples of 0s and 1s. We define

{0, 1}∗ as
⋃
n

{0, 1}n. We can see that this is the set of possible inputs to a TM. We define a

language to be a subset of {0, 1}∗.

To be able to use TMs to solve problems, we must encode the problem as a language.
As an example, consider the problem of deciding whether or not there is a clique in a given
graph. We then encode each graph as a binary string and construct a TM that checks each
set of nodes and accepts if it finds a clique. The relevant language is then the set of binary
encodings of the graphs with a certain size clique.

Let M be a TM and L a language. We say M decides L if M accepts on input x if x
is in L and rejects otherwise. We say that a language L is in P if there is a TM M that
decides L and there exists some polynomial p such that M halts in at most p(n) steps for
inputs of length n (also called halting or running in polynomial time). Likewise, we say that
a language L is in NP if there is an NDTM N such that N decides L and there exists some
polynomial p such that M halts in p(n) steps on inputs of length n. Notice the following:

Theorem 1. Let L be a language. L is in NP if and only if there exists some polynomial
p and some TM M that halts in p(n) steps on inputs of length n such that for all binary
strings x ∈ {0, 1}∗,

x ∈ L⇔ there exists u ∈ {0, 1}q(|x|) such that M accepts on input ⟨x, u⟩

where ⟨x, u⟩ refers to some encoding of x and u as a single binary string and |x| refers to
the length of the binary string x.

Proof :
(⇒) Suppose that L is decided by an NDTM N = (Γ, Q, ∂1, ∂2) in polynomial time. Then

there is some polynomial p such that for each x ∈ L, there is some sequence of applications
of ∂1 and ∂2 such that N accepts in p(|x|) steps. We can then construct a TM M that, given
an input x and a binary string u, will “simulate” the running of N (it will apply ∂1 if the
relevant bit in u is 0 and ∂2 if it is 1). This M fulfills our conditions.

(⇐) We can construct the NDTM N ′ that nondeterministically writes down a binary
string of length at most p(n) (∂1 writes down a 1, ∂2 writes down a 0) and then determin-
istically runs M on the string (∂2 will be the same as ∂2 after writing down the string).
■

Definition 3 (Polynomial-Time Reduction). We say that a language L is polynomial-time
Karp reducible to a language L′, denoted L ≤p L

′, if there is some polynomial-time TM M
such that M outputs an element of L′ if and only if the input is an element of L. Define
f : {0, 1}∗ → {0, 1}∗ such that a string x maps to the output of M on input x, denoted
M(x). f is called a polynomial-time reduction from L to L′. More generally,

Definition 4 (NP-Completeness). Consider the set of languages NP and let L ⊆ {0, 1}∗ be
a language. We call L NP-hard if for every language L′ in NP, L′ is reducible to L. We
call L NP-complete if it is NP-hard and is in NP.

4

We will now discuss a central example of an NP-complete problem.

Definition 5 (Boolean Formulae). We define boolean formulae by induction on their struc-
ture:

1. If x1 is a “literal”, then ϕ = x1 is a formula

2. If x1 is a literal, then ϕ = ¬x1 is a formula

3. If ϕ and ϕ′ are formulae, then ψ = ϕ ∧ ϕ′ is a formula

4. If ϕ and ϕ′ are formulae, then ψ = ϕ ∨ ϕ′ is a formula

5. If ϕ is a formula, then ¬ϕ is a formula.

A formulae with literals x1, x2 . . . xn is denoted ϕ(x1, x2 . . . xn). An input to this formula is
a n-tuple of 0s and 1s that can be evaluated in the following way:

1. If ϕ(x1) = x1, then ϕ(u) = 1 if and only if u1 = 1.

2. If ϕ(x1) = ¬x1, then ϕ(u) = 1 if and only if u = 0

3. If ψ(x1, . . . xn, y1, . . . ym) = ϕ(x1, . . . xn)∧ϕ′(y1, . . . ym), then ψ(u1, . . . un+m) = 1 if and
only if ϕ(u1, . . . un) = 1 and ϕ′(um−n, . . . um) = 1.

4. If ψ(x1, . . . xn, y1, . . . ym) = ϕ(x1, . . . xn)∨ϕ′(y1, . . . ym), then ψ(u1, . . . un+m) = 1 if and
only if ϕ(u1, . . . un) = 1 or ϕ′(um−n, . . . um) = 1.

5. If ψ(x) = ¬ϕ(x), then ψ(u) = 1 if and only if ϕ(u) = 0.

We call a formula ϕ(x1, . . . xn) if there exist u1, . . . un such that ϕ(u1, . . . un) = 1.

Theorem 2 (Cook-Levin). Define some binary encoding of boolean formulae. We define a

formula to be a CNF (conjunctive normal form) formula if it is of the form
∧
n

(∨
m

xnm

)
=

(ϕ11 ∨ . . . ϕ1m)∧ . . . (ϕn1 ∨ . . . ϕnm) where each ϕ is of the form xi or ¬xi. We define SAT as
the set of encodings of satisfiable CNF formulae. SAT is NP-complete.

Proof :
Clearly, for each satisfiable CNF formula has an input of polynomial length that satisfies

it and can be verified in polynomial time. Thus, SAT is in NP. We defer the proof of
hardness to Lemma 2.12 in [1].

Lastly, we will define the notation O(f(n)) for convenience later.

Definition 6. Let f, g be functions. We say that g(n) = O(f(n)) if there exists a constant
c > 0 such that g(n) ≤ cf(n) for sufficiently large natural n.

5

3 Traditional Characterizations

We will now introduce the primary complexity classes (collections of languages) of interest
to us here: PH and PSPACE.

3.1 The Polynomial Hierarchy

We will first define the relevant notion of an “oracle”. Intuitively, an oracle or Turing oracle
for a language L can be thought of as a magic box added to a TM or NDTM M that can
tell M whether or not a string x is in L. More rigorously, we have the following:

Definition 7 (Oracle Turing Machine). We define an oracle TM with an oracle for a language
L, denoted ML, as a TM with an extra tape called “oracle tape” and an extra state called
a “query state”. ML can write on its oracle tape as normal, and can at any time enter its
query state. After this, if the binary string written on the query tape is in L, ML will write
1 on the query tape and 0 otherwise. In effect, ML can decide whether or not a string of
length n is in L in O(n) steps.

We will now introduce a relevant complexity class:

Definition 8 (coNP). Let L be a language. Denote by L the complement of L, {0, 1}∗ \L.
We define the complexity class coNP as {L ⊆ {0, 1}∗ : L is in NP}.

A common first thought is that coNP is equal to NP because for every language L in
NP. We can consider the polynomial time NDTM N = (Γ, Q, ∂1, ∂2) that decides L and
then consider the NDTM that runs N and then rejects if N accepts and rejects if N rejects.
It seems like N ′ should decide L, but it does not. This is because, if there is a sequence
of applications of ∂1 and ∂2 that rejects on an input x ∈ L (which there may be, since we
only assume that N will accept for some sequence of choices), then N ′ will accept x on that
sequence of choices. Thus, x will be in the language decided by N ′ and N ′ will not decide L.

We now consider the polynomial hierarchy as a whole, which is a generalization of NP
and coNP.

Definition 9 (The Polynomial Hierarchy). Let Σp
0 = Πp

0 = P. Inductively define Σp
i+1 =

{L ⊆ {0, 1}∗ : there exists an polynomial-time oracle NDTM MA for some language A in

Σp
i that decides L} and Πp

i+1 = {L : L in Σp
i+1}. We define PH =

⋃
i

Σp
i .

Noticing that Σp
1 = NP and Πp

1 = coNP, we trivially have the following diagram of
inclusions:

6

We can now introduce the following theorem, which will later be a useful reformulation
of our previous definition:

Theorem 3. A language L is in Σp
i+1 if and only if there is a polynomial-time TM M and

a polynomial p such that the following holds:

x ∈ L⇔∃u1 ∈ {0, 1}p(|x|)∀u2 ∈ {0, 1}p(|x|) . . . Qiui ∈ {0, 1}p(|x|)

such that M accepts on input ⟨x, u1, u2, . . . ui⟩

where each Qn is an existential quantifier if n is odd and universal otherwise.

Proof :
We will proceed by induction on i. Our base case is more or less Theorem 1.
Assume that the theorem is true for some i. We will now show it is true for i+1. We can

see that L being in Σp
i+1 is equivalent to the existence of a polynomial-time oracle NDTM NA

for some A in Σp
i . By a similar argument to Theorem 1, this is equivalent to the following:

x ∈ L⇔ ∃u ∈ {0, 1}q(|x|) such that MA accepts on input ⟨x, u⟩

where q is a polynomial and MA is a polynomial-time oracle TM. Let f(x, u) be the number
of queries that MA makes on input ⟨x, u⟩. We can see that an oracle for A is also in effect
an oracle for A. Also, because the time to enter a query is linear, the sum of the lengths
of the inputs on the query tape must be polynomially bounded in terms of |x|, and so the
lengths of each input on the query tape must also be polynomially bounded by some t(|x|).
Clearly, t(|x|) · f(x, u) for u of sufficiently bounded size must also be polynomially bounded.

7

Lastly, by the induction hypothesis, there must be some polynomial-time TM K such that
the following holds:

x ∈ L⇔∀u1 ∈ {0, 1}r(|x|)∃u2 ∈ {0, 1}r(|x|) . . . Qiui ∈ {0, 1}r(|x|)

such that K accepts on input ⟨x, u1, . . . ui⟩

We will now construct a polynomial-time TMM that take inputs of the form ⟨x, u1, . . . ui+1⟩
with u1 ∈ {0, 1}q(|x|) and un ∈ {0, 1}t(|x|)f(x,u1) for n > 1. It will run exactly as MA does,
except instead of answering queries immediately, it will simulate the nth query with in-
put y by simulating K on input ⟨y, vn2 , vn3 . . . ⟩, where vmn is the mt(|x|)th digit through the
(m + 1)t(|x|)− 1th digit of un. This construction works analogously in the other direction,
so we have shown the conditions to be equivalent. ■

Theorem 4. For a given i, consider the following statements:

1. Σp
i = Πp

i for i > 0

2. Σp
i = Σp

i+1

3. Σp
i = PH (ie, the polynomial hierarchy collapses to the ith level).

We have 1 ⇒ 2 and 2 ⇔ 3.

Proof :
(1 ⇒ 2) Let i > 0 such that Σp

i = Πp
i . Let L be a language in Σp

i+1. Then there exists
a polynomial-time TM M such that for a binary string x, x ∈ L ⇔ ∃u1 ∈ {0, 1}p(|x|)∀u2 ∈
{0, 1}p(|x|) . . . Qi+1ui ∈ {0, 1}p(|x|) such that M accepts on input ⟨x, u1, . . . ui+1⟩ for some
polynomial p. Thus, the language L′ defined by u1 ∈ L′ ⇔ ∀u2 ∈ {0, 1}p(|x|) . . . Qi+1ui ∈
{0, 1}p(|x|) such that M accepts on input ⟨u1, . . . ui+1⟩. Then L′ is clearly in Πp

i . Thus, there
is some polynomial-time oracle TM ML′

such that x ∈ L⇔ ∃u1 ∈ {0, 1}p(|x|) such that ML′

accepts on input ⟨x, u1⟩. Thus, L is in Πp
i , so Σp

i = Πp
i = Σp

i+1.
(2 ⇒ 3) Clearly every L in PH is an element of some Σp

n for i > n. By the polynomial-
time oracle NDTM definition of the polynomial hierarchy, we clearly have Σp

i = Σp
n for n > i,

so L is in Σp
i .

(3 ⇒ 2) Clearly, Σp
i ⊆ Σp

i+1 ⊆ PH ⊆ Σp
i , so Σp

i = Σp
i+1. ■

Definition 10 (Completeness in the Polynomial Hierarchy). Define PH-, Σp
i -, and Πp

i -
hardness as in Definition 4, via polynomial-time reductions, and define PH-, Σp

i -, Πp
i -

completeness analogously as well.

We have the following results about complete problems in the polynomial hierarchy:

Theorem 5. We define a quantified boolean formula of the form ∃u1∀u2 . . . Qiuiϕ(u1, . . . ui),
with Qi alternating between existential and universal and each un a tuple of literals, to be true
if and only if there exists a tuple (u1, u3 . . .) of 0s and 1s such that for all tuples (u2, u4 . . .),
ϕ(u1, u2, u3 . . .) = 1. Defining an encoding of such a boolean formula into binary, we now
define a language Σp

iSAT of the encodings of formulas of this form that are true. Σp
iSAT is

Σp
i -complete.

8

Proof : We will demonstrate the case in which i = 2, as the argument easily generalizes
by induction. We begin by showing that Σp

2SAT is in Σp
2. We can see that if, given an oracle

for SAT, an NDTM can decide Σp
2SAT in polynomial time, then Σp

2SAT is in Σp
2. We will

now construct the oracle NDTM MSAT. Given a quantified boolean formula of the form
∃u1∀u2ϕ(u1, u2), it will start by nondeterministically writing down a “guess” v1 for the value
of u1 and then use the oracle for SAT to determine whether or not ¬ψ(u2) has a satisfying
assignment where ψ(u2) = ϕ(v1, u2) for all u2. We can then see thatMSAT decides Σp

2SAT in
polynomial time. We now show hardness. Let L be some language in Σp

2. Then there is some
polynomial-time TM M such that for all x, x ∈ L ⇔ ∃u1 ∈ {0, 1}p(|x|)∀u2 ∈ {0, 1}p(|x|) such
that M accepts on input ⟨x, u1, u2⟩. By the hardness of SAT, this is clearly equivalent to
finding tuples u1 and u2 that satisfy some formula ϕ(x, u1, u2). Thus, we have our reduction
and Σp

2SAT is Σp
2-complete. ■

Theorem 6. There exists a PH-complete language if and only if the polynomial hierarchy
collapses to the ith level for some i.

Proof :
(⇒) Assume there exists a language L that is PH-complete. Then there is some Σp

i

such that L ∈ Σp
i . If i = 0 it is clearly true that PH = P because all languages in PH

are polynomial-time reducible to a language that can be decided in polynomial time. If
i > 0, then L must be decidable by a polynomial-time oracle NDTM MA. For each B in
PH, we can then construct the polynomial-time oracle NDTM NA that reduces B to L in
polynomial time and then simulates MA. We can clearly see that B is in Σp

i , so PH ⊆ Σp
i .

Thus, PH = Σp
i .

(⇐) By Theorem 5, there is a complete language Li for Σ
p
i for each i. Thus, if PH = Σp

i ,
Li is complete for PH. ■

3.2 PSPACE

“Space” is the formalization of the notion of a computer’s memory usage. We now introduce
the second of our key complexity classes:

Definition 11 (PSPACE). We define the collection of languages PSPACE as the set of
languages decided by some TM M such that on an input of length N , M uses only the first
p(n) cells of its tape.

First, we will introduce the important relationship:

Theorem 7. PH ⊆ PSPACE.

Proof :
Let L be a language in Σp

i for some i. Then there is some polynomial-time oracle TM
M such that for every x, x ∈ L ⇔ ∃u1 ∈ {0, 1}p(|x|) . . . Qiui ∈ {0, 1}p(|x|) such that M
accepts on input ⟨x, u1 . . . ui⟩. We can thus construct the TM N that on input x iterates
over assignments of u1 through ui and simulates N on input ⟨x, u1 . . . un⟩, tracking only the

9

previous assignment tried. Each simulation ofM will take polynomially many steps, and thus
polynomially many cells, and tracking the previous assignment will also take polynomially
many cells. This works because we can reuse the cells used for checking each time. ■

We will now define the notion of completeness for PSPACE:

Definition 12 (PSPACE-Complete). A language L is defined to be PSPACE-hard if for
every language A in PSPACE, A ≤p L. It is PSPACE-complete if it is PSPACE-hard
and is in PSPACE.

We will now generalize the satisfiable quantified boolean formula language from Theorem
5:

Theorem 8. A quantified boolean formula is a formula of the form Q1x1 . . . Qnxnϕ(x1, . . . xn)
for some boolean formula ϕ and with each Qn a quantifier. We define it to be “true” in the
natural way. An example of a ”true” formula is the formula ∃x1∀x2x1∧x2. Fix an encoding
of all quantified boolean formulae. We define the language TBQF as the set of encodings of
true quantified boolean formulas. TBQF is PSPACE-complete.

Proof :
We first demonstrate that TBQF is in PSPACE. We now define a TM M that, given

as an input an encoding of some formula Q1x1 . . . Qnxnϕ(x1, . . . xn), checks the satisfiability
of ψ(x2, . . . xn) = ϕ(u1, x2, . . . xn) for u = 1 and u = 0. Checking each will take polynomial
space and tracking what has been tried will take polynomial space, so TBQF is in PSPACE.
We defer the proof of hardness again to [1] Theorem 4.11. ■

Corollary 1. If PH = PSPACE, then TBQF is PH-complete, which by Theorem 6 implies
that the polynomial hierarchy collapses.

4 Logic Preliminaries

Complexity theory, as mentioned before, is the study of the resources required for a computer
to solve a problem. We will now present a reframing of traditional complexity-theoretic
notions in terms of finite model theory.

4.1 Structures

We start by defining the basis on which our reframing will be built:

Definition 13 (Vocabularies). A vocabulary τ = ⟨fa11 , . . . f
ar
r , c1, . . . cs, R

r1
1 , . . . R

rt
t ⟩ is a tuple

of function symbols, constant symbols, and relation symbols. Each function symbol fn has
an “arity” an, and each relation symbol Rn has an arity rn.

Standard examples include the vocabulary of groups ⟨·2, 1⟩ where ·2 is the binary oper-
ation and 1 is the identity element, the vocabulary of directed graphs with a “start” node
and “terminal” node ⟨s, t, E2⟩ where s is the start node, t is the terminal node, and E2 is the

10

edge relation, and the vocabulary of a database that stores whether or not a person is male,
paternal relationships, and sibling relationships ⟨M1, P 2, S2⟩ with M1 being the “male” re-
lation, P 2 being the paternal relation, and S2 being the sibling relation. We now define the
notion of a structure on a given vocabulary:

Definition 14 (Structures). We define a structure with vocabulary τ = ⟨fa11 , . . . f
ar
r , c1, . . . cs,

Rr1
1 , . . . R

rt
t ⟩ as a tuple A = ⟨|A|, fA

1 , . . . f
A
r , c

A
1 , . . . c

A
s , R

A
1 , . . . R

A
t ⟩ such that |A| is a set, each

fA
n is a function from |A|an to |A|, each cAn is an element of |A|, and each RA

n is a subset of
|A|rn . |A| is called the universe of A.

Examples of structures are the group Z5 = ⟨{0, 1, 2, 3, 4},+, 0⟩ where + is the standard
addition modulo 5. We also have the graph below:

[insert digraph diagram]
As a final example, consider the relational database from before:

⟨{Alice, Jim,Bob,Rachel}, {(Jim), (Bob)}, {(Alice, Jim), (Alice, Bob)}, {(Jim,Bob), (Bob, Jim)}⟩.
From here, structures will have finite universes and vocabularies will consist of finitely

many relation symbols and constant symbols.
We will now introduce our first “descriptive” notion:

Definition 15 (First-Order Logic). For a vocabulary τ we define the first-order language
L(τ) as the formulas built from the relations and constants of τ ; the logical relation =; the
boolean relations ∧, ∨, and ¬; variables from the set V AR = {x, y, z . . . }; and the quantifier
∃. If two formulae φ and φ′ are equivalent, we write φ ≡ φ′.

We call a variable in a formula “bound” if it is within the scope of a quantifier (∃x) and
“free” if it is not.

Let V be some finite subset of V AR and A a structure. We call a mapping i : V → |A|
an interpretation into A. For convenience, we let i(c) = cA for constant symbols c.

We now define our notion of “truth”:

Definition 16. Let A be a structure and i an interpretation of relevant free variables into
A. We define a formula as true in (A, i) by induction on the structure of formulae:

1. (A, i) |= x1 = x2 ⇔ i(x1) = i(x2)

2. (A, i) |= Rn(x1, . . . xan) ⇔ (i(x1), . . . i(xan)) ∈ RA
n

3. (A, i) |= ¬ϕ⇔ (A, i) |= ϕ is not true

4. (A, i) |= φ ∧ φ′ ⇔ (A, i) |= ϕ and (A, i) |= φ′

5. (A, i) |= φ ∨ φ′ ⇔ (A, i) |= φ or (A, i) |= φ′

6. (A, i) |= ∃xφ⇔ there exists some x ∈ |A| such that (A, i, a/x) |= φ

where (i, a/x)(y) =

{
y if y ̸= x

a if y = x
.

Lastly, we write A |= φ if (A, ∅) |= φ.

11

There are several things to note about this definition. Firstly, it is an “inductive” one in
the same sense as Definition 5, and this inductive construction will be integral to some of
our proofs. Secondly, some might think that the use of = here is circular. However, it does
not denote a binary relation on |A| but instead the naive “standard” equality.

We can now introduce several useful shorthands:

1. (∀x)φ ≡ ¬(∃x)¬φ

2. y ̸= z ≡ ¬(y = z)

3. φ→ φ′ ≡ ¬φ ∧ φ′

4. φ↔ φ′ ≡ φ→ φ′ ∧ φ′ → φ

5. (∃!x)φ ≡ (∃x)φ ∧ (∀y)φ↔ y = x.

Note that, given a lack of parentheses, we are implicitly performing the ¬ operator first, then
∧ and ∨, and finally → and ↔. As an example, the formula ¬R(a) → R(b) ∧ R(c) ↔ R(d)
is equivalent to [(¬R(a)) → R(b)] ∧ [R(c) ↔ R(d)]. A “sentence” is a formula without free
variables, so it must be either “true” or “false” for a given structure.

An example of a first-order formula in the language of graphs is the following:

φundirected ≡ (∀x)(∀y)¬E(x, x) ∧ E(x, y) ↔ E(y, x)

which says that a given graph is undirected. Another is the following inductively defined
formulae:

φdist(1) ≡ x = y ∨ E(x, y)
φdist(n) ≡ (∃z)(φdist(n−1)(x, z) ∧ φdist(n−1)(z, y))

Each φdist(n) says that the distance between two given nodes is n.
For convenience’s sake, we will say that every universe is of the form 0, 1, . . . n for some n.

We will require structures to be ordered (and vocabularies will have the symbol ≤), and they
will implictly have at least two distinct elements, have at least two distinct constants called 0
and 1, have the “successor” relation SUC(x, y) defined by SUC(x, y) ≡ [x < y]∧¬[(∃z)(x ̸=
z)∧ (y ̸= z)∧ (x < z)∧ (z < y)], and have the BIT relation where BIT (i, j) is equivalent to
the jth bit of the binary representation of i being 1. Note that BIT lets us define standard
arithmetic such as addition and multiplication by encoding the standard algorithm in a
first-order formula.

4.2 Queries

Now we will introduce the way in which we will model computation via logic.

12

Definition 17 (Queries). A query I is a mapping from STRUC[σ] to STRUC[τ] for
vocabularies σ, τ that is “polynomiall bounded” (there is some polynomial p such that
||I(A)|| ≤ p(||A||)). A “boolean” query Ib is a mapping from STRUC[σ] to {0, 1} for a
vocabulary σ. It may also be considered as a subset of STRUC[σ] (ie, the subset for which
Ib(A) = 1).

We care about not just queries in general but specific kinds of queries. A central example
is that of first-order boolean queries, which are maps Iφ : STRUC[σ] → {0, 1} with an
associated sentence φ such that Iφ(A) 7→ 1 if and only if A |= φ. We are also concerned
with general first-order queries.

Definition 18 (First-Order Queries). We define a query I : STRUC[σ] → STRUC[τ]
where τ = ⟨c1, . . . cs, Rr1

1 , . . . R
rt⟩ to be a first-order k-ary query if it is “defined” by some

tuple of formulae φ0, . . . φt, ψ1, . . . ψs from L(σ); ie, the universe and relations of I(A) are
defined by the following:

1. The universe is first-order definable: I(A) = {(b1, . . . bk) : A |= φ0(b1, . . . bk)}. We
often take φ0 ≡ true for simplicity.

2. Each R
I(A)
n is first-order definable: R

I(A)
n = {((b11, . . . brnk), . . . (bk, . . . b

rn
k) ∈ |I(A)| : A |=

φn}.

3. Each c
I(A)
n is first-order definable: each c

I(A)
n is the unique (b1, . . . bk) ∈ |I(A)| such

that A |= ψn(b1, . . . bk).

An important vocabulary is that of binary strings, τbin = ⟨S1⟩, because of course TMs are
computing queries I : STRUC[τbin] → STRUC[τbin] and boolean queries Ib : STRUC[τbin] →
{0, 1}. However, as we have seen with our examples of graphs, it is interesting to study
queries and boolean queries with domains that are not the collection of binary strings, such
as the collection of finite graphs or finite relational databases. We will now define the query
binτ : STRUC[σ] → STRUC[τbin], the encoding of structures as binary strings. We can
define this map as follows:

Let A = ⟨|A|, cA1 , . . . cAs , RA
1 , . . . R

A
t ⟩ be in STRUC[τ]. Let n = ||A|| We encode RA

j as
a binary string of length nrj where the relevant bit is 1 if and only if the relevant tuple is
in RA

j . We can analogously encode cAj as a string of length log(n). We define the encoding
binτ (A) as the concatenation of the encodings of the relations followed by the encodings of
the constants. Note that the size of the structure (n) can be recovered from the encoding.
Our “numeric” relations such as ≤, SUC, and BIT can also be easily recovered. The reader
should also note the following result:

Theorem 9. For every vocabulary τ , the encoding query binτ and its inverse are first-order
queries.

Proof :
This is left to the reader. Note that addition, multiplication, and exponentiation are

first-order.

13

Definition 19 (Computing Queries). Let Ib : STRUC[τ] → {0, 1} be a boolean query. We
say that a TMM computes Ib ifM accepts on input x if and only if x = binτ (A) for some A
such that Ib(A) = 1. We say it computes Ib in polynomial time if there is some polynomial
p such that it computes Ib in p(n) steps on inputs of the form binτ (A) such that ||A|| = n.
From here, all previously introduced complexity classes will consist only of their languages
that correspond to queries.

5 Second-Order Logic and PH

We finally come to characterizations of our main complexity classes of interest. We will first
introduce the language that captures the polynomial hierarchy.

5.1 Second-Order Logic

Recall the structure of first-order formulae. Earlier, we only had first-order variables in
formulae, but we now also have a collection of second-order variables, with interpretations
defined in the natural way. We have the following:

Definition 20. Second-order formulae over a vocabulary τ consist of formulae constructed
via the standard operators as well as the additional operator (∃Ra)φ. We define (A, i) |=
(∃Ar)φ⇔there exists some relation R of arity a such that (A, i, R/X) |= φ.

Consider the language of graphs τg. We will now define a formula in second-order logic
that says that a given graph has a clique:

φclique ≡ (∃R1)(R(x) ∧R(y) ∧ x ̸= y) → E(x, y)

Note that in the above example, the relation quantified over had arity one; we in effect
quantified over subsets of the universe. We can also in effect quantify over functions, as seen
below:

φfunction ≡ (∀z)F (x, y) ∧ F (x, z) → y = z

We can now define a formula that says that a given function is injective:

φinj ≡ φfunction ∧ (∀z)F (x, z) ∧ F (y, z) → x = y

Finally, we can define our formula that says that a given graph has a clique of size k:

φclique ≡ (∃F 2)(∀xy)φinj(F) ∧ ((x ̸= y ∧ (F (x, z) → y < k) ∧ (F (y, z) → z < k)) → E(x, y))

Note that any second-order formula is equivalent to a formula with all second-order
quantifiers in the front. If all of those quantifiers are of the form ∃ (ie, are existential), the
formula is an existential second-order formula. Let SO be the collection of boolean queries
Iφ : STRUC[τ] → {0, 1} with associated second-order sentence φ such that I(A) = 1 if
and only if A |= φ, and similarly define SO∃ for existential second-order φ. We have the
following theorem:

14

5.2 Logical Characterizations of PH

Theorem 10 (Fagin). SO∃ = NP (boolean queries that can be described in existential
second-order logic are exactly those that can be computed by polynomial-time NDTMs).

This is fairly shocking. One would not expect a natural “descriptive” (logical) complexity
class to be exactly the same as a complexity class defined via computation. We will begin
the proof with the following result:

Lemma 1. We can compute first-order boolean queries in logarithmic space (ie, for a vocab-
ulary τ and first-order boolean query Ib, there is a TM M such that on an input structure
A ∈ such that ||A|| = n, M uses O(log(n)) cells.)

Proof :
Let Iφ be a boolean query determined by the first-order sentence φ with k quantifiers.

We will proceed by induction on k.
If k = 0, then φ is quantifier-free. φ is then a finite boolean combination of “atomic”

formulae (formulae of the form R(x1, . . . xn), x = y, x ≤ y, SUC(x, y), or BIT (x, y)). It is
fairly easy to see that a TM can compute n and ⌈log(n)⌉ in c log(n) space. Thus, because of
the form of binτ (A), it can find whether or not each atomic formula is true in logarithmic
space. It is then not hard to see that we can compute the truth value of the boolean
combination in logarithmic space.

We will now verify the induction step. Assume that, for every first-order boolean query
Ib defined by a first-order sentence ϕ with k − 1, there is some TM Mϕ that computes Ib
in cphi log(n) cells for some constant cϕ. Let Ib be a boolean query defined by a first-order
sentence ψ of the form ψ ≡ (∀x)ϕ(x) for some first-order sentence ϕ(x) with at most k − 1
quantifiers. Then we define the TM Mψ that runs Mϕ on input ϕ(x) and tracks only the
last value of x tried. This will clearly run in logarithmic space. A similar argument applies
when ψ is of the form ψ ≡ (∃x)ϕ(x). Thus, we have completed the proof. ■

Theorem 11. SO∃ ⊆ NP.

Proof :
Let Ib be a boolean query defined by ϕ ≡ (∃Rr1

1) . . . (∃Rrk
k)φ, an existential second-order

sentence over the vocabulary τ . We wish to build a polynomial-time NDTM that accepts on
input x if and only if x = binτ (A) for some A |= ϕ.

Let A ∈ STRUC[τ] and let n = ||A||. We define an NDTM Mϕ that first nondetermin-

stically writes down a binary string of length
k∑
i

nri as a “guess” for each Ri. We know that

we can check whether or not A |= φ(R1, . . . Rk) in logarithmic space.
We can see that a TM that runs in O(log(n)) space has non-blank symbols on at most

c log(n) cells on each of its k − 1 non-input tapes, can have each of the non-input tape
heads on c log(n) different cells, can have the head on the input tape on n different cells,
and can be in s different states if it halts on every input, it can only ever be in a total of

15

4(k−1)c log(n) · 4(k−1)c logn · n · s “configurations” (the first term is the cells used, the second
and third are head positions, and the last is the state), so it must run in s4(k−1)c log(n) =
s(log(n))2(k−1)c = sn(k−1)c time. We can thus check whether or not A |= φ(R1, . . . Rk) in
polynomial time with a TM and thus in polynomial time with an NDTM. We conclude that
Ib ∈ NP and thus SO∃ ⊆ NP. ■

We now proceed with the proof of Theorem 10, given the inclusion in Theorem 11. We
must show that an NP query is in SO∃. Let N = (Γ, Q, ∂1, ∂2) be a nondeterministic
polynomial-time TM that decides some language L in time nk on inputs of length n. We
wish to construct a sentence of the form ϕ ≡ (∃C2k

1 . . . C2k
g ∆k)φ that says “there exists an

accepting computation C,∆ of N”.
Fix some n. Intuitively, we will construct an nk by nk matrix C of elements of (Q×Γ)∪Γ,

where the element in the sth row and tth column is the symbol γ from Γ in cell s at time t
if the head is not on that cell and (q, γ) where q is the state at time t during an accepting
computation. Let Σ = {σ1, . . . σg} = (Q×Γ)∪Γ be an enumeration of the possible contents
of a cell of the matrix. We wish to define relations C2k

1 , . . . C
2k
g such that Ci(s⃗, t⃗) is true if

and only if cell s contains σi at time t during said accepting computation, where s⃗, t⃗ are
elements of {0, . . . n− 1}k that encode values from 0 to nk− 1. At each step of the accepting
computation, N will apply either ∂1 or ∂2, which we will encode using the relation ∆k, which
is intuitively described as ∆(⃗t) if and only if N applies ∂1 at step t. We now write the
formula φ that says that given relations C1, . . . Cg,∆ code such an accepting computation.
This sentence consists of 4 parts:

φ ≡ α ∧ β ∧ η ∧ ζ.

α will say that column 0 of the computation correctly codes the input, β will say that Ci(s⃗, t⃗
and Cj(s⃗, t⃗) cannot both be true for i ̸= j, η says that column t + 1 is the result of an
application of the function ∂1 or ∂2 corresponding to ∆(⃗t) applied to column t, and ζ says
that the last column of the computation correctly codes N accepting. Construction of β is
fairly trivial, so we have the following:

(ζ) Let σ7 be the element of Σ that corresponds to ⟨qhalt, 1⟩, the “accept” state. We can
define the relation φmax(x1, . . . xk) that says that (x1, . . . xk) is the maximal element of
{0, . . . n − 1}k fairly easily in first-order logic using the ordering relation ≤. Without
loss of generality, we can assume that N moves the output tape head all the way to
the left before it accepts, so we can define ζ ≡ (∃x)φmax(x) ∧ C7(0, x).

(α) Without loss of generality, let σ0 be 0 and let σ1 be 1. We will construct α, which will
be of the form

∧
φj. As an example, suppose τ contains a relation of arity 1 R1

1, the
first relation in the tuple. Then one of the φj will be of the form

φj ≡(⃗t = 0 = s1 = . . . sk−1 ∧ sk ̸= 0 ∧R1(sk) → C1(s⃗, t⃗))∧
(⃗t = 0 = s1 = . . . sk−1 ∧ sk ̸= 0 ∧ ¬R1(sk) → C0(s⃗, t⃗)),

which says that a given cell is 1 if R1 contains sk and 0 otherwise.

16

(η) Let m⃗ax encode the maximum element of the k-tuples under the canonical ordering,
which we have shown is first-order definable, let (a−1, a0, a1, δ) → [N]b mean that the
triple of cell contents a−1, a0, a1 lead to cell b via move δ of N (move 1 is an application
of ∂1, and move 0 is ∂2), let ¬δ be ¬ if δ = 1 and the empty symbol if δ = 0, and define

η1 ≡(∀t⃗)(∀s⃗)(⃗t ̸= m⃗ax) ∧ (⃗0 < s⃗ < m⃗ax)∧ ∧
(a−1,a0,a1,δ)→[N]b

(
¬δ∆(⃗t) ∨ ¬Ca−1(s⃗− 1, t⃗) ∨ ¬Ca0(s⃗, t⃗) ∨ ¬Ca1(s⃗+ 1, t⃗) ∨ Cb(s⃗, t⃗+ 1)

) .

Finally let η ≡ η0 ∧ η1 ∧ η2, where η0 and η2 encode the same information when s⃗ = 0⃗
and m⃗ax respectively.

Recall that the definition of the classes in the polynomial hierarchy are founded on NP.
Because of this, a logical characterization of NP and each Σp

i follows with comparably much
less difficulty:

Theorem 12. A boolean query Ib : STRUC[τ] → {0, 1} is defined by a formula of the form

ϕ ≡ (∃R⃗1)(∀R⃗2) . . . (QiR⃗i)φ for some first-order φ and tuples of relations R⃗j if and only if
the corresponding language {binτ (A) : Ib(A) = 1} is in Σp

i .

Proof :
(⇒) This direction is not particularly difficult. Let R⃗j have length lj and let the mth

relation in R⃗j have arity rj,m. Then we define the polynomial p(n) =
∑
m≤lj

nrj,m . We can see

that strings of length p(n) are “guesses” for each relation quantified in ϕ, and we can also
see that we can verify our “guess” in polynomial space, so it is not difficult to see that on
an input structure A, so by Theorem 3 we can see that the language corresponding to Ib is
in Σp

i .
(⇐) We will proceed by induction on i. Our base case has already been demonstrated in

Fagin’s theorem.
Our induction hypothesis is that for all i ≤ k for some k, the theorem is true for Σp

i .
Let NL be a polynomial-time oracle NDTM that decides a Σk

k+1 query Ib for some language
L ∈ Σp

k corresponding to a query Iφ defined by a sentence φ. Note that an oracle for the
language corresponding to Iφ is the same as an oracle for the language corresponding to

I¬φ, the query defined by ¬φ, which is of the form (∀R⃗2) . . . (QiR⃗i)ϕ for some first-order ϕ.
We can construct a similar formula to the one in Fagin’s theorem to simulate the running
of an oracle NDTM, where β will also incorporate ¬φ for queries, relying on the fact that
the inverse of the binary encoding query is first-order. This sentence will be of the form
Φ ≡ (∃R⃗1)[α ∧ β ∧ η ∧ ζ]. We can see that ¬φ will occur only “positively” (in the scope
of an even number of applications of the ¬ operator), so we can “pull out” the second-

order quantification in ¬φ, yielding a sentence of the form x(∃R⃗1)(∀R⃗2) . . . (QiR⃗i)ψ for some
first-order ψ. Thus, we are done. ■

In this proof, we also saw the natural logical characterization of Πp
i for every i.

We finally come to our characterization of PH itself:

17

Theorem 13. PH = SO

Proof : Let Ib be a query corresponding to a language L in PH. Then L ∈ Σp
i for some

i, so there is some sentence of the form ϕ ≡ (∃R⃗1) . . . (QiR⃗i)φ(R⃗1, . . . R⃗i) where each R⃗n is
that determines Ib. ϕ is clearly second-order so Ib is in SO.

Let Ib be a query defined by a second-order sentence
ϕ = (∃R⃗1, . . . Ri)(∀T1, . . . Tj)φ(R1, . . . Ri, T1, . . . Tj). Without loss of generality, let i ≥ j.
Then we have ϕ ≡ (∃R1)(∀T1) . . . (∀Ti)ψ(R1, . . . Ri, T1, . . . Tj), so Ib is in Σp

i and thus the
corresponding language is in PH. ■

6 Fixed Point Operators and PSPACE

Just as we logically characterized the polynomial hierarchy, we wish to logically characterize
PSPACE. The key to this will be the “transitive closure” operator we add to the grammar
of second-order logic.

6.1 The Transitive Closure Operator

Let R2 be a relation of arity 2 on the set {0, . . . n − 1}. The transitive closure of R,
denoted TC(R), is the set {(a, b) : ∃n, a1, a2, . . . an such that for all i, R(ai, ai + 1)}. The
languages in the class SO(TC) are the languages corresponding to boolean queries deter-
mined by sentences formed with the standard second-order operators along with the operator
[TCX⃗,X⃗′φ](Y⃗ , Y⃗ ′), where X⃗, X⃗ ′, Y⃗ , Y⃗ ′ are each tuples of second-order variables of the same
“type” (of length n for some n and the ith variable in each has arity ri for constants ri)
and φ is some formula. We define interpretations for second-order variables analogously
to those for first-order ones; ie, we have some collection of sufficient second-order variables
SOV = {Xr1

1 , . . . }, each with an associated arity, and an interpretation I is a function
from a subset {Xr1

1 , . . . X
rn
n } ⊂ SOV to (P(|A|))r1 × . . . (P(|A|))rn where P(|A|) denotes

the powerset of the universe of a structure A. This is to say that it takes in second-order
variables of given arities and maps them to relations of those arities. An interpretation of
a tuple of variables is simply an interpretation of the set of variables in the tuple. We have
the following definition:

Definition 21 (Transitive Closure). Let φ(X⃗, X⃗ ′) be a formula with X⃗, X⃗ ′ of the same type,

A a structure, and Y⃗ , Y⃗ ′ tuples of second-order variables of the same type. Define JX⃗ as the

set {J(X⃗) : J is an interpretation of X⃗ on A} = {J(X⃗ ′) : J is an interpretation of X⃗ ′ on A}.
Define BX⃗,X⃗′ as {(R⃗, R⃗′) ∈ X : A |= φ(R⃗, R⃗′)}. Let ψ be a formula of the form ψ(X⃗, X⃗ ′, Y⃗ , Y⃗ ′) ≡
[TCX⃗,X⃗′φ](Y⃗ , Y⃗ ′). For some interpretation I of {X⃗, X⃗ ′, Y⃗ , Y⃗ ′}, we say that A |= ψ if and

only if (I(Y⃗), I(Y⃗ ′)) ∈ TC(BI(X⃗),I(X⃗′)).

Definition 22 (First-Order Reductions). Let I : STRUC[τ] → {0, 1} and I ′ : STRUC[σ] →
{0, 1} be boolean queries. A first-order reduction from I to I ′ is a first-order query Ir such

18

that I ′(Ir(A)) = 1 if and only if I(A) = 1. We define completeness and hardness via first-
order reductions in the natural way (reductions between queries corresponding to languages
in a class).

The reader will note that in general, the classes we are concerned with are all “closed
under first-order reductions” (for example, in NP, if a query I is reducible to an NP query
I ′, then I corresponds to a language in NP). We have the following important lemma:

Lemma 2. Consider the set of languages PSPACE. If there exists a query I that is
complete for PSPACE via first-order reductions that is also in SO(TC), then for every
query I ′ corresponding to a language in PSPACE, I ′ is in SO(TC).

Proof :
Let Iφ be a PSPACE query defined by an SO(TC) sentence φ that is complete for

PSPACE via first-order reductions and let be a TM M that can decide Iφ in q(n) space for
some polynomial q. Consider another PSPACE query Iφ′ defined by some sentence φ′ and
a reduction Ir of arity k from Iφ′ to Iφ defined by the formulae φ0, . . . φt, ψ1, . . . , ψs. Then
we can define

Φ ≡(∃Rkr1
1)(∃Rkr2

2) . . . (∃Rkrt
t)(∃!c1,1 . . . c1,k) . . . (∃!cs,1 . . . cs,k)∧

j≤t

[(∀x1, . . . xkrj)Rj(x1, . . . xkrj) ↔ φ(x1 . . . xkrj)
∧
i≤rj

φ0(xi, . . . xi+k)]

∧

(∧
m≤s

[(∀y1, . . . yk)(y1 = xm1 ∧ . . . yk = xmk
) ↔ ψm(y1, . . . yk) ∧ φ0(y1, . . . yk)]

)
∧ φ.

The boolean query defined by Φ is basically defining Ir(A) and then checking whether or
not Ir(A) |= φ. Because φ is in SO(TC), so is Φ, and we can see that Φ ≡ φ simply by the
construction of our reduction. Thus, Iφ is in SO(TC). ■

We will now introduce the following problem: Fix an n. Define a k-local graph on vertex
set {0, 1}n as a graph such that, for every vertex u, there is some unique “next” vertex v
such that the ith bit of v is determined by bits i− k, i− k+1 . . . i+ k of u. We can see that
we can encode this in a tuple of 22k+1 bits. So that we can encode this “next” relation in
a unary (1-ary) relation, we will force k ≤ ⌊log(n)/2− 1⌋ so that 22k+1 ≤ n. We define the
vocabulary τℓ = ⟨R1, S1, T 1⟩ where on a given structure A of universe size n, RA encodes
the transition relation above, SA encodes the “start” node, and TA encodes the “terminal”
node. We wish to define the query Ireach that says that there is a path from SA to TA in the
k-local graph determined by RA. Let A1 be a second-order variable representing a “current
position” in the graph. Then to move to the next node, for each i ≤ n, check the relevant
⌊log(n)⌋ bits in R to determine the ith bit of the “next” position. Note that ⌊log(n)⌋ is
first-order definable because it is the largest r such that BIT (max, r) holds, where max is
the greatest element in the universe (which we showed earlier is first-order definable). We
define the following formula:

19

α(i, ω, A) ≡ (∃k)(∀j)[(k = ⌊log(n)/2− 1) ∧ (j ≤ ⌊log(n)⌋) ∧ (A(i− k + j) ↔ BIT (ωj))]

which says that the binary representation of ω encodes the relevant bits to determine the
ith bit of A. We can then define the formula below,

δ(A,A′) ≡ (∀i)(∃ω)[α(i, ω, A) ∧ (A′(i) ↔ R(ω))],

which says that A is connected to A′ in the graph defined by R. Finally, we define ϕreach ≡
[TCA,A′δ](S, T) to be the sentence defining Ireach (this is a slight abuse of notation, but single
second-order variables here denote tuples with 1 element).

Theorem 14. SO(TC) = PSPACE

Proof :
For the inclusion PSPACE, because of Lemma 2, it suffices to show that Ireach is com-

plete for PSPACE via first-order reductions. To do this, we will introduce a somewhat
fundamental tool.

Recall that a Turing machine is defined by a “finite set of instructions”. It is not difficult
to see that these can be encoded in a finite binary string. Consider, then the following
problem:

Fix an encoding of Turing machies as binary strings. LetMs be the encoding of a TMM ,
x a string, and rs a binary encoding of a number r. Call the language composed of strings
of the form ⟨Ms, x, rs⟩ such that M accepts on input x in r steps UPSPACE. We claim that
UPSPACE is PSPACE-complete. Inclusion is not difficult to see; we can construct a TM
that simply takes Ms and x and simulates M on x, tracking the number of steps simulated,
and accepting if and only if the simulatedM accepts in r simulated steps, which will in total
take polynomial space. We can then see that given a PSPACE language L decided by a
TM N in p(n) space for a polynomial p, that our reduction from L to UPSPACE is defined
by x 7→ ⟨Ns, x, p(|x|)⟩. It is left to the reader to show that this reduction is first-order.

Because first-order reducibility is trivially transitive, we must now simply show that
UPSPACE is first-order reducible to Ireach. The reader can derive the first-order reduction
themselves or check Proposition 10.27 of [2].

For the inclusion SO(TC) ⊆ PSPACE, we only need to show that we can verify the
formula of the form [TCA,Aδ(S, T)] in polynomial space, which is not difficult to see given
that δ is first-order and thus can be verified in logarithmic space. ■

7 Conclusion

Open complexity-theoretic problems relevant to the material discussed here are of course
whether or not the polynomial hierarchy collapses to any level, whether or not there are any
PSPACE-complete problems, whether or not PSPACE = PH, and whether or not there
are any classes “between” PH and PSPACE (classes strictly contained in/containing one,

20

which would imply that they are unequal). The famous specific example is of course whether
or not the polynomial hierarchy collapses to the 0th level, or in other terms, P = NP.

Of course, the complexity classes discussed in this paper are far from all of those of in-
terest to complexity theorists. Some classes of most interest include the class of languages
that can be decided in logarithmic space by TMs, called L, the class of languages decided
by logarithmic space NDTMs, called NL, the class of languages decided by exponential time
(O(2n) steps) TMs, called EXPTIME, and the class of languages decided by exponential
space TMs (O(2n) tape cells used), called EXPSPACE. We of course have logical charac-
terizations of each of these classes as well as many more. A relevant image is Immerman’s
view of the world of complexity, including each computational and logical characterization
of the classes, seen below:

We do study these logical characterizations of complexity classes as pure mathematics,
but we also do care about what they tell us about complexity-theoretic problems. For
example, given the result that P = FO(LFP), where FO(LFP) is first-order logic with an
added operator similar to transitive closure and related to induction, we have the result that
P = NP if and only if SO∃ = FO(LFP). It seems like this must be false, and this does seem
a promising method of attack on various probems of this type. Another example relevant to

21

us is the general problem of whether or not our logical characterizations of Σp
i and Σp

i+1 are
equivalent, which also seems intuitively false, but of course given that the problems are still
open we have not actually proven this. Finally, a very convenient rephrasing of the problem
of whether or not PSPACE is equal to PH is the question of whether or not second-order
logic gains any extra expressive power over structures with the “numeric” relations from
earlier. While proving these equalities or inequalities would not necessarily demonstrate
that given problems are in or not in specific classes, they do give us results about existence
or nonexistence of, say, “efficient” (polynomial-time) algorithms for NP-complete problems
or noninclusion of PSPACE-complete problems in PH. More on specific logics that capture
complexity classes can be found in the survey [3] or the book [2].

Of course, given that we can reduce many of our complexity-theoretic problems to prob-
lems of finite model theory, we investigate the “expressive power” (what problems can be
expressed in the logics) of the logics that capture complexity classes. An example of this is
the use of Ehrenfeucht-Fraisse games (the uses of which can be seen in [2]), which we can use
to derive results about the expressivity of first-order logic, or the use ofMSO∃ (the fragment
of SO∃ that has only monadic, or arity 1, relation variables) games, which are similar to
EF games except they have an initial ”coloring” stage that naturally better distinguishes
structures. We also have Ajtai-Fagin games, and we can use them to prove “lower bounds”
(lower limits of expressivity) for MSO∃.

There are a great many logical characterizations of PSPACE, which can be found in [4],
[5], and again of course [2]. Some of the most notable include characterizations of PSPACE
with certain “choice” operators, the “partial fixed point” operator, the “least fixed point”
operator, and first-order and second-order logic with various bounds on logical resources
such as quantifier block sizes. For general complexity, [1] is a good first text.

Acknowledgements

The author would like to thank Sawyer Dobson for helpful critiques, Simon Rubinstein-
Salzedo for support; and Paul Aoki and Allison Woodruff for helpful conversations.

References

[1] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cam-
bridge University Press, 2009.

[2] Neil Immerman. Descriptive complexity. In Graduate Texts in Computer Science, 1999.

[3] Neil Immerman. Languages that capture complexity classes. SIAM Journal on Comput-
ing, 16(4):760–778, 1987.

[4] Flavio Ferrarotti, Jan Van den Bussche, and Jonni Virtema. Expressivity within second-
order transitive-closure logic. CoRR, abs/1804.05926, 2018.

22

[5] David Richerby. Logical characterizations of pspace. In Jerzy Marcinkowski and An-
drzej Tarlecki, editors, Computer Science Logic, pages 370–384, Berlin, Heidelberg, 2004.
Springer Berlin Heidelberg.

23

	Introduction
	Complexity Preliminaries
	Turing Machines
	Problems and Complete Problems

	Traditional Characterizations
	The Polynomial Hierarchy
	PSPACE

	Logic Preliminaries
	Structures
	Queries

	Second-Order Logic and PH
	Second-Order Logic
	Logical Characterizations of PH

	Fixed Point Operators and PSPACE
	The Transitive Closure Operator

	Conclusion

