How many ways can we tile a Rectangular Grid with Dominos?

Derek Tang <dertang2011@gmail.com>

Euler Circle

July 14, 2024

Derek Tang How many ways can we tile a Rectangular Grid Muly 14, 2024 1/21

→ イ何 ト イヨ ト イヨ トー

4 **D F**

э

Theorem 0.1

Let G be an $m \times n$ grid. Then, there is a domino tiling if and only if mn is even.

イロト イ押 トイヨ トイヨ トー

э

Definition 0.2

The n^{th} Fibonacci number, $F(n)$, is defined as the sum of the two previous Fibonacci numbers, $F(n-1)$ and $F(n-2)$, where $F(1) = F(2) = 1$.

Theorem 0.3

If we are given a 2 \times n grid, then the number of tilings is the $(n+1)$ th Fibonacci number.

イロト イ押ト イヨト イヨトー

As with all proofs using induction, we have to start with the base case.

K ロ ▶ K 伺 ▶ K ヨ ▶ K ヨ ▶

目

Proof with Induction

$$
\begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}
$$

Figure 1: Our 2×1 grid

Figure 2: Our 2×2 grid

Derek Tang How many ways can we tile a Rectangular Grid Muly 14, 2024 5/21

イロメ イ部 メイミメ イミメー

 299

Proof with Induction

Figure 3: a $2 \times n$ grid with a vertical domino

Ε

$$
\begin{array}{|c|c|c|c|c|}\n \hline\n (1,2) & (2,2) & (3,2) & (4,2) & (5,2) & (6,2) \\
\hline\n (1,1) & (2,1) & (3,1) & (4,1) & (5,1) & (6,1) \\
\hline\n\end{array}
$$

Figure 4: a $2 \times n$ grid with a horizontal domino

$$
\frac{(1,2) (2,2) (3,2) (4,2) (5,2) (6,2)}{(1,1) (2,1) (3,1) (4,1) (5,1) (6,1)}
$$

Figure 5: a $2 \times n$ grid with 2 horizontal dominoes

 \equiv

We now have a recursion with $F(n + 1) = F(n) + F(n - 1)$. As a result, the number of tilings for a $2 \times n$ grid is the $(n + 1)^{th}$ Fibonacci number.

イロト イ押ト イヨト イヨトー

Adjacency Matrices, Perfect Matchings, and Bipartite graphs

If we label each square in a grid as shown below, then we notice a very interesting thing.

Figure 6: Our 2×3 grid with alternating labels

 -111

Adjacency Matrices, Perfect Matchings, and Bipartite Graphs

Figure 7: Our 2×3 grid with alternating labels

$$
\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}.
$$

化重新 人 目

◆ ロ ▶ → 何 ▶ →

Adjacency Matrices, Perfect Matchings, and Bipartite Graphs

Take our matrix from earlier. If we look at our matrix, there is a very easy way to keep track of configurations. If we take a permutation of the white vertices and connect it to the black vertex of its position, then we have an effective way to count the configurations.

(ロトス何) (ヨ) (ヨ)

Definition 0.4

A signing of G is weighting each edge with a 1 or -1. If $\sigma: E(\overline{G}) \rightarrow (-1,1)$, then A^σ , our signed adjacency matrix, is given by assigning each a_{ij} a value. Our new a_{ij} , a_{ij}^{σ} , is given by the following piecewise function:

$$
a_{ij}^{\sigma} = \begin{cases} \sigma & (b_i, w_j) \text{ is an edge} \\ 0 & \text{Otherwise} \end{cases}
$$

イロト イ押 トイヨ トイヨ トー

So we'll first draw our grid and label each square with a black or white vertex. Then, we'll draw a smaller grid around it.

F_3	F_6	F ₉	F_{12}
F ₂	F_{5}	F_8	F_{11}
$\mathsf F_1$	F_4	F_7	F_{10}
F_{0}			

Figure 8: Our 3×4 grid with faces

÷.

Figure 9:

Figure 10:

Figure 11:

イロン イ団 メイ君 メイ君 メー君

 2990

Figure 12:

Figure 13:

K ロ > K 個 > K 差 > K 差 > → 差 → の Q Q →

K ロ > K 個 > K 差 > K 差 > → 差 → の Q Q →

Our matrix is

with a determinant of 90.

◆ ロ ▶ → 何 ▶ →

э