How many ways can we tile a Rectangular Grid with Dominos?

Derek Tang dertang2011@gmail.com

Euler Circle

July 14, 2024

Derek Tang

How many ways can we tile a Rectangular Gr

July 14, 2024

< ロ > < 同 > < 回 > < 回 > < 回 > <

э

Theorem 0.1

Let G be an $m \times n$ grid. Then, there is a domino tiling if and only if mn is even.

イロト イヨト イヨト ・

Definition 0.2

The n^{th} Fibonacci number, F(n), is defined as the sum of the two previous Fibonacci numbers, F(n-1) and F(n-2), where F(1) = F(2) = 1.

Theorem 0.3

If we are given a $2 \times n$ grid, then the number of tilings is the (n + 1)th Fibonacci number.

As with all proofs using induction, we have to start with the base case.

Proof with Induction

Figure 1: Our 2×1 grid

Figure 2: Our 2×2 grid

Derek Tang

How many ways can we tile a Rectangular Gr

▲ □ ▶ ▲ @ ▶ ▲ @ ▶ ▲ @ ▶
Gr July 14, 2024

Proof with Induction

Figure 3: a $2 \times n$ grid with a vertical domino

Figure 4: a $2 \times n$ grid with a horizontal domino

Figure 5: a $2 \times n$ grid with 2 horizontal dominoes

We now have a recursion with F(n+1) = F(n) + F(n-1). As a result, the number of tilings for a $2 \times n$ grid is the $(n+1)^{th}$ Fibonacci number.

Adjacency Matrices, Perfect Matchings, and Bipartite graphs

If we label each square in a grid as shown below, then we notice a very interesting thing.

Figure 6: Our 2×3 grid with alternating labels

Adjacency Matrices, Perfect Matchings, and Bipartite Graphs

Figure 7: Our 2×3 grid with alternating labels

$$\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

.

э

Adjacency Matrices, Perfect Matchings, and Bipartite Graphs

Take our matrix from earlier. If we look at our matrix, there is a very easy way to keep track of configurations. If we take a permutation of the white vertices and connect it to the black vertex of its position, then we have an effective way to count the configurations.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Definition 0.4

A signing of G is weighting each edge with a 1 or -1. If $\sigma: E(G) \to (-1, 1)$, then A^{σ} , our signed adjacency matrix, is given by assigning each a_{ij} a value. Our new a_{ij} , a_{ij}^{σ} , is given by the following piecewise function:

$$a_{ij}^{\sigma} = egin{cases} \sigma & (b_i, w_j) ext{ is an edge} \ 0 & ext{Otherwise} \end{cases}$$

- ロ ト ・ 同 ト ・ 三 ト ・ 三 ト - -

So we'll first draw our grid and label each square with a black or white vertex. Then, we'll draw a smaller grid around it.

F ₃	F ₆	F9	F ₁₂	
F_2	F_5	F ₈	F ₁₁	
F_1	F ₄	F ₇	F ₁₀	
F_0				

Figure 8: Our 3×4 grid with faces

э

F ₃	F ₆	F9	<i>F</i> ₁₂	
F ₂	F_5	F ₈	F_{11}	
F_1	F ₄	<i>F</i> ₇	F ₁₀	
F ₀				

Figure 9:

 0.8		_	-	-	
 eı	eĸ	_	- d		μ
					-

How many ways can we tile a Rectangular Gr

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶
Gr July 14, 2024

F ₃	F_6	F ₉	F ₁₂	
F_2	F_5	F ₈	F_{11}	
F_1	F ₄	<i>F</i> ₇	F ₁₀	
F ₀				

Figure 10:

		_	
 OKC	S. 1.2		10.0
 ен	* N	_ I d	IIP

How many ways can we tile a Rectangular Gr

▲ □ ▶ ▲ @ ▶ ▲ @ ▶ ▲ @ ▶
Gr July 14, 2024

F ₃	F_6	F ₉	F ₁₂	
F_2	F_5	F ₈	F_{11}	
F_1	F ₄	<i>F</i> ₇	F ₁₀	
F ₀				

Figure 11:

		_	
 OKC	S. 1.2		10.0
 ен	* N	_ I d	IIP

How many ways can we tile a Rectangular Gr

▲ □ ▶ ▲ @ ▶ ▲ @ ▶ ▲ @ ▶
Gr July 14, 2024

F ₃	F_6	F ₉	F ₁₂	
F_2	F_5	F ₈	F_{11}	
F_1	F ₄	<i>F</i> ₇	F ₁₀	
F ₀				

Figure 12:

		_	
 OKC	S. 1.2		10.0
 ен	* N	_ I d	IIP

How many ways can we tile a Rectangular Gr

< □ > < 圕 > < 클 > < 클 >
Gr July 14, 2024

F ₃	F ₆	F ₉	F ₁₂		
F ₂	F_5	F ₈	<i>F</i> ₁₁		
F_1	F ₄	F ₇	F ₁₀		
F ₀					

Figure 13:

	0 10	1.		12.07
_	еге	. .	1.4	ПР

How many ways can we tile a Rectangular Gr

▲ □ ▶ ▲ @ ▶ ▲ @ ▶ ▲ @ ▶
Gr July 14, 2024

F ₃	F ₆	F ₉	<i>F</i> ₁₂		
F_2	F_5	F ₈	F ₁₁		
F_1	F ₄	F ₇	F ₁₀		
F ₀					

July 14, 2024

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

F ₃	F ₆	F ₉	<i>F</i> ₁₂
F_2	F_5	F ₈	F ₁₁
F_1	F ₄	F ₇	F ₁₀
F ₀			

July 14, 2024

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

Our matrix is

with a determinant of 90.

A B A B A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
A
A
A
A

3. 3