
HOW MANY WAYS ARE THERE TO TILE A REGULAR

RECTANGULAR GRID WITH DOMINOES?

DEREK TANG

Abstract. In this paper, we will first see if a tiling exists. Then, we
will attempt to calculate the number of tilings with recursions. After
that, we will use linear algebra. Our main theorem will be to change
the matrix of the permanent such the determinant of the new matrix is
the same as the permanent. Finally, we will apply the theorem in a way
such that we can calculate the number of tilings in polynomial-time.

1. Introduction

To get the number of domino tilings, what you’ll do is remove certain edges
from the grid. Then, you’ll put them back in but assign them weights of 1 or
-1. After that, we create an adjacency matrix while taking into account our
weights. Finally, we take the determinant of our matrix to get the number
of tilings. But before we get to the result, we will start by determining
whether a configuration exists. We will then check if a recursion for a 2× n
grid exists. Once we see how easy it is, we look at larger examples. However,
we soon find that the larger our dimensions, the harder it becomes. We will
then create an adjacency matrix. After that, we will find that the number of
tilings is just the permanent of our adjacency matrix. However, we find that
permanents cannot be solved in polynomial-time so we introduce Kasteleyn
signings. Kasteleyn signings allow us to change some of the 1’s to -1’s so
that our determinant of the new matrix is the same as the permanent of our
original matrix. We will use our lemmas with Euler’s polyhedron formula,
V + F = E + 2, to efficiently create a Kasteleyn signing. Our pattern will
have us remove certain edges and then put them back in with their weights.
Finally, we take the determinant of our new adjacency matrix.

2. Preliminaries

Definition 2.1. A domino is a a rectangle formed by two adjacent squares.

Definition 2.2. A domino tiling is a combination of disjoint dominoes such
that the whole grid is covered by dominoes and there are no dominoes stick-
ing out of the grid.

Definition 2.3. A bipartite graph is a graph whose vertices can be sepa-
rated into two parts, so that each edge only goes between both parts.
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Definition 2.4. A perfect matching in a graph is a selection of edges that
covers each vertex exactly once.

Definition 2.5. A cycle in G is a sequence of adjacent vertices and edges
that return to the same vertex.

Definition 2.6. A cycle, C, is evenly-placed if G has a perfect matching
excluding all the edges and vertices of C.

Definition 2.7. A signing of G is weighting each edge with a 1 or -1.
If σ : E(G) → (−1, 1), then Aσ, our signed adjacency matrix, is given
by assigning each aij a value. Our new aij , a

σ
ij , is given by the following

piecewise function:

aσij =

{
σ (bi, wj) is an edge

0 Otherwise

Definition 2.8. Given σ on G, a cycle, C, is properly-signed if its length
matches the weight of the edges appropriately: If |C|, the length of the
cycle, equals 2l, then the number of negative edges on C, nC , will have the
opposite parity of l, i.e. nC ≡ l − 1 (mod 2)

Definition 2.9. The permanent of a square matrix, denoted as per(A), is
expressed as ∑

π∈SN

a1,π(1)...aN,π(N).

Definition 2.10. The determinant of a square matrix, denoted as det(A),
is defined by ∑

π∈SN

sgn(π)a1,π(1)...aN,π(N),

where sgn(π) is defined by how many transpositions take place.

Definition 2.11. A Kasteleyn signing is a signing of G, such that

per(A) = |det(Aσ)|.

3. Does a tiling exist?

Before we check how many ways there are to tile an m×n grid, where m
and n are integers, we must check if a configuration exists.

Theorem 3.1. Let G be an m × n grid. Then, there is a domino tiling if
and only if mn is even.

Proof. Given a domino tiling, we know each domino occupies 2 squares. If
we assume that N dominoes were used, then 2N squares were used. In other
words, 2N = mn. Thus, if mn is even, that implies m or n is even. Without
loss of generality, let m be even and written as m = 2k where k ∈ N. We
can form a domino tiling with dominoes that are upright as shown below.

We know that each column will fit exactly k dominoes since each dominoes
takes up two rows and we have exactly 2k rows in a column. ■
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(1,1)

(1,2)

(1,3)

(1,4)

(2,1)

(2,2)

(2,3)

(2,4)

(3,1)

(3,2)

(3,3)

(3,4)

Figure 1. a 4× 3 grid

Thus, if our area of the grid is even, we have at least one possible domino
tiling.

4. A simpler example of an m× n grid

Before we look at larger examples of m × n grids, we will first look at
examples where m is 2.

Definition 4.1. The nth Fibonacci number, F (n), is defined as the sum of
the two previous Fibonacci numbers, F (n− 1) and F (n− 2), where F (1) =
F (2) = 1.

Theorem 4.2. If we are given a 2 × n grid, then the number of tilings is
the (n+ 1)th Fibonacci number.

Proof. Using induction, we start with the base case. We first start with the
number of configurations for n = 1 & 2. We find that there is 1 configuration
for a 2× 1 grid and 2 configurations for a 2× 2 grid, which are the 2nd and
3rd Fibonacci numbers, respectively. We define a function, F (n + 1), that
gives us the number of configurations for the 2×n grid. Then, we have two
possibilities: either the first domino is laid upright or horizontally. Let us
explore the former.

(1,1)

(1,2)

(2,1)

(2,2)

(3,1)

(3,2)

(4,1)

(4,2)

(5,1)

(5,2)

(6,1)

(6,2)

Figure 2. a 2× n grid with a vertical domino

If we lay the domino upright, we get a recursion for a 2× (n− 1) grid.
If we lay down the domino horizontally, we get a different recursion.
No matter what, we will have to place a domino from (1, 2) to (2, 2), as

shown in figure 4 since there is no other way to reach (1, 2).
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(1,1)

(1,2)

(2,1)

(2,2)

(3,1)

(3,2)

(4,1)

(4,2)

(5,1)

(5,2)

(6,1)

(6,2)

Figure 3. a 2× n grid with a horizontal domino

(1,1)

(1,2)

(2,1)

(2,2)

(3,1)

(3,2)

(4,1)

(4,2)

(5,1)

(5,2)

(6,1)

(6,2)

Figure 4. a 2× n grid with 2 horizontal dominoes

Thus, we now get a recursion for a 2× (n− 2) grid, or F (n− 1). In other
words, we find that F (n+1) = F (n)+F (n−1). Thus, the number of tilings
for a 2× n grid is F (n+ 1), the (n+ 1)th Fibonacci number. ■

Now we look at larger examples. Can we do something similar to the 2×n
grid? We could, but it would just get really complicated. For example, even
with a small 3 × 4 grid, it is incredibly difficult. Do we fill the first row
with horizontal dominoes to get a 2 × 4 grid? What about a 2 × 3 grid?
How many ways can we form the 2 × 3 grid? Even with such a small grid,
counting with recursion is incredibly difficult. Thus, we look for an easier
way.

5. Perfect Matchings, Bipartite Graphs, and Adjacency
Matrices

If we put a vertex in the middle of each square, such that we alternate
between black and white labels like a chessboard, as shown below, we find
that each domino is in fact, an edge between a black and white vertex.

B1 W1 B2

W2B3W3

Figure 5. Our 2× 3 grid with alternating labels

We can easily realize that a configuration is just a perfect matching be-
tween the black and white vertices.
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Now, we create an adjacency matrix, A, such that it tells us which points
are connected. As a reminder, the element in the ith row and jth row, aij ,
is a 1 if Bi and Wj are an edge and a 0 if they are not. In other words, if
Bi and Wj is an element of E(G), the set of all edges in G, then aij = 1.
For example, with our 2× 3 grid, B1 is connected to W1 and W3 so our first
row would be:

1 0 1.

Similarly, our second row would be

1 1 0.

Finally, our whole matrix would be1 0 1
1 1 0
1 1 1

 .

Our adjacency matrix would be an N ×N matrix since we have N black
vertices and N white vertices. The purpose of the adjacency matrix is that
we can tell if a configuration exists by checking certain aij ’s. For example,
from our 2 × 3 grid or 3 × 3 matrix, we can see that if we check the posi-
tions, a11, a22, and a33, we get a configuration. We find that all tilings are
just a permutation of N. We are just taking the permutation of the white
vertices and mapping it to the black vertices of its position. For example,
the permutation,

3 1 2,

is mapping B1 to W3, B2 to W1, and B3 to W2.
This permutation, is in fact, a tiling since a13, a21, and a32 all give a 1.

Unfortunately, not all permutations give us a configuration. For example,
the permutation,

2 3 1,

is a configuration that simply doesn’t exist. This is because we cannot
connect B1 to W2 and B2 to W3 with a normal domino. Thus, if we create
a permutation of the white vertices, π, such that we get a 1 from a(i,π(i)) for
all i, then we have just created a configuration.

Now, we aim to find a way to count these configurations. We notice that
if we multiply each a(i,π(i)) for all i, then we get a 1 or a 0 . If we get a 1,
then that means our perfect matching does, in fact, exist when we actually
lay the dominoes. However, if we get a 0, that works out perfectly since
that means this permutation will not contribute to our total sum.

Thus, our total number of tilings, T (m,n), equals∑
π∈SN

a1,π(1)...aN,π(N)
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If you have studied linear algebra before, you might notice a very similar
resemblance. This formula is exactly the same as the permanent of a matrix,
denoted as per(A). So, we can find the number of configurations by writing
out the adjacency matrix and then calculating the permanent. However, we
face a very annoying problem.

6. NP and #P problems

Definition 6.1. An answer is calculated in polynomial-time if the running
time of the algorithm is proportional to the input size, i.e. a larger grid will
take a proportionally larger amount of time to solve.

Definition 6.2. NP problems are decision problems. In other words, they
are problems whose answers can be evaluated in polynomial-time.

Definition 6.3. #P problems are the counting versions of NP problems.

Definition 6.4. Problems are #P-Complete if they are in #P and all other
problems in #P can be reduced to it in polynomial-time.

The problem with calculating per(A) is that permanents are hard to cal-
culate. They can’t be calculated in polynomial-time. Sure, we can calculate
it, but it just takes so much time! We look for a way to express per(A) in a
better way that can be calculated in polynomial-time.

Definition 6.5. The sign function, denoted as sgn(x), gives an output of
±1 depending on the parity of x.

As a reminder, the determinant of a square matrix, det(A), is defined by∑
π∈SN

sgn(π)a1,π(1)...aN,π(N),

where sgn(π) is defined by how many transpositions take place. Of course,
it is hard to account for the alternating sign, but there is a very valuable
property of determinants: they can be calculated in polynomial-time.

Thus, our goal is to now create a matrix, A′, such that

per(A) = |det(A′)|,

where det(A) denotes the determinant. We can do so by weighing each edge
in a certain way.

7. Kasteleyn Signings

Thus, we want to create a Kasteleyn signing. Let us try and make a
Kasteleyn signing of a 2× 3 grid.

Given the grid below, we have the matrix,1 0 1
1 1 0
1 1 1

 .
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B1 W1 B2

W2B3W3

Now, we want to change some of the 1’s to a -1 such that the determinant
of our signing is 3. The current determinant is 1+0+0=1. If we change our
matrix to the following, 1 0 −1

1 −1 0
1 1 1


we get that

|det(Aσ)| = 3.

Let us try another example with a 4× 3 grid.

B1 W1 B2

W2B3W3

B4 W4 B5

W5B6W6

Our adjacency matrix is
1 0 1 0 0 0
1 1 0 0 0 0
1 1 1 1 0 0
0 0 1 1 0 1
0 1 0 1 1 0
0 0 0 1 1 1

 .
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We find that the permanent is 11. The following matrix has a determinant
of 11. 

1 0 1 0 0 0
1 1 0 0 0 0
−1 1 1 −1 0 0
0 0 1 1 0 1
0 1 0 1 1 0
0 0 0 −1 1 1

 .

The method that will be derived allows us to quickly change the matrix.
OK, so now we’ve seen that a Kasteleyn signing exists for a normal rectan-
gular grid. However, a matrix with all 1’s, as shown below, does not have a
Kasteleyn signing. 1 1 1

1 1 1
1 1 1


Note that a normal rectangular grid cannot have such an adjacency matrix.
Each vertex would have to have 3 possible edges, but this is simply not
possible! For this matrix, per(A) = 6. Now we aim to prove that it is not
possible to get a σ such that |det(Aσ)| = 6.

Proof. Without loss of generality, assume that det(Aσ) = 6, and that a1,1=1.
If we change the sign of det(Aσ) or a1,1 then we can follow very similar steps.
Okay, so now, we have

det(Aσ) = a1,1a2,2a3,3+a1,2a2,3a3,1+a1,3a2,1a3,2−a1,1a2,3a3,2−a1,2a2,1a3,3−a1,3a2,2a3,1

. Thus, we know that a2,2 and a3,3 are either both 1 or -1. Now, if they
were both 1, then we know that a2,3, a3,2 have different signs. Similarly,
a1,2, a2,1 and a1,3, a3,1 have opposite signs. Thus, we would have 3 -1’s, and
6 1’s. However, this gives us a problem. Since there are an odd amount of
-1’s, we will get a -1 within our sum. Thus, det(Aσ) ̸= 6. Now, we check the
case where they are both -1. We know that a2,3 and a3,2 still have opposite
signs. However, a1,2, a2,1 and a1,3, a3,1 now have same signs. Once again,
we have an odd amount of -1’s so det(Aσ) ̸= 6. ■

So, we have seen examples of Kasteleyn signings. But how do we find
Kasteleyn signings in polynomial-time?

8. The Main Theorem

Theorem 8.1. All rectangular grids have a Kasteleyn signing, and there is
an efficient way to find one.

To do this, we will use many definitions from the preliminary. We know
that our grids are planar, because all edges stay parallel or perpendicular
to each other so they only intersect at the vertices in the middle of each
square. We know that almost all rectangular grids are 2-connected, since we
can just go around the “hole.” Note that the only exceptions are 1×n grids
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since we cannot go outside of the grid. Now, we aim to find a condition for
a Kasteleyn signing to exist.

8.1. First Lemma.

Lemma 8.2. If every evenly-placed cycle in G is properly-signed, then σ is
a Kasteleyn signing.

In other words, if we give each edge a weight, ±1, and if every evenly-
placed cycle we find is properly-signed, then we know that σ is a Kasteleyn
signing.

Before we start the proof, we need to define the sign of a perfect matching,
M, as

sgn(M) = sgn(π)aσ1,π(1)...a
σ
N,π(N) = sgn(π)

∏
e∈M

σ(e).

Proof. If σ is a Kasteleyn signing, then we know that the sign of all perfect
matchings must be the same. This is because, a perfect matching is supposed
to contribute to our total amount of configurations, i.e. det(Aσ). Now, we
aim to show that for any perfect matchings, M , and M ′, then sgn(M) =
sgn(M ′).

If M and M ′ share the same sign, then sgn(M)sgn(M ′) = 1. We already
know that

sgn(π)sgn(π′)
∏
e∈M

σ(e)
∏
e∈M ′

σ(e) = sgn(π)sgn(π′)
∏

e∈M△M ′

.

The triangle, or the symmetric difference, is the union of two sets, excluding
their common elements, i.e the edges being shared. We can do this since if
an edge is in both sets, then the product is 1. We can simplify our equation
more by letting

∏
e∈M△M ′ be represented by (−1)L since the sign will be 1

or -1. We just have to find a formula. If we have a cycle, C, we need to
show that it is evenly-placed to prove that the lemma holds.

We now know that each vertex will be a part of an edge from M , and
another from M ′. Thus, if take a vertex from M , u, and find the neighbor
of u, v, then we have an edge. There’s nothing special yet. However, if we
take the neighbor of v, w, then we have two edges. Now, the special thing
is that if we repeat this over and over, until we get back to u, we have just
created a cycle.

However, what happens if u is the same point as w? Well, that’s an easy
fix. After all, it just contributes a 1 which allows us to remove the common
edge.

So then, let’s get back to our example of cycles. We now have 0 or more
cycles of various lengths. Okay, so as shown in figures 7 and 6, we have M
and M ′.

If we overlay, them, we get the figure 8, where the common edges are
colored in green.

If we remove them, our final figure is figure 9.
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Figure 6. The perfect matching, M

Figure 7. The perfect matching, M ′

Figure 8

Figure 9. The perfect matching, M△M ′

If we select the left cycle as C, then we find that everything outside of C
is a perfect matching. We don’t care about whether the common edges stay
or are removed. We would just follow the exact same matching. Now we
have the right cycle, and we could choose what remains of M or M ′ to be
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the matching for the remaining vertices. Thus, all cycles are evenly-placed,
and as a result of our assumption, properly-signed.

We have just seen that M△M ′ can have as many or as little cycles as
possible. Let there be k cycles. Then, if they are all properly signed, for all
i ∈ k, we know |Ci| = 2li and nCi ≡ li − 1 (mod 2). Thus, for a cycle, Ci, it
contributes a factor of (−1)nCi since we only care about the negative edges.

Thus,
∏

e∈Ci
σ(e) = (−1)(l1−1)+...+(lk−1). Now, we need to show that

sgn(π) = sgn(π′) · (−1)(l1−1)+...+(lk−1).

We can do so by claiming that π and π′ differ by L transpositions. To do so,
we look at a cycle, li, and show that it takes li−1 transpositions to change π
to π′. To do so, at step t, we will find a j and k such that π(j) = π′(k) = t.
Then, we will swap j and k in π. For example, take the right cycle from
figure 10. We find that our permutation for π is (1,2,3) and the permutation
for π′ is (2,3,1). Theoretically, it should take 2 steps to get π to π′.

We start step 1. We find that π(1) = π′(3) = 1. We switch positions 1
and 3 in π. The permutation for π is now (3,2,1).

Now we start step 2. We find that π(2) = π′(1) = 2. Thus, we switch
positions 1 and 2 in π to get a permutation of (2,3,1).

This will always work. For the all the steps except the last one, we find
that we correct exactly one position. With step t, we have corrected at least
1 position. If we have π(j) = π′(k) = t and then swap j and k in π, then we
now have π(k) = π′(k) = t. Note that we cannot undo this correction since
it would require us to go back to the tth step.

However, what happens if we somehow make two corrections at once?
That would mean that π(j) = π′(k) = t and π(k) = π′(j). This will
never work since that would mean that there is another independent cycle.
However, we have one exception. Every time we take a step, excluding the
last one, we are making the length of the cycle shorter by 2. At the last step,
we have a cycle with length 4, and as a result, we fix two positions at once.
Thus, for a cycle, Ci, we know that it will take exactly li − 2 + 1 = li − 1
steps. Thus,

sgn(π) = sgn(π′) · (−1)(l1−1)+...+(lk−1).

As a result, sgn(M)sgn(M ′) = 1 and our lemma has been proven. ■

Now, we aim to derive a method to easily find a Kasteleyn signing.

8.2. Second Lemma. We will start by first graphing a 2 × 3 grid with
faces.

We start by numbering each square with a face, as shown in figure 10.
Technically, you could have a face that includes more squares, but for the
purposes of this theorem, we will include exactly one square. The purpose
of these faces is so that we can use Euler’s formula, our lemma, and many
of our definitions.
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F1

F2

F3

F4

F5

F6

F0

Figure 10. Our 2× 3 grid with faces

Definition 8.3. Euler’s polyhedron formula is V +F = E +2 where V , F ,
and E are the number of vertices, faces, and edges, respectively.

A cycle will encompass one or more faces. If it encompasses more than
one, then there should be some cycles within our chosen cycle, i.e. the cycles
around exactly one face.

Lemma 8.4. Fix a planar drawing of a bipartite, planar, 2-connected graph,
G, with signing σ. If the boundary cycle of every inner face is properly
signed, then σ is Kasteleyn.

Proof. We will begin with Euler’s formula by figuring out V , F , and E. We
find that V is r + 2l where r is the number of vertices inside of C. We find
that E = 1

2(|C| + |C1| + ... + |Ck|) since each edge appears on two cycles.
Finally, F is k+1 since we include the outer face. Thus, plugging the terms
into V + F = E + 2 gives us

r + 2l + k + 1 =
1

2
(|C|+ |C1|+ ...+ |Ck|) + 2

. We know that r is even since C is evenly-placed. We didn’t assume that C
is evenly-placed in the lemma, but it allows us to use the first lemma. Thus,
by simplifying and reducing to mod 2, we get:

r + 2l + k + 1 =
1

2
(|C|+ |C1|+ ...+ |Ck|) + 2

⇒ r + 2l + k + 1 ≡ l + l1 + ...+ lk + 2

⇒ r + 2l + k + 1 ≡ l + l1 + ...+ lk + 2 (mod 2)

⇒ l + k + 1 ≡ l1 + ...+ lk + 2 (mod 2)

⇒ l − 1 ≡ l1 + ...+ lk − k (mod 2).

As a result, we aim to prove that l1 + ...+ lk + k is the same parity as nC .
We can do so by noting that each negative edge appears on exactly 2

cycles. Thus, nC+nC1+...nCk
is even. We can then find that nC is the same

parity as nC1 + nC2 ...nCk
. We know that C1, C2, ...Ck are properly signed

since we assumed that they are. Note that this is not circular reasoning



HOW MANY WAYS ARE THERE TO TILE A REGULAR RECTANGULAR GRID WITH DOMINOES?13

because these faces enclose around exactly one face while C could enclose
around more. Since C1, C2, ...Ck are properly signed, we know that l1 − 1 ≡
nC1 (mod 2), l2 − 1 ≡ nC2 (mod 2), ... lk ≡ nCk

− 1 (mod 2). Thus, if we
plug everything into our equation with nC , then we get

nC ≡ (l1−1)+(l2−1)+ ...+(lk−1) ≡ l1+ l2+ ...+ lk−k ≡ l−1 (mod 2).

Thus, C is properly signed. ■

9. Results

So we have just shown that if we can create faces such that all the cycles
around them are properly-signed, then we have a Kasteleyn signing. This is
because any cycle is now properly-signed and because of lemma 8.2, we will
get a Kasteleyn signing. Thus, we want to find a way such that all cycles
around exactly one square is properly-signed.

Thankfully, this is easy to do. We can start by labeling each square with
a face as shown in figure 11.

F1

F2

F3

F4

F5

F6

F7

F8

F9

F10

F11

F12

F0

Figure 11. Our 3× 4 grid with faces

Now, we can label all the edges with a 1. After that, we remove an edge
that connects F1 to F0. For example, we remove the vertical line on the left.
We are left with figure 12.

F1

F2

F3

F4

F5

F6

F7

F8

F9

F10

F11

F12

F0

Figure 12

Afterwards, we can decide the weight of that edge to guarantee the cycle
around F1 is properly-signed. Similarly, as shown in figure 13, we can remove
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F1

F2

F3

F4

F5

F6

F7

F8

F9

F10

F11

F12

F0

Figure 13

an edge that connects F2 to F0. It makes everything easier for us if we always
choose an edge that is vertical.

We continue this process where we remove an edge so that it connects the
face inside the square to the outer face, F0. Eventually, figure 14 is our grid.

F1

F2

F3

F4

F5

F6

F7

F8

F9

F10

F11

F12

F0

Figure 14

Now, we put back in the edges that we removed. However, we can change
the weights to 1 or -1 to make each cycle around exactly one face properly-
signed. For example, we now put back in the edge between F7 and F10 as a
-1.

F1

F2

F3

F4

F5

F6

F7

F8

F9

F10

F11

F12

F0

Figure 15

Similarly, we put two more red edges, which denote a -1.
When we put in the second row, we need positive 1’s or blue edges.
In the end, we are just alternating between columns of 1 and -1.
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Figure 16. Our 3× 4 grid with faces

Thus, our matrix is

1 0 0 0 1 0 0 0 0 0
1 1 0 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0
0 −1 1 1 0 0 −1 0 0 0
−1 0 0 1 1 −1 0 0 0 0
0 0 0 0 1 1 0 0 0 1
1 0 0 1 0 1 1 0 1 0
0 0 1 0 0 0 1 1 0 0
0 0 0 0 0 0 −1 1 1 0
0 0 0 0 0 −1 0 0 1 1


with a determinant of 90.



16 DEREK TANG

10. Conclusion and Acknowledgements

This isn’t the end though! There are other ways to solve this problem.
Another form of the answer is

∏m
k=1

∏n
l=1(4 cos

2 kπ
m+1 + 4 cos2 lπ

n+1)
1/2. Ad-

ditionally, a common example is to look at other shapes. We could remove
certain squares. Can you still make a configuration? The Hall-Marriage
Theorem is a great way to solve this question. Perfect matchings and bipar-
tite graphs are still really useful. You could also consider how many ways
there are to tile a grid with pieces that are shaped differently, perhaps Tetris
tiles.

I would like to thank Lucas Fagan, my TA, and Dr. Simon Rubinstein-
Salzedo, my instructor, for their patience and guidance. [1]
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