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Geometric Braids

Definition
A geometric braid on n strands is a collection of n disjoint
strands connecting n points on a plane to another n points on
another parallel plane, with strands only moving vertically.
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Braid Diagrams

Definition
A braid diagram is a 2D representation of a geometric braid
where crossings are explicitly indicated. This is pretty much the
same thing as the previous diagram, except that we only focus on
the spots where crossings occur. Clearly, each geometric braid has
an associated braid diagram.



When are two braids the same?
Imagine that you can pull these strands in a way which keeps all
the strands at their starting and ending nodes, and that you don’t
tear any strands as you’re doing this. Notice that doing this lets us
intuitively see when two braids are essentially the same (isotopic).
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Another example:



Multiplication of braid diagrams

Using this visual intuition, we can also define the notion of
composing two braids together.
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Braids as groups

Having seen how braids can be composed, it is easy to intuitively
see that:

1. Multiplying together two braids gives another braid.

2. We can multiply any braid on n strands by another braid with
n strands that doesn’t have any crossings. This leaves the
initial braid unchanged; so a braid with no crossings can be
considered an identity element.

3. By taking the mirror image of any braid and composing a
braid with its mirror, all the strands will unravel, giving us the
identity braid. So each braid diagram has an inverse.

4. Therefore, the set Dn of braids diagrams with n strands forms
a group! Since each braid diagram has an associated
geometric braid, the set Bn of geometric braids with n strands
also forms a group.

5. This implies that even though we started with just drawing
overlapping strands, this simple visual construction has an
underlying algebraic structure.
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Artin Relations

Definition
The braid group Bn on n strands is generated by σ1, σ2, . . . , σn−1

with the relations:

▶ σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n − 2

▶ σiσj = σjσi for |i − j | > 1

What does this mean? Recall our previous diagrams...



Why generators? How is this related to what we saw before?

Recall that the main feature of braid diagrams is that they specify
which strands cross over each other. A generator captures the
same information: some product of generators corresponds to a set
of overlapping strands, and each generator σi represents the
crossing of strand i over strand i + 1. An inverse generator (σ−

i )
represents the i strand under the i + 1 strand. We can now see
why the Artin braid relations are true.



Commutativity relation:

σ1σ3 = σ3σ1



Skein relation:
σ1σ2σ1 = σ2σ1σ2



Fundamental Groups and Configuration Spaces

Definition
The configuration space Cn(R2) is the space of n distinct points
in R2.

Theorem
The fundamental group π1(Cn(R2)) is isomorphic to the braid
group Bn.

We do not provide a proof of this theorem, but a quick sketch can
give some intuition.



Connection to Braids
The fundamental group of a configuration space is the set of all
loops in this space from some base point x0, where two loops are
considered the same if we can continuously deform one into the
other over time.

x1 x4x2 x3 x5

x1 x4x2 x3 x5

γ(0) = x0

γ(t)

γ(1) = x0

Figure: A braid as the fundamental group of a configuration space.



Burau Representation

Definition
The Burau representation is a linear representation of the braid
group Bn.

Theorem
The Burau representation maps Bn to GL(n − 1,Z[t, t−1]).

Example

The representation of the generator σi is given by:

ρ(σi ) = Ii−1 ⊕
(
1− t t
1 0

)
⊕ In−i−1



Why this representation?

Recall that we defined generators as being the “algebraic” versions
of strands crossing over each other. If we consider individual
strands of a braid as vectors, then the matrix encodes exactly this
information: each strand from σ1 to σi−1 remains the same, and
each strand from σn−i−1 to σn remains unchanged, while i is
crossed over i + 1.

Representing the braid group this way makes it
easier to tell apart different braids; if a representation is faithful,
meaning that the homomorphism from the braid group to the
group of invertible matrices is injective, then each braid has a
unique matrix representation. At the moment, it is proven that this
representation is faithful for n = 3 and unfaithful for n ≥ 5. The
faithfulness for n = 4 remains an open problem.
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Conclusion

▶ Geometric braids and braid diagrams provide a visual
understanding.

▶ Braid groups are algebraically defined by Artin relations.

▶ There is a connection between braid groups, fundamental
groups, and configuration spaces.

▶ The Burau representation provides a matrix representation of
braid groups.

Thank you!
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