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Abstract

This paper is an introduction to braid groups. We first introduce
basic algebraic prerequisites, and continue by showing how braid groups
arise in different contexts. This naturally leads into the discussion of
representations, and we introduce the Burau representation of the braid
group.
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0 Introduction

Braid groups are very rich mathematical objects which lend themselves to a
variety of different interpretations. They are quite visually appealing and are
easy to intuitively understand. Braid groups display a unique interplay between
topology, geometry, and algebra, making them quite interesting structures for
mathematicians from a diverse range of fields; braids can also be considered as
an extension of the study of knots and links.

The study of braids can be dated all the way back to Gauss, who spent some
time playing with them and trying to come up with rigorous ways of classi-
fying separate braids. This was later picked up by Emil Artin in 1925, who
first recognized the algebraic structure of braids. In 1962, Ralph Fox and Lee
Neuwirth built on Artin’s work and showed how braids can also be considered
as the fundamental group of configuration spaces. The 1990 Fields medal was
awarded to Sir Vaughn Jones for his work introducing the Jones polynomial, an
algorithm for classifying knots and braids.

Although we do not delve into the applications of braids in this paper, they have
also proved to be particularly useful outside of pure mathematics, especially in
cryptography, molecular biology (it is easy to see how the interweaving strands of
DNA lend themselves to this presentation), computer science (braids are used in
the models of topological quantum computers) and, most notably, mathematical
physics.

The connection between knots, braids, and physics is quite an old one, and
has some history dating back to Lord Kelvin’s models of the atom. Before
the introduction of quantum mechanics at the beginning of the 20th century,
physicists spent a lot of time proposing potential models of what matter might
look like at its most fundamental scale. Lord Kelvin proposed an image of the
atom as a set of interweaving “strings”, thus imagining it, essentially, as a braid
closed in on itself.

Although this theory was quickly disproved, braids once again appeared in the-
oretical physics at the end of the 20th century. Edward Witten’s construction
around quantum field theory used the theory of braids and knots to describe
how our universe might behave at the smallest scale. This insight later led to
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Witten’s Fields medal. Quite surprisingly, braids also appeared in statistical me-
chanics, where Artin’s canonical presentation corresponded to the Yang-Baxter
equation.

However, we do not need to understand advanced mathematics, physics, or biol-
ogy to recognise the simple beauty of braid groups. I hope that this introduction
allows the reader to see for themselves why the subject is worth studying, and
how the simple idea of weaving strands holds a lot of emergent beauty. As we
will see, braids provide an elegant bridge between the worlds of algebra and
topology.

We begin by introducing basic notions from group theory and representation
theory in section 1. Section 2 explains Artin’s algebraic presentation of braid
groups and defines the braid relations, while providing some visual intuition.
We consider the drawbacks of Artin’s presentation in classifying braids. This
leads to the geometric and topological views of braids in section 3, where we
introduce the notion of isotopies to rigorously define equivalence between two
braids. Section 4 presents braids as the fundamental group of configuration
spaces. This lets us combine the algebra and geometry of braids in section 5,
motivating the Burau representation.

1 Prerequisites

Before defining braid groups, it is important to cover a few basics.

1.1 Group Theory and Representations

Definition 1.1. A group G is a set endowed with a binary operation, ∗, which
has the following properties:

• It is closed under composition.

• For every element x in G, there exists a unique inverse x−1.

• The set G contains an identity element, e, such that x ∗ e = x.

Note that groups are not necessarily commutative. Commutative groups are
called abelian.
Definition 1.2. A finitely generated group is defined as a group G which con-
sists of some finite set S of generators σ1, σ2, . . . , σn, such that any element of
G can be expressed as a composition of the generators. Intuitively, this means
we have a small set of elements which can generate any element in the group.
Definition 1.3. A homomorphism can be thought of as a map between elements
of different groups. We define a homomorphism between two groups G and H
as some mapping ϕ : G→ H such that for any elements x, y ∈ G, ϕ(x) ∗ ϕ(y) =
ϕ(x∗y). If this mapping is bijective, it is called an isomorphism. This means that
the two groups we are considering are essentially the same, the main difference
between them being how we label individual elements.
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Definition 1.4. A representation of a group G is defined as a homomorphism
ρ : G → GL(V ), where GL(V ) is the group of invertible matrices (or linear
transformations) over a vector space V . This means that for all g, h ∈ G,
ρ(g)ρ(h) = ρ(gh). Intuitively, a representation maps each element of the group
to an invertible matrix in such a way that the group operation is preserved.
If the representation is injective (mapping separate elements in the group to
separate matrices), the representation is called faithful. Representations allow
us to more simply understand groups which, if only considered algebraically, are
difficult to work with.

We are now ready to see how braids can be considered from an algebraic per-
spective.

2 The Artin braid group and braid relations

Before going into rigorous presentations, it’s useful to get some visual intuition
into what exactly braids are. We will precisely define everything after intuitions
are presented. The figure below is a basic example of some braids.

Figure 1: A few braids.

Definition 2.1. The Artin braid group Bn is a finitely generated group with
n− 1 generators σ1, σ2, . . . , σn−1 satisfying the following relations:

1. The commutativity relation:

σiσj = σjσi for |i− j| > 1 (1)

2. The Skein relation:
σiσi+1σi = σi+1σiσi+1 (2)

for all i.

3. The identity relation:
σiσ

−1
i = σ−1

i σi = 1 (3)

Here, σi represents the i-th generator of the braid group, corresponding to a
crossing between the i-th and (i+ 1)-th strands.
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These relations looks confusing and without motivation at first, but they are
better understood with some visual intuition. The commutativity relation es-
sentially shows how if the only difference between two braids is the height at
which crossings occur, they can be considered the same braid:

Figure 2: σ1σ3 = σ3σ1

The picture above shows two different braids, each with four strands. From the
braid on the left, we can imagine pulling the first crossing on the left down,
and the second crossing on the right up. The generators in the braid group
correspond to how a given braid crosses over another one; for example, in the
braid above, the first strand crosses over the second strand, and the third strand
crosses over the fourth strand, so this is denoted as σ1σ3. These two braids are
essentially the same, the only difference between them being the height at which
the crossings occur. This clarifies the commutativity relation.

The second relation relates to another visual intuition, explaining when two
braids can be considered the same:

;

Figure 3: σ1σ2σ1 = σ2σ1σ2

In both of these braids, the third strand is underneath all the other strands,
and the first strand is above both other strands. If the second strand on the
right is “pulled” to the left and the third strand is pulled to the bottom, the
two braids will look identical.

These relations are referred to as the braid relations, and any element of Bn is
referred to as a braid. Bn is the set of all braid with n strands.

The algebraic view of braids also lets us see the natural homomorphism from
braid groups to the symmetric group. To see this, we prove the following lemma:
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Lemma 2.2. Let f : Bn → G be a group homomorphism from Bn to a group
G. Then the elements {ai = f(σi)}n−1

i=1 satisfy the braid relations. Conversely,
if some {a1, . . . , an−1} ∈ G satisfy the braid relations, then there exists a unique
group homomorphism f : Bn → G such that ai = f(σi) for any i ∈ {1, . . . , n−
1}.

Proof. The first direction only requires a quick verification. Given f : Bn → G
a group homomorphism and i, j ∈ {1, . . . , n− 1}, we have

aiaj = f(σi)f(σj) = f(σiσj) = f(σjσi) = f(σj)f(σi) = ajai,

and for i ∈ {1, . . . , n− 2} we have

aiai+1ai = f(σi)f(σi+1)f(σi) = f(σiσi+1σi) = f(σi+1σiσi+1) =
f(σi+1)f(σi)f(σi+1) = ai+1aiai+1.

For the other direction, let Fn denote the free group generated by {σ1, . . . , σn−1}.
Suppose {a1, . . . , an−1} ∈ G satisfy the braid relations. Then there exists
a unique group homomorphism f̃ : Fn → G such that f̃(σi) = ai for all
i ∈ {1, . . . , n− 1}. Note because {ai}n−1

i=1 satisfy the braid relations,

f̃(σiσj) = f̃(σi)f̃(σj) = aiaj = ajai = f̃(σj)f̃(σi) = f̃(σjσi)

for all i, j ∈ {1, . . . , n− 1}. Moreover, for any i ∈ {1, . . . , n− 2}

f̃(σiσi+1σi) = aiai+1ai = ai+1aiai+1 = f̃(σi+1σiσi+1).

Thus f̃ induces a unique group homomorphism f : Bn → G such that ai = f(σi)
for all i ∈ {1, . . . , n− 1}.

We can apply this lemma to project to the symmetric group G = Gn. Recall
that Gn is defined as all the permutations of the set {1, 2, . . . , n}. We consider
the simple transpositions s1, s2, . . . , sn−1 ∈ Gn, where si only permutes i and
i+1 while leaving all the other elements of {1, 2, . . . , n} unchanged. Clearly, the
simple transpositions satisfy the braid relations: therefore, the previous lemma
implies that there exists a unique homomorphism f : Bn → Gn, such that
si = f(σi) for all i = 1, 2, . . . , n − 1. It is also straightforward to see that the
simple transpositions generate Gn (if we keep switching things around one by
one in any order, we will eventually get all possible switches of the symmetric
group). Therefore, this homomorphism must be surjective. This connection
between braid groups and the symmetric group will be important to keep in
mind in later sections.
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3 Geometric braids and isotopy

In the previous section, we appealed to diagrams in order to make sense of the
algebraic structure of braid groups. We can make this visual intuition more
rigorous by defining geometric braids in terms of homeomorphisms.
Definition 3.1. A function f : X → Y between two topological spaces X and
Y is called a homeomorphism if it satisfies the following conditions:

1. f is a bijection, meaning that it is both injective (one-to-one) and surjective
(onto).

2. f is continuous, meaning that for every open set U ⊆ Y , the preimage
f−1(U) ⊆ X is also open.

3. The inverse function f−1 : Y → X is also continuous, meaning that for
every open set V ⊆ X, the preimage (f−1)−1(V ) = f(V ) ⊆ Y is open.

If such a function f exists, we say that X and Y are homeomorphic, and the
function f is called a homeomorphism.
Definition 3.2. A geometric braid on n strings is a subset β ⊂ R2 × [0, 1]
consisting of n disjoint topological intervals (called the strings of β) such that
the projection

R2 × [0, 1] → [0, 1]

maps each string homeomorphically onto [0, 1]. Further, β satisfies:

1. β ∩ (R2 × {0}) = {(1, 0, 0), (2, 0, 0), . . . , (n, 0, 0)}

2. β ∩ (R2 × {1}) = {(1, 0, 1), (2, 0, 1), . . . , (n, 0, 1)}

x

t

y

t = 0

t = 1

t

Figure 4: A geometric braid and its associated braid diagram.

Each string of β starts from some point (i, 0, 0) and ends at some (s(i), 0, 1)
where i, s(i) ∈ {1, 2, . . . , n}. By looking at where each string ends up, we obtain
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a permutation (s(1), s(2), . . . , s(n)) of the set {1, 2, . . . , n}, referred to as the
underlying permutation of β.

The underlying permutation of the braid in figure 4 is (3, 1, 4, 2).

An example of a geometric braid is displayed on the left of figure 3. Given
some geometric braid, we can project a geometric braid onto R× [0, 1] and note
where individual strands intersect. This gives the braid diagram on the right,
which is exactly what we used for visual intuition around the braid relations in
the previous section. Clearly, any kind of braid diagram d corresponds to some
geometric braid β.

Having now rigorously established the geometric notion of braids, it is natural
to question when two braids can be considered the same. Simply representing
braids through generators could make this difficult, since we get a long line of
generators we need to work through using the relations in order to show equality.

The geometric perspective on braids simplifies this, since we can visualise when
two braids are equal to each other by a series of transformations. The notion of
“braid equality” is rigorously defined through by isotopy :

Definition 3.3. We define two geometric braids β1, β2 on n strands as isotopic
to each other if there exists a continuous map

F : β1 × [0, 1] → R2 × [0, 1]

such that:
F (x, 0) = idβ1

F (x, 1) = idβ2
,

and at any point t ∈ [0, 1], Ft : β1 → R2 × [0, 1] defines a geometric braid.

Intuitively, this definition tells us that two braids are isotopic, or “the same”, if
we can continuously deform one of the braids into the other in a way which pre-
serves the geometric braid structure throughout the entire transformation. It is
important to note that isotopy actually has a wider definition outside of braids
which is not directly relevant to this paper and is a wider idea in algebraic topol-
ogy. We do not delve further into this, since a basic understanding of isotopy in
the context of braids is enough for us to understand what is meant by “equality”
between braids. Interested readers should consult X. As the parameter t varies
from 0 to 1, we are, essentially, pulling the strands of the braid in such a way
that none of the strands get torn apart or removed from their end points. This
parameter is introduced to formalise the idea that an isotopy is a deformation
over time; an intuitive way to think about it is that as t varies from 0 to 1, we
are continuously deforming one braid into another. This is why at t = 0 we
have the braid β1 unchanged, and at t = 1 we have the braid β2 unchanged.
If such a transformation exists between two braids, they can be considered as
the same braid. Clearly, two braid diagrams d1, d2 are isotopic if and only if
their corresponding geometric braids β1, β2 are isotopic. For example, the three
braid diagrams below are isotopic:
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Figure 5: Isotopic braids

We can also define multiplication on two geometric braids. Given two braid
diagrams d1, d2, the product d1d2 is obtained by placing d1 on top of d2 and
compressing the result to fit into R× [0, 1].

× =

Figure 6: Multiplication of braids. A braid with n straight strands is the identity
element.

Having defined multiplication on geometric braids, we can now link together the
algebraic and geometric perspectives. Let Bn be the set of all geometric braids
with n strands. We have already shown that Bn is closed under multiplication,
since putting together any two braids gives another braid. We have also defined
the identity element of Bn. By showing that each β ∈ Bn has a unique two sided
inverse, we prove that Bn is, in fact, a group.

Lemma 3.4. Every geometric braid β ∈ Bn has a unique two sided inverse
β−1 ∈ Bn.

Proof. We start by defining two braids σ+
i and σ−

i for each i ∈ {1, 2, . . . , n}.
σ+
i is a braid with only a single crossing, at which the i-th strand crosses over

the i+1-th strand. σ−
i is a braid with the same crossing, but the i-th strand is

instead going under the i+ 1-th strand. Firstly, note that σ+
i σ

−
i = σ−

i σ
+
i = 1.

We claim that σ+
1 , . . . , σ

+
n−1, σ

−
1 , . . . , σ

−
n−1 generate Bn. Consider a braid β on

n strings and its associated braid diagram d. By slightly deforming the region
around crossings in β, d becomes isotopic to some braid diagram d′ in which the
heights of crossings are all different. More rigorously, if d′ has crossings at points
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(x1, s1), . . . , (xk, sk) ∈ R × [0, 1], then the second coordinates s1, . . . , sk ∈ [0, 1]
are all distinct from each other: Then we can choose some t0, . . . , tk ∈ [0, 1] such
that

0 = t0 < t1 < . . . < tk = 1

so the intersection d ∩ (R × [tj , tj+1]) for j ∈ {0, . . . , k − 1} contains only one
crossing. Then each such intersection will either be a diagram of σ+

i or σ−
i :

Having decomposed our original braid into separate σi, we can now write d′ as
a product:

d′ = σε1
i1
σε2
i2

· · ·σεk
ik

where each εi is either + or − and i1, . . . , ik ∈ {1, 2, . . . , n − 1}. As we’ve
previously shown, since d′ is isotopic to d, then its associated geometric braid,
β′, must be isotopic to β. We now define a new braid diagram, d′−1, such that

d′−1 = σ−ε1
i1

σ−ε2
i2

· · ·σ−εk
ik

We have previously established that σ+
i σ

−
i = σ−

i σ
+
i = 1, so the geometric braid

β−1 associated with d′−1 must be a two sided inverse of β′, and hence also of
β ∈ Bn.

Therefore, Bn forms a group. The most important aspect of this is that this
group is isomorphic to the Artin braid group we defined in section 2:

Theorem 3.5. Let ε = ±1. Then there exists a unique isomorphism ϕε : Bn →
Bn.

The proof of this is quite long, not particularly interesting and involves intro-
ducing the machinery of Reidemester moves. We do not prove this theorem
in this paper. For a proof, see [KT08]. However, we already motivated the
first algebraic definitions with some visuals, so this isomorphism should seem
intuitively true.

Having presented the algebraic and geometric picture of braids, we can now
move on to the topological view of braids.

4 Braids and configuration spaces

One of the most appealing views on braids comes from considering the funda-
mental group of a configuration space. We first define a few necessary terms.

Definition 4.1. For a given topological space M , the configuration space of n
distinct points in M is defined as the space of all possible ordered n-tuples of
distinct points in M . This is denoted as Confn(M):

Confn(M) = {(x1, x2, . . . , xn) ∈Mn | xi ̸= xj for all i ̸= j}.

Definition 4.2. Let X and Y be sets and f, g : X → Y be continuous. Then, f
and g are homotopic if there exists a continuous function F : X×[0, 1] → Y such
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x0

Identity element

x0

One positive winding

x0

One negative winding

Figure 7: Elements of a circle’s fundamental group.

that F (x, 0) = f(x) and F (x, 1) = g(x) for all x ∈ X. F is called a homotopy
between f and g, and we write f ∼ g. This is a generalisation of the notion
of isotopy we had previously used to define equivalence classes of braids. This
definition is quite similar to the previous one: a homotopy can be considered as
a continuous deformation over time.

Definition 4.3. The fundamental group π1(X,x0) of a topological spaceX with
basepoint x0 is the group of homotopy classes of loops based at x0. Intuitively,
the fundamental group of a space is the set of different loops that can be drawn
in some space X starting from x0. The homotopy of two loops refers to loops
which can be continuously deformed into each other without lifting a given loop
off of the space or breaking it. This definition is quite confusing, and it helps
to have some examples.

Consider the fundamental group of a circle. We can imagine a loop starting
from the bottom of the circle which goes around the circumference zero, once,
twice, three times, or any integer number of times:

The diagram above shows three different elements of the fundamental group of
the circle, and also makes it a bit clearer as to why this set of loops starting from
a point is a group. We define the identity element of a fundamental group as a
loop which doesn’t wind around at all, so does nothing. We can also imagine
concatenating loops by putting the end of one loop on the beginning of another.
The red and blue circles also show loops going in opposite directions, which
shows how each loop can have an inverse. We do not rigorously prove that
the fundamental group is, in fact, a group, but this is hopefully clear from the
diagram. Since a circle can have any integer number of loops around it, the
fundamental group of the circle is simply Z. This can be contrasted with the
fundamental group of the torus. Since the torus has two axis along which loops
can be drawn, its fundamental group is Z× Z.
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Figure 8: An element of the torus’ fundamental group.

Having defined configuration spaces and fundamental groups, we can now link
these concepts together to see how the braid group arises.

Recall that the fundamental group is a set of loops which all have equivalence
up to homotopy. Therefore, the fundamental group of some configuration space,
for example, Confn(C), is the set of paths from some point x0 ∈ Confn(C) back
to itself. Given such a based loop γ : [0, 1] → Confn(C) at each time t ∈ [0, 1],
γ(t) gives a new ordered configuration of points on the plane. We can think of
this as the trajectories γi : [0, 1] → C of n points moving in the plane C, given
that the points do not collide and end up back where they started, which is the
ordered configuration x0 = (x1, x2, . . . , xn).

γ(t) = (γ1(t), γ2(t), . . . , γk(t)) for t ∈ [0, 1], with γ(0) = γ(1) = x0.

Hence one can easily visualize the fundamental group of a configuration space
as a set of interweaving strands; that is, a braid.

Notice that in the diagram below, each strand of the braid begins and ends
at the same node. Braids which have this property are called pure, and their
set is called the pure braid group. This notion of using configuration spaces
and the fundamental group to describe braids can be generalised outside of just
pure braids. It is easy to see that the symmetric group Gn acts on Confn(C)
by permuting the coordinates. By modding out the configuration space by the
symmetric group, we obtain the unordered configuration space:

UConfn(C) = Confn(C)/Gn

Applying the same reasoning as above, it is easy to see that the fundamental
group of an unordered configuration space is the braid group.
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x1 x4
x2 x3 x5

x1 x4x2 x3 x5

γ(0) = x0

γ(t)

γ(1) = x0

Figure 9: A braid as the fundamental group of a configuration space.

5 The Burau representation

Having now seen how braids can arise in different contexts, we introduce the
Burau representation of the braid group; that is, an explicit homomorphism
from the braid group Bn to the group of n× n invertible linear matrices.

Definition 5.1. A Laurent polynomial in t with coefficients in the field Z is a
sum of the form

λ =
∑
k∈Z

nkt
k

where nk ∈ Z. Let Λ = Z[t, t−1] denote the ring of such Laurent polynomials.

The Burau representation is a linear representation of Bn consisting of n × n
matrices over Λ.

We have previously seen that in all of our perspectives on braids, the structure
of a given braid can be accurately captured by specifying where different cross-
ings occur. Keeping this in mind, we can see why braids have the following
representation:

Definition 5.2. Let n ≥ 2. Define Ui as the following n×n matrix with entries
in the ring Λ = Z[t, t−1]:

Ui =


Ii−1 0 0 0
0 1− t t 0
0 1 0 0
0 0 0 In−i−1


where Ik denotes the k × k identity matrix.
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Notice each Ui has a block diagonal form: the blocks are (i − 1) × (i − 1) and
(n− i− 1)× (n− i− 1) identity matrices, and the 2× 2 matrix

U =

ï
1− t t
1 0

ò
.

The matrix U is key in understanding why exactly braid groups are represented
like this. If i = 1, there is no identity matrix in the upper left corner; for each
given i, Ui keeps all vectors from 1 to i− 1 unchanged, permutes the positions
of vectors i, i+1, and leaves all the other vectors until n also unchanged. Effec-
tively, this matrix encodes the “crossing over” action we had previously defined
using generators! As t varies, the crossing occurs “over time”. Considering
individual strands of a braid as vectors, the matrix represents crossings.

Although this makes the matrix representation itself intuitively clear, we still
need to show that this representation is always invertible.

Lemma 5.3. Each Ui, i ∈ {1, . . . , n− 1}, is invertible.

Proof. The Cayley-Hamilton theorem states that any 2 × 2 matrix M satisfies
the equation

M2 − tr(M)M + det(M)I2 = 0.

Thus, U satisfies U2− (1− t)U − tI2 = 0. The identity matrices also satisfy this
relation, so we get that for all i ∈ {1, . . . , n},

U2
i − (1− t)Ui − tIn = 0.

This is equivalent to
Ui(Ui − (1− t)In) = tIn.

Multiplying by t−1 on both sides shows that Ui is invertible (over Λ) and that

U−1
i = t−1(Ui − (1− t)In) =


Ii−1 0 0 0
0 0 1 0
0 t−1 1− t−1 0
0 0 0 In−i−1

 .

Naturally, we expect this representation to satisfy the braid relations.

Lemma 5.4. Let n ≥ 2. The matrices Ui for all i ∈ {1, . . . , n} satisfy the braid
relations, i.e.

UiUj = UjUi for all i, j with |i− j| ≥ 2

UiUi+1Ui = Ui+1UiUi+1 for all i ∈ {1, . . . , n− 2}.
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Proof. This is fairly straightforward to prove, since all of the relations can be
proven by performing some matrix multiplication. For the first relation, consider
i, j ∈ {1, . . . ,−1} such that |i− j| ≥ 2. Multiplying Ui, Uj we see that

UiUj =


Ii−1 0 0 0
0 1− t t 0
0 1 0 0
0 0 0 In−i−1



Ij−1 0 0 0
0 1− t t 0
0 1 0 0
0 0 0 In−j−1



=



Ii−2 0 0 0 0 0 0 0
0 1− t t 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 Ij−i 0 0 0 0
0 0 0 0 1− t t 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 In−j−2



=


Ij−1 0 0 0
0 1− t t 0
0 1 0 0
0 0 0 In−j−1



Ii−1 0 0 0
0 1− t t 0
0 1 0 0
0 0 0 In−i−1

 = UjUi.

Hence the braid commutavitity relation is satisfied. We do the same thing for
the second relation; we just need to show that UiUi+1Ui = Ui+1UiUi+1 for
i = 1, . . . , n− 2. So we need to verify the equality1− t t 0

1 0 0
0 1 1

1 0 0
0 1− t t
0 1 1

1− t t 0
1 0 0
0 1 1



=

1 0 0
0 1− t t
0 1 1

1− t t 0
1 0 0
0 1 1

1 0 0
0 1− t t
0 1 1

 .
Multiplying out terms on the left side gives:

1− t t 0
1 0 0
0 0 1

1 0 0
0 1− t t
0 1 0

1− t t 0
1 0 0
0 0 1

 =

1− t t− t2 t2

1− t t 0
1 0 0

 .
And the right side gives

1 0 0
0 1− t t
0 1 0

1− t t 0
1 0 0
0 0 1

1 0 0
0 1− t t
0 1 0

 =

1− t t− t2 t2

1− t t 0
1 0 0

 .
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So the representation obeys the braid relations.

By the result of lemma 2.2, there exists a group homomorphism

ψn : Bn → GLn(Λ)

such that ψn(σi) = Ui for every i ∈ {1, . . . , n − 1}. This aligns with our
previous intuition around generators corresponding to matrices. This is the
Burau representation of Bn. Another useful intuition around understanding
this representation comes from Sir Vaughn Jones: imagine the separate strands
of a braid each corresponding to a bowling alley. Once a bowling ball is rolled
on a given strand and approaches a crossing, it will either stay on its original
strand with probability 1−t, or it will fall onto the strand below with probability
t. The Burau representation is known to be faithful for n = 3, and unfaithful
for n ≥ 5. For a proof of this result, see [KT08]. The faithfulness of the Burau
representation for n = 4 remains an open problem as of the writing of this
paper.
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