
Error-Correcting Codes Derived from Cellular
Automata Games

Damla Zerya Aslan

July 14, 2024



Introduction

▶ Cellular Automata games are models where players interact
with a grid of cells that evolve over time.

▶ In two-player Celata games players alternately change the
state of cells.

▶ Error-correcting codes are constructs for detecting and
correcting transmission errors.

▶ Linear error-correcting codes use algebraic methods for
encoding and decoding.



Preliminaries

▶ Games on a digraph G = (V,E) with V = {z1, . . . , zn}.
▶ Tokens distributed on vertices; moves involve selecting and

moving tokens.
▶ Vertex labeling: N if the next player has a winning move, P

otherwise.
F(u) = {v ∈ V : (u, v) ∈ E}

u ∈ P ⇐⇒ F(u) ⊆ N
u ∈ N ⇐⇒ F(u) ∩ P = ∅



Preliminaries

▶ The numerical value of a vector u = (u0, . . . , un−1) ∈ GF(2)n

is:

|u| :=
n−1∑
i=0

ui2i

▶ The weight of u is the number of 1-bits in u:

w(u) =
n−1∑
i=0

ui

▶ The Grundy number (or nimber) g(x) of a position x in a
combinatorial game is defined recursively as:

g(u) = mex{g(v) : v ∈ F(u)}



Example

▶ Consider the game graph below and compute Grundy
numbers:

z0

z1 z2

z4

z5 z6 z7

z3

g(z0) = 1
g(z1) = 0
g(z2) = 0

g(z3) = 0
g(z4) = 1
g(z5) = 0
g(z6) = 0
g(z7) = 0



Vector Matrix

▶ Construct the vector matrix W for the game:

W =



1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
1 0 1 0 0 0 0 0
0 1 1 1 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 0


▶ Each row corresponds to a vertex zi in the game.



Vector Space Operations

Theorem
In the vector space V, the sum of any two vertices u, v ∈ V is given
by their vector addition in GF(2).

Proof.

u =
n−1∑
i=0

uizi

v =
n−1∑
i=0

vizi

u ⊕ v =
n−1∑
i=0

(ui ⊕ vi)zi



Vector Space Operations

▶ Summing vectors in GF(2):

u = (1, 0, 0, 0, 1, 0, 0)
v = (0, 1, 0, 1, 0, 0, 0)

u ⊕ v = (1, 1, 0, 1, 1, 0, 0)

▶ Hamming distance between vectors:

u = (1, 0, 0, 0, 1, 0, 0)
v = (0, 1, 0, 1, 0, 0, 0)

H(u, v) = w(u ⊕ v) = w(1, 1, 0, 1, 1, 0, 0) = 4



Lexicodes

Definition
Lexicodes are a type of error-correcting code that can be generated
using lexicographic order on binary vectors.
▶ Lexicodes are constructed by selecting vectors in lexicographic

order with a minimum Hamming distance.
Lexicode L = {v ∈ Vm : Hamming distance d ≥ 5}

g(zi) = mex{g(zi1)⊕ g(zi2)⊕ . . .⊕ g(zij)}



Lexicode Algorithm

▶ Calculate g(zm) for each state m.
▶ Identify seeds (not sums of smaller g-values).
▶ Generate basis members from seeds.
▶ Apply greedy algorithm for lexicodes.

Lexicode L = {v ∈ Vm : Hamming distance d ≥ 5}



Example
▶ Consider a game with n = 5 and 3 dimensions.
▶ Basis vectors:

v1 = (1, 0, 0, 0, 0), v2 = (0, 1, 0, 0, 0), v3 = (0, 0, 1, 0, 0)
▶ Linear independence means no vector in the set can be

represented as a linear combination of the others.

a1v1 + a2v2 + a3v3 = 0
a1 = a2 = a3 = 0

z0

z1

z3 z4

z2

z5 z6



Greedy Algorithm for Lexicodes

▶ Start with the smallest vector not yet in the code.
▶ Add vectors in lexicographic order, ensuring a minimum

Hamming distance.
▶ Example: Start with v1 = (1, 0, 0, 0, 0).
▶ Add v2 = (0, 1, 0, 0, 0) if H(v1, v2) ≥ d.

Lexicode L = {v ∈ GF(2)5 : Hamming distance d ≥ 2}



▶ Construct the vector matrix W for the game:

W =



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 1 0 0 1
0 0 1 1 0
0 0 1 0 1


▶ Each row corresponds to a basis vector.
▶ Lexicodes:

{(1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0),

(0,0,0,0,1), (0,1,0,0,1), (0,0,1,1,0), (0,0,1,0,1)}



Forcing a Win

▶ Strategy based on g-function to determine P-, N-, and
D-positions.

▶ Representations and follower functions.

Fe(ue, uj, vj) = ue ∪ {vj} \ {uj}

Fe(ue) =
h∪

j=1

∪
vj∈F(uj)

Fe(ue, uj, vj)



Lexicodes

▶ Apply equations for forcing a win to identify winning positions.
▶ Use these positions to derive lexicodes restricted to winning

configurations.
Fe(ue, uj, vj) = ue ∪ {vj} \ {uj}

Fe(ue) =
h∪

j=1

∪
vj∈F(uj)

Fe(ue, uj, vj)

γ(ue, ξ(ve)) = we ⊆ Rj, ξ(we) ∈ F(ξ(ve)) ∩ Vp

▶ Construct lexicodes using only winning positions identified by
Fe(ue) and γ(ue, ξ(ve)).



Thank You for Listening!


	Introduction
	Preliminaries
	Examples of Grundy Numbers
	Vector Summation
	Lexicodes and Error-Correction
	Linear Independence
	Forcing a Win in Acyclic Cellular Automata Games

