Error-Correcting Codes Derived from Cellular
Automata Games

Damla Zerya Aslan

July 14, 2024



Introduction

» Cellular Automata games are models where players interact
with a grid of cells that evolve over time.

> In two-player Celata games players alternately change the
state of cells.

» Error-correcting codes are constructs for detecting and
correcting transmission errors.

P Linear error-correcting codes use algebraic methods for
encoding and decoding.



Preliminaries

» Games on a digraph G = (V, E) with V= {z,...,z,}.
» Tokens distributed on vertices; moves involve selecting and
moving tokens.

» Vertex labeling: N if the next player has a winning move, P
otherwise.

Fluy={ve V:(uv) € E}

N
P=0

ue P < Fu)

-
veN < Fu)n



Preliminaries

» The numerical value of a vector u = (uo,...,un—1) € GF(2)"
is:
n—1
lu| = Z ui2!
i=0

» The weight of u is the number of 1-bits in u:

n—1
w(u) = Z uj
i=0

» The Grundy number (or nimber) g(x) of a position x in a
combinatorial game is defined recursively as:

g(u) = mex{g(v) : v e F(u)}



Example

» Consider the game graph below and compute Grundy
numbers:




Vector Matrix

» Construct the vector matrix W for the game:

10000000
11000000
01100000
10100000

W=1lo1110000
00011000
00001100

0000011 0

» Each row corresponds to a vertex z; in the game.



Vector Space Operations

Theorem

In the vector space V, the sum of any two vertices u,v € V is given
by their vector addition in GF(2).

Proof.

n—1
u= Z u;zi
i=0
n—1
V= Z ViZ;
i=0

n—1

udPv= Z(u,- D V,')Z,'

i=0



Vector Space Operations

» Summing vectors in GF(2):
u=(1,0,0,0,1,0,0)
v=1(0,1,0,1,0,0,0)

u®v=(1,1,0,1,1,0,0)

» Hamming distance between vectors:

uv=(1,0,0,0,1,0,0)
v=(0,1,0,1,0,0,0)
H(u,v) = wu® v) = w(1,1,0,1,1,0,0) = 4



Lexicodes

Definition
Lexicodes are a type of error-correcting code that can be generated
using lexicographic order on binary vectors.
P> Lexicodes are constructed by selecting vectors in lexicographic
order with a minimum Hamming distance.
Lexicode L = {v € V,;, : Hamming distance d > 5}

8(zi) = mex{g(z;) © g(z,) & . .. © g(z;)}



Lexicode Algorithm

» Calculate g(zm,) for each state m.
» |dentify seeds (not sums of smaller g-values).
> Generate basis members from seeds.
> Apply greedy algorithm for lexicodes.
Lexicode L = {v € V,;, : Hamming distance d > 5}



Example

» Consider a game with n =5 and 3 dimensions.
> Basis vectors:

vi =(1,0,0,0,0), w» =(0,1,0,0,0), w3=(0,0,1,0,0)

» Linear independence means no vector in the set can be
represented as a linear combination of the others.

aivi +avo +a3v3 =0

31232233:0



Greedy Algorithm for Lexicodes

» Start with the smallest vector not yet in the code.

» Add vectors in lexicographic order, ensuring a minimum
Hamming distance.

» Example: Start with vi = (1,0,0,0,0).
> Add Vo = (0, 1,0,0,0) if H(Vl, V2) > d.
Lexicode L = {v € GF(2)° : Hamming distance d > 2}



» Construct the vector matrix W for the game:

OO OO OO O =
OO R OOOFEO
H = O OORK OO
O OO, OOOoO
—H O =2 OOOO

» Each row corresponds to a basis vector.

> |exicodes:
{(1,0,0,0,0),(0,1,0,0,0),(0,0,1,0,0),(0,0,0,1,0),

(0,0,0,0,1), (0,1,0,0,1), (0,0,1,1,0), (0,0,1,0,1)}



Forcing a Win

> Strategy based on g-function to determine P-, N-, and
D-positions.

» Representations and follower functions.

Fe(ue, uj, vj) = ue U {vj} \ {uj}
h

Fe(ue) = U U Fe(ue, uj, vj)

J=1 vieF(uw)



Lexicodes

» Apply equations for forcing a win to identify winning positions.

» Use these positions to derive lexicodes restricted to winning
configurations.

Fe(ue’ uj, VJ) = Ue U {VJ} \ {u.i}

h
Fe(ue) = U U Fe(ue, uj, vj)

=1 vieF(w)

V(e (ve)) = we C R;, §(we) € F(&(ve)) N Vp

» Construct lexicodes using only winning positions identified by
Fe(ue) and y(ue, £(ve))-



Thank You for Listening!



	Introduction
	Preliminaries
	Examples of Grundy Numbers
	Vector Summation
	Lexicodes and Error-Correction
	Linear Independence
	Forcing a Win in Acyclic Cellular Automata Games

