
Error-Correcting Codes Derived from Cellular
Automata Games

Damla Zerya Aslan

July 14, 2024

Abstract

This paper presents a polynomial-time algorithm for computing
Grundy values and deriving lexicodes from two-player cellular au-
tomata games, specifically focusing on acyclic digraphs. By leveraging
structured subspaces, the algorithm constructs subgraphs, applies the
Generalized Sprague-Grundy algorithm, and performs matrix trans-
formations to compute lexicodes efficiently. This method is demon-
strated with examples, ensuring polynomial-time complexity and a
minimum Hamming distance for effective error correction. The study
generalizes previous work on 1-regular games, providing a framework
for computing winning moves and error-correcting codes. Addition-
ally, it discusses challenges associated with higher-dimensional games
and those involving loops.

1 Introduction

In the realm of combinatorial game theory, cellular automata games have
traditionally been analyzed as zero-player games, such as Conway’s Game
of Life, or as solitaire games played on a grid or digraph G=(V, E). In these
games, each cell or vertex of the graph can assume a finite number of possi-
ble states, typically restricted to the binary alphabet 0, 1. A position in the
game is defined as an assignment of states to all vertices. The transition from
one position to another follows a local rule: selecting a vertex u and ”firing”
it, meaning complementing its state together with the states of its neighbors
in a predefined neighborhood N(u). The objective is to transform an ini-
tial configuration into a target configuration, such as changing all states to 0.

Previously these 0-player games have been extended to 2-player games,
introducing new layers of complexity and strategic depth. In a two-player
cellular automata game or a Celata game, the players alternate in selecting
vertices to fire. Each player chooses a vertex u with state 1 and comple-
ments it along with its neighborhood N(u), thereby flipping the states of u

1

and its neighbors. The game continues until one player achieves the target
configuration (e.g., all vertices in state 0), winning the game, or until no
more moves are possible, resulting in a draw.

In parallel to their emergence, strategies for Celata games have been ex-
plored (1) which then proved useful for constructing linear error-correcting
codes. Error-correcting codes are mathematical constructs designed to de-
tect and correct errors that occur during data transmission. Linear error-
correcting codes, in particular, are a class of codes that use linear algebraic
methods to encode and decode data. These codes are defined by gener-
ator matrices and parity-check matrices, which establish the relationships
between the encoded data and the original information.

The process of encoding involves transforming a message vector into a
codeword vector using the generator matrix, which adds redundancy to the
message in a structured way. This redundancy enables the detection and
correction of errors during transmission. The decoder uses the parity-check
matrix to identify discrepancies between the received codeword and valid
codewords, thereby locating and correcting errors. Linear codes such as
Hamming codes and Reed-Solomon codes are widely used in various com-
munication systems due to their efficiency and robustness.

The relationship between combinatorial games and linear error-correcting
codes has been further explored through the concept of lexicographic codes,
or lexicodes. Lexicodes are constructed using a greedy algorithm that builds
the code incrementally. This algorithm adds codewords one by one, ensuring
that each new codeword maintains a minimum distance d from all previously
selected codewords. The efficiency of lexicodes arises from this greedy con-
struction method, which simplifies the selection process and ensures that
the resultant code meets specific distance requirements.

The scope of this paper is to explore the construction of lexicodes from
the winning strategies and structures of Celata games. By analyzing the
polynomial-time computation of Grundy values and leveraging structured
subspaces, we aim to demonstrate how these game-theoretic concepts can
be used to efficiently derive lexicodes with robust error-correcting properties

2 Preliminaries

We are concerned with games played on a digraph G = (V, E). Tokens are
initially distributed on a subset of V. A move consists of selecting a token
and moving it to a neighboring vertex, unoccupied or occupied. The player
making the last move wins, and the opponent loses. If there is no last move,

2

the outcome is a draw.

The corresponding game graph is a digraph G’= (V’, E’) where V’ is the
set of all collections of token distributions on G, and (u, v) ∈ E’ if there is
a move from u to v. Note that for the case of a single token on v, we have
G’ = G.

A vertex u ∈ V (game-position) is labeled N if the Next player (the player
moving from u) has a winning move; and by P if the Previous player (who
landed on u) can win. The set of all P-positions and all N-positions are
denoted by P and N, respectively.

For any digraph G = (V, E), the set F(u) of followers of u ∈ V is defined
by

F (u) = {u ∈ V : (u, v) ∈ E}.
It can then be shown that

u ∈ P if and only if F(u) ⊆ N,

u ∈ N if and only if F(u) ∩ P = ∅.

Further, if G is acyclic, then the sets P and N partition V: P ∪ N = V, P ∩
N = ∅.

In our study of Celata games, we will focus on acyclic games. Unlike
cyclic games, acyclic games do not involve positions that can be revisited,
preventing the formation of cycles in the game graph. This introduces spe-
cific dynamics and simplifies the analysis.

Definition 1: An acyclic Celata game of size n is represented by a di-
graph G = (V, E) with V = (z1, ..., zn), and E representing the allowed moves
between states. Each vertex corresponds to a unique game state, and edges
denote possible transitions that maintain the acyclic nature of the game.
The game progresses through a series of moves, where each player flips a
cell in the binary representation of the state, ensuring that no two adjacent
cells are both 1, maintaining the acyclic property.

Remark 1:

(i) The indices are in the integer interval [1, n] making the notation u
= (u1, . . . , un) more convenient for this case. When u = 0, the game graph
is empty, and the game ends immediately.

(ii) The vertex z1 is not a leaf, meaning it has at least one outgoing
edge. A token on z1, for any i ∈ {1, . . . , n} can be flipped, maintaining the

3

acyclic property of the game.

(iii) From any vertex z1, every follower is accessible. Consequently,
the Grundy numbers g(zi) are monotonically increasing: g(z1) < g(z2) <
g(z3) < . . .

The analysis of Nim-Celata games involves understanding the structure
of the game graph and the application of vector spaces over the binary field
GF(2). Each game state can be represented as a binary vector, and the
transitions between states can be modeled using linear algebra.

Definition 2The numerical value of a vector u = (uo, . . . , un−1) ∈ GF (2)n

is |u| :=
∑n−1

i=0 = ui2
i . The weight of u is w(u) =

∑n−1
i=0 ui, which is the

number of 1-bits in u. The parity weight of u is w′(u) =
∑n−1

i=0 ui.

Definition 3 The Hamming distance between two vectors u, v over
GF(2) is defined by H(u, v) = w(u

⊕
v). It is the number of positions

in which u and v differ. A vector u with w(u) even is said to be an evil
number, and one with w(u) odd is an odious number.

Definition 4 The Grundy number (or nimber) g(x) of a position x in a
combinatorial game is defined recursively as the minimum excludant (mex)
of the Grundy numbers of positions reachable from

g(u) = mexg(F (u)),

where for any set T and any function h on T, h(T) = {h(t) : t ∈ T}.

Definition 5 For any terminal position x (i.e., a position with no moves
available), the Grundy number is zero. Therefore we have:

P = {u ∈ V : g(u) = 0},

N = {u ∈ V : g(u) ̸= 0},

D = {u ∈ v : g(u) = 1(L), 0 /∈ L},

where L denotes the leaves in the game tree, representing positions that lead
directly to a terminal position.

We denote the sum of the integers a, b ∈ Z ≥ 0 over GF(2) by a⊕ b, also
known as XOR, or Nim-sum. The XOR of a1, ..., am may also be denoted
by a1 ⊕ ...⊕ am = ⊕m

i=1ai, where the apostrophe denotes XOR.
Definition 6 Let f1, ..., fm be a finite collection of disjoint acyclic games

with game graphs G1 = (V1, E1), ..., Gm = (Vm, Em) The sum-game, denoted
by 1+ ...+ m is a two-player game where:

4

(a)Each game position is a tuple (u1, ..., um), with ui ∈ Vi for all i.

(b)A move consists of selecting one component game i and transitioning
from ui to vi, provided that (ui, vi) ∈ Ei, while all other game components
remain unchanged.

(c)The sum-graph G = G1 + ...+Gm is defined by:

V = {(u1, ..., um) : ui ∈ Vi} for all i

E where (u, v) ∈ E if there exists some j such that

(uj, vj) ∈ Ej and ui = vi for all i ̸= j.

3 Dimensionality and Sparsity of V

Definition 7 Consider the set {z0, z1, ..., zn−1} where zi is a unit vector in
V . Specifically, zi has a 1 in the ith position and 0s elsewhere. This set
forms a basis for the vector space V , establishing that any vertex u in V
can be uniquely represented as a linear combination of these basis vectors:
u =

∑n−1
i=0 uizi,

where ui ∈ {0, 1} are coefficients in GF(2). The dimension of the vector
space is thus n, the number of vertices in the game graph, which also indi-
cates the number of basis vectors.

Definition 8 The set of followers F (u) for a state u in V is defined
through the game’s movement rules encoded by the digraph. For each active
component uk = 1 (indicating the presence of a specific set), the potential
new sets are indicated by:

F (u) = F (u) =
⋃
uk=1

⋃
Fq(zk)⊆F (zk)

F k
q (u)

where Fq(zk) is a subset of followers F (zk), representing all possible moves
from zk within the confines of q followers.

Theorem 1 In the vector space V , the sum of any two vertices u, v ∈ V
is given by their vector addition in GF(2). This operation, defined by:
u⊕ v = (u0 ⊕ vo, u1 ⊕ v1, ...un−1 ⊕ vn−1), demonstrates the additivity of the
game graph under the vector space operations.

Proof 1 Consider two arbitrary vertices u, v ∈ V represented as u =∑n−1
i=0 uizi and v =

∑n−1
i=0 vizi. Their sum in the vector space is computed

as:

u⊕ v =

(
n−1⊕
i=0

uizi

)
⊕

(
n−1⊕
i=0

vizi

)
=

n−1⊕
i=0

(ui ⊕ vi)zi,

5

where ⊕ within the summations signifies vector addition in GF(2). This
also confirms that u⊕ v lies in V .

Lemma 1 The possible subsequent states F (u) from any vector ui in V
can be defined as:

F (u) ⊂
h⋃

j=1

(F (uj)⊕
⊕
i ̸=j

uj).

This inclusion shows the superposition principle where the effect of individ-
ual moves from state uj is modified by the presence of other states.

Proof 2 Consider any v = F (u). By definition v results from u by
applying a valid move which can be decomposed into a move from one of
the uj affected by the context of the other vectors. Hence, v can be expressed
as:

v = u⊕ zk ⊕
∑

l∈Fq(zk)

zl

for some k where uk = 1 and Fq(zk) ⊂ F (zk) This move reflects the game’s
rules that allow changing the state u by ’firing’ zk and altering its q-sized
follower set Fq(zk).
For any v resulting from such transformations, it must either introduce v
into F (u) if uk = 1, aligning with the addition in GF(2) reflecting the XOR
operation of vector components. In acyclic games, once a state u transitions
to v, it cannot revert back, ensuring the forward progression of game states.

Corollary 2 For two specific states u1 and u2 in V :

F (u1 ⊕ u2) ⊂ (u1 ⊕ F (u2)) ∪ (F (u1)⊕ u2).

This demonstrates the distributive property of the follower function over
the binary vector addition, simplifying the prediction of game developments
from combined states.

Example 1 Consider a 2-player game on a digraph G(2). Let u1 = x1y2
(meaning that w(x1) = w(y2) = 1 and all other weights are 0), u2 = y1y2.
Then:

u1 ⊕ u2 = x1y1, F (x1y1) = {0, x1x2}, F−1(x1y1) = {y2}, F (u1) = {y1y2, y1},

F (u2) = {x2y2, x1}, u1 ⊕ F (u2) = {x1x1, y2}, F (u1)⊕ u2 = {0, y2}.

his example illustrates how Corollary 1 is satisfied.

Theorem 2 Let G = (V,E) be the cellular automata graph of a finite
acyclic digraph. Then Vf and V0 are linear subspaces of V . Moreover, ϕ
is a homomorphism from Vf onto GF (2)t for some t ∈ Z≥0 with kernel V0

6

and quotient space Vf/V0 = {Vi : 0 ≤ i < 2t}, where dim(Vf) = m + t and
m = dim(V0).

Proof 3 Let u, v ∈ Vf . Then u⊕ v ∈ Vf by Theorem 1, and also 0 ∈ Vf .
Thus Vf is a subspace of V .

Let t be the smallest nonnegative integer such that g(u) ≤ 2t − 1 for all
u ∈ Vf . Hence, if t ≥ 1, there is some v ∈ Vf such that g(v) ≥ 2t−1.
By the properties of homomorphisms and Theorem 1, g maps Vf onto
GF (2)t with kernel V0. Thus, by linear algebra, we have the isomorphism
GF (2)t ∼= Vf/V0. Therefore, dim(Vf) = m+ t, where m = dim(V0).

Example 2 Consider a 2-regular game played on a digraph with ver-
tices encoded as zi = 2i for all i ∈ Z≥0. For instance, 5 means that there
are tokens on vertices z0 and z2 only. Using the algorithm to calculate g
outlined in Definition 3, we find that g(1) = 0, g(4) = 0, g(10) = 0. Hence,
by linearity, V0 = {0, 1, 4, 10, 5, 11, 14, 15}. We further note that g(2) = 1,
leading to the coset V1 = 2⊕V0 = {2, 3, 6, 7, 8, 9, 12, 13}. With m = 3, t = 1,
and Vf spanned by the basis vectors {1, 4, 10, 2}, we find dim(Vf) = 4. This
example highlights the structured nature of Vf and confirms that each g-
value is assumed in V .

Lemma 2 Let V be the n-dimensional vector space over GF(2) of the
cellular automata game on G = (V,E) with dim(V0) = m. There exists
a homomorphism ψ mapping V onto GF (2)n−m with kernel V0 such that
u ∈ Vf if ψ(u) = g(u), and u ∈ V1 if ψ(u) > g(v) for all v ∈ Vf .

Proof 4 From linear algebra, there exists an (n − m − t)-dimensional
subspace W of V such that V is the direct sum of Vf and W . Thus, every
u ∈ V can be uniquely written as

u = w ⊕ v, w ∈ W, v ∈ Vf .

Let I : W → GF (2)n−m−t be any isomorphism, and define

ψ(u) = (I(w), g(v)),

where I(w) ∈ GF (2)n−m−t and g(v) ∈ GF (2)t. This is well-defined due
to the uniqueness of the representation. Then ψ : V → GF (2)n−m is a
homomorphism since for u′ = w′ ⊕ v′ with w′ ∈ W and v′ ∈ Vf ,

u⊕ u′ = (w ⊕ w′)⊕ (v ⊕ v′),

and thus

ψ(u⊕u′) = (I(w⊕w′), g(v⊕v′)) = (I(w), g(v))⊕(I(w′), g(v′)) = ψ(u)⊕ψ(u′).

7

Additionally, ψ(0u) = ψ(0) = (I(0), g(0)) = 0 = 0ψ(u). If u ∈ Vf , then
u = 0⊕ u with 0 ∈ W and u ∈ Vf , so ψ(u) = (0, g(u)) with numerical value
g(u). For u ∈ V1, I(w) ̸= 0, so the numerical value of the binary vector
(I(w), g(v)) is larger than that of g(v) for all v ∈ Vf .

Theorem 3 Let G = (V,E) be the cellular automata graph of the finite
digraph G = (V,E). Then the following hold:

(i) The set of leaves L, where a leaf is a vector u such that F (u) = ∅,
forms a subspace L when taken as a linear span over GF(2).

(ii) The zero-value subspace V0, consisting of vectors with zero g-values,
can be computed as the linear span of a specific set Q, where Q is defined
by:

Q = (Z2(s+1) ∩ V0) ∪ S.

Here, Zi is the set of vectors of weight at most i, and S is the set of leaves
with weight at most 1.

(iii) The subspace Vf , containing all vectors representing valid game
states, is the linear span of Q and Zf(s+1), where Zf(s+1) is the set of vectors
in Zs+1 that are also in Vf .

(iv) The g-values on Vf are determined by its values on Zf(s+1) ∪ {0}.

(v) Dimension Bound (t ≤ ⌊log2(1 + g(n, s))⌋) is the maximum g-value
on Vf . It is at most 2t−1, where t is bounded by the logarithm of a function
g(n, s) which depends on the game parameters.

Proof 5
(i) By definition, leaves are vectors with no followers. Therefore, any

linear combination of leaves remains a leaf, establishing L as a subspace of
V .

(ii) Clearly, L(Q) ⊆ V0. Suppose for contradiction that there exists
u ∈ V0 \ L(Q) with minimal counter function c(u). By the minimality and
structure of Q, u must be expressed as u = w⊕y for some w ∈ Q and y ∈ Q.
Hence, u ∈ L(Q), a contradiction.

(iii) If u ∈ V0, then u ∈ L(Q) ⊆ L(Q∪Zf(s+1)). For u ∈ Vf \V0, there ex-
ists v ∈ F (u)∩V0 and w = u⊕v ∈ Zf(s+1). Thus, u = v⊕w ∈ L(Q∪Zf(s+1)).

(iv) Clearly, Sr ⊆ Sl. If j = 0, then j ∈ Sr. For j ̸= 0, pick u ∈ Vj.
There exists v ∈ F (u) ∩ V0 such that w = u⊕ v ∈ Zf(s+1), ensuring j ∈ Sr.

8

(v) Let u ∈ Vf have the maximum g-value. By the previous points, u
can be considered within Zf(s+1). The outdegree of u is constrained by the
function g(n, s), leading to the bound 2t − 1 ≤ g(n, s).

The dimensions of V and its subspaces V0 and Vf are useful for the
computation of lexicodes derived from the digraphs of two-player Celata
games. The number of basis vectors in Vf , which corresponds to the number
of linearly independent columns in the adjacency matrix of the digraph over
GF(2), determines the structure and span of the vector space. This number,
m, is used to calculate the lexicodes, ensuring that each lexicode is uniquely
represented within the subspace Vf .

4 Computation of the Lexicode

As mentioned the set of P-positions in an acyclic cellular automata game
constitutes a code. Specifically, for an acyclic game, the lexicode with dis-
tance d = s+ 2 forms a basis for the P-positions.

Definition 8 P-positions can be represented as vectors in a vector space
over GF(2), the finite field with two elements. Each P-position u can be
written as: u = (u1, u2, ..., ul,m) where u1 < u2 < ... < ul < m and
g(zi1)⊕ g(zi2)⊕ ...⊕ g(zil)⊕m = 0.

By the properties of the g-function, g(zi1) < g(zi2) < ... < g(zil) < m.
If g(zm) = 2k, u cannot be a P-position since 2k is not the sum of distinct
nonnegative integers less than 2k.

Theorem 4 The dimension of p is determined by the number of seeds
≤ 2t − 1, where t is the smallest integer such that gs(zn) ≤ 2t − 1. Also If
gs(zm) is a seed, then there exists u ∈ Ps with um = 1 and w(u) = s+ 2.

Proof 6 By Definition 7, if g(zm) = 2k, u cannot be a P position since
2k is not the sum of distinct nonnegative integeres less that 2k. Also if g(zm)
is a seed, there are powers of 2 such that g(zm) ⊕

∑
g(zj) ∈ R = 0, where

R is a suitable subset for T. Hence v := g(zm) ⊕
∑
g(zj) ∈ P , and these v

are linearly independent, forming a basis for P.

Lemma 3 The set S formed by the vectors v as described above is lin-
early independent, ensuring that S constitutes a basis for P.

Proof 7 Since very zm such that g(zm) is a seed appearing in S only
once, and each unique basis number, S is linearly independent.

Lemma 4 For any finite set S ⊆ Z≥0, mex(S) is the smallest nonnega-

9

z0

z1 z2

z4

z5 z6 z7

z3

Figure 1: A simple Celata game graph

tive integer in S.

Procedure: To compute the lexicode Ps for a given acyclic Celata
game, we use the following algorithm. First, we for each state zm, we com-
pute gs(zm) using the mex function. Specifcally for m ∈ {1, .., n}, we calcu-
late gs(zm) = mex{g(zi1 ⊕ g(zi2 , ..., g(zij : 1 ≤ i1 < i2 < ... < ij < m, j ≤ s}

Once we have gs(zm) values, we identify the seeds, which are the g-values
that are not the sum of distinct smaller g-values. For each seed gs(zm), we
generate basis members by including the seed itself and all powers of two
that appear in it. For example, if a seed is 13, the basis member induced by
this seed would be 13,8,4,1.

After identifying the basis members, we employ a greedy algorithm to
construct the lexicode. We begin with an ordered set of vectors Vm =
{0, 1, ..., 2m − 1} in lexicographic order. The lexicode L is initialized with
the zero vector. We then iterate through each vector v in Vm, adding v to L
only if it maintains a minimum Hamming distance d from all vectors already
in L. This ensures that the resulting lexicode has the desired minimum dis-
tance property, making it an appropriate code for error correction.

The complexity analysis of this algorithm shows that computing gs(zm)
for each state m involves O(ns+1) , which is the dominant term. The subse-
quent steps of determining basis members and applying the greedy algorithm
are less computationally intensive, with the overall time complexity being
O(nd−1) and the space complexity being O(nd−2).

Example 3 Consider the Celata game displayed in Fig 2 with n = 8 and s
= 3. G-value of every state in the graph is computed using the mex function:

10

g(z0) = 0

g(z1) = 1

g(z2) = 2

g(z3) = 4

g(z4) = 8

g(z5) = 15

g(z6) = 16

g(z7) = 32

We construct and initial matrix W for these values:

W =



1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
1 0 1 0 0 0 0 0
0 1 1 1 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 0



From this initial matrix, we select s = 3 rightmost linearly independent
columns, achieving:

Windependent =



0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
1 1 0



These columns represent the basis of vector states for our game. To com-
pute the lexicode using the greedy algorithm we proceed by constructing the
2s elements of V s in lexigrophic order: V s = {0, 1, ..., 2s − 1}. For s = 3,
this set is V 3 = {0, 1, 2, 3, 4, 5, 6, 7}. These elements are mapped to binary

11

vectors: V 3 = {000, 001, 010, 011, 100, 101, 110, 111}

We then construct the set V n by applying the mapping Ak = Windependent·
K, where K is the column vector of the binary value of k. Using the greedy
algorithm, we select codewords maintaining the minimum Hamming dis-
tance d = 5.

The resulting lexicode is P = {(00000000), (00001100), (00110011), (11110000)}.

5 The Special Case q = 1

In the context of Celata games, q = 1 refers to the restriction that each
move affects exactly one token. This simplifies the analysis and allows for
polynomial-time computation of g-values and lexicodes.

Lemma 5 Given a basis {z0, z1, . . . , zn−1} of the vector space V , any
additional vector v ∈ V \ span{z0, z1, . . . , zn−1} can extend this basis to
{z0, z1, . . . , zn−1, v}.

Proof 7 Since v /∈ span{z0, z1, . . . , zn−1}, v is linearly independent of the
basis vectors. Adding v to the basis extends the dimension by 1, forming a
new basis for the extended space.

Lemma 6 The subspace Vf , containing all vectors representing valid
game states, is the linear span of a set Q and Zf (s + 1), where Zf (s + 1)
is the set of vectors in Zs+1 that are also in Vf . The g-values on Vf are
determined by its values on Zf (s + 1) ∪ {0}. The lexicode derived from Vf
can be computed efficiently using polynomial-time algorithms, leveraging
the structure and dimensionality of Vf .

To compute the g-function for an acyclic Celata game with q = 1, we
use an approach that builds upon the structured subspaces V0 and Vf . The
algorithm proceeds as follows:

We start by constructing the subgraphs G[2] and G[4]. The subgraph
G[2] = (V [2], E[2]) is induced by the set Y2∪S, where Y2 contains vectors of
weight 2, and S is the set of leaves. Similarly, G[4] = (V [4], E[4]) is induced
by Y4∪Y2∪S, with Y4 containing vectors of weight 4. These subgraphs help
in isolating and examining specific portions of the original graph G relevant
to the computation of the g-values.

Next, we apply the first iteration of Algorithm GSG (Generalized Sprague-
Grundy) to G[4]. This step involves identifying a set Q = {q1, . . . , qp} of

12

z0

z1

z2

z3

z4 z5 z6

Figure 2: Illustrating Example 4

vectors in V0, along with their counter values c. These vectors and values
are stored for subsequent steps. Similarly, we apply Algorithm GSG to G[2],
where the largest g-value is determined to be 2t − 1 for some integer t. The
vectors v1, . . . , vt with specific g-values are stored alongside their monotonic
counter values c.

Following this, we construct a matrix A comprising vectors q1, . . . , qp,
v1, . . . , vt, z0, . . . , zn−1, where zi are unit vectors. This matrix is then trans-
formed into a row-echelon matrix E using elementary row operations. The
indices of the unit vectors in E help determine the bases for the subspaces
V0 and Vf .

Specifically, let 1 ≤ i1 < . . . < in ≤ p + t + n be the indices of the
unit vectors in E. The matrix B, consisting of columns Ai1 , . . . , Ain of A,
provides a basis for V . The inverse matrix B−1 enables the computation of
the homomorphism ψ(zi) = (ψmi

, . . . , ψn−1,i) for 0 ≤ i < n.

The homomorphism ψ enables us to represent all vectors as linear com-
binations of the basis vectors, facilitating the polynomial time computation
of g-values across the vector space V . The following detailed example illus-
trates the application of this algorithm:

Example 4 Consider the game in Fig 2 game with n = 7. The adjacency
matrix for this game’s G is:

13

G =



0 1 1 1 1 1 1
0 0 0 1 1 1 1
0 0 0 0 1 1 1
0 0 0 0 0 1 1
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0



First, we construct the subgraphs G[2] and G[4]. The subgraph G[2]
includes vertices with weights 2 or less. For simplicity, assume G[2] contains
z0, z1, z2. The subgraph G[4] includes vertices with weights 4 or less. As-
sume it contains z0, z1, z2, z3, z4.

Applying the first iteration of algorithm to G[4], we identify the set
Q = {q1, q2} with vectors q1 = z1 + z2 and q2 = z2 + z3. Then it becomes
apparent that we find the largest g-value to be 21 − 1 = 1, with vector
v1 = z0 + z1.

Next, we construct the matrix A including vectors q1, q2, v1, z0, z1, z2,
z3, z4, z5, z6:

A =



1 0 1 1 0 0 0 0 0 0
0 1 1 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1



Transforming A into row-echelon matrix E:

14

E =



1 0 1 0 0 0 1 0 0 0
0 1 1 0 1 1 1 0 0 0
0 0 0 1 1 0 1 0 0 0
0 0 0 1 0 1 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0



The basis vectors are determined from E, and the homomorphism ψ(zi)
is computed.

This example demonstrates how the algorithm applies to an acyclic di-
graph, transforming it into an equivalent row-echelon form and calculating
the necessary homomorphisms to determine the g-values and structure of
the lexicodes.

6 Forcing a Win in Celata Games

We can look into the strategy for forcing a win in acyclic cellular automata
games by building on the concept of the g-function, computed using our
polynomial-time algorithm, to determine P-, N-, and D-positions for any
state in the game.

Definition 9 Let R ⊆ V . A representation ue of u ∈ V over R is a sub-
set ue = {u1, . . . , uh} ⊆ R of distinct elements ui. If R is either indicated
by the context or irrelevant, we may simply say that ue is a representation
of u =

∑h
j=1 uj. The empty representation is denoted by ∅.

Definition 10 For ue = {u1, . . . , uh} ⊆ R and vj ∈ F (uj), a follower
function for representations is given by

Fe(ue, uj, vj) =

{
ue ∪ {vj} \ {uj} if vj /∈ ue

ue \ {uj} if vj = ui for some i ̸= j.

Definition 11 For ue = {u1, . . . , uh} ⊆ R, the set of all representation
followers of ue is defined by

Fe(ue) =
h⋃

j=1

⋃
vj∈F (uj)

Fe(ue, uj, vj).

15

Lemma 7 For any ue = {u1, . . . , uh} ⊆ R:

(a) F (ξ(ue)) ⊆ ξ(Fe(ue)).

(b) ξ(Fe(ue)) ⊆ F (ξ(ue)) ∪ F−1(ξ(ue)).

(c) Let ve = Fe(ue, uj, vj), where vj ∈ F (uj). Then ξ(ue) ∈ F (ξ(ve)) if
and only if vj = ξ(Fe(ue)).

Theorem 5 For any integer 0 ≤ p < 2t, a function γ : (Rj, V) → Rj

can be computed in polynomial time, such that if ue = {u1, . . . , uh} ⊆ Rj is
a representation of ξ(ue) ∈ Vp and ξ(ve) ∈ F (ξ(ue)) with g(ξ(ve)) > p, then
γ(ue, ξ(ve)) = we ⊆ Rj, where ξ(we) ∈ F (ξ(ve)) ∩ Vp and c(we) < c(ue).

Proof 8 Let v0 ∈ F (ξ(ue)) with g(v0) > g(ξ(ue)). By (a), v0 ∈ ξ(Fe(ue)),
say v0 = ξ(Fe(ue, uj, vj)). Since w(uj) ≤ 4, the computation of j, k such
that vj = Fk(uj) = v0 +

∑
i ̸=j ui takes O(n

2) steps. For simplicity of no-
tation, assume that j = 1. Since g(v0) > g(ξ(ue)) and ue = {u1, . . . , uh}
is a representation over Rj, i.e., its elements have g-values 0 or distinct
powers of 2, it follows that g(v1) > g(u1) and v1 ̸= ui (for 1 ≤ i ≤ h),
so v0e = {v1, u2, . . . , uh} is a representation of v0 = v1 +

∑h
i=2 ui over

V . Also, v1 ∈ V4, hence v1 has only O(n) followers, so we can compute
w1 ∈ F (v1)∩V4 with g(w1) = g(u1) and c(w1) < c(u1) in O(n) steps. Hence
c(w0

e) < c(ue), where w
0
e = {w1, u2, . . . , uh} if w1 ̸= ui (for 2 ≤ i ≤ h), or

w0
e = {u2, . . . , ui−1, ui+1, . . . , uh} otherwise, and in any case w0

e ⊆ Fe(v
0
e)∩Rj,

so ξ(w0
e) ∈ ξ(Fe(v

0
e)). Hence, by (b), ξ(w0

e) ∈ F (ξ(v0e)) ∪ F−1(ξ(v0e)).

If ξ(w0
e) ∈ F (ξ(v0e)), we let γ(ue, ξ(v

0
e)) = w0

e , which satisfies the de-
sired requirements. If ξ(v0e) ∈ F (ξ(w0

e)), we replace the ancestor ξ(ue) of
ξ(v0e) by its ancestor ξ(w0

e) with representation w0
e . A representation v1e

of ξ(v0e) = ξ(v1e) can be obtained from w0
e based on (a), as at the begin-

ning of this proof. As before we get w1
e ⊆ Fe(v

1
e) ∩ Rj with c(w1

e) < c(w0
e)

and ξ(w1
e) ∈ F (ξ(v1e)) ∪ F−1(ξ(v1e)). This process thus leads to the for-

mation of two sequences v0e , v
1
e , . . . ;w

0
e , w

1
e , . . ., where ξ(v0e) = ξ(vie) (for

i = 1, 2, . . .), wi
e ⊆ Rj, ξ(w

i
e) ∈ F (ξ(vie)) ∪ F−1(ξ(vie)) (for i = 1, 2, . . .).

Since c(w0
e) > c(w1

e) > . . ., these sequences must be finite. In fact, each
sequence has at most O(n5) terms. Since this process keeps producing a
new sequence term if ξ(wi

e) ∈ F−1(ξ(vie)), there exists j = O(n5) such
that ξ(wj

e) ∈ F (ξ(vje)). We then define γ(ue, ξ(ve)) = wj
e, which satisfies

the desired requirements. Finally, it can be decided in O(n) steps whether
ξ(wi

e) ∈ F (ξ(vie)) or ξ(v
i
e) ∈ F (ξ(wi

e)) by using (c).

Theorem 6 Given an N-position in a sum of r games containing a two-
player acyclic cellular automata game played on a finite digraph G = (V,E)

16

with |V | = n. The subset M of moves on G leading to a win has size O(n5),
and its computation needs O(n6) steps.

Proof 9 Apply Algorithm CEL to G O(n6) steps. Given an N-position
of the sum, we may assume that a winning move is of type (ii). So we have to
move from a vertex u in G, which corresponds to u ∈ Vℓ or to g(u) = 1(K),
p ∈ K in the cellular automata game-graph, to v ∈ F (u) ∩ Vp.

Assume first u ∈ Vℓ. Compute B−1u to get a representation ue =
{u1, . . . , uh} ⊆ Rs with ξ(ue) =

∑h
i=1 ui, where s = ⌈log2(ℓ + 1)⌉ O(n2)

steps. For a move of type (ii), let v ∈ F (ξ(ue)) ∩ Vp. By (a), v ∈ ξ(Fe(ue)),
say v = ξ(Fe(ue, u1, v1)). As we saw at the beginning of the proof of Theorem
5, the computation of v1 = Fk(u1) = v +

∑
i ̸=j ui takes O(n

2) steps. It can

always be arranged so that g(v1) < g(u1). Also w(v1) ≤ 4. Thus v1e = {v1}
is a representation. Replacing u1 by v1 in ue and deleting v1 if v1 = ui for
some i, we get a representation ve of v over Rj, where j = ⌈log2(p+1)⌉ O(n)
steps. Since p < ℓ and c is monotonic we have c(ve) < c(ue).

Secondly, assume g(u) = 1(K). Scan the O(n2) followers of u, to lo-
cate one, say v, which is in Vp. Compute B−1v to yield a representation

ve = {v1, . . . , vh} ⊆ Rj with v = ξ(ve) =
∑h

i=1 vi, where j = ⌈log2(p + 1)⌉
O(n4) steps. By definition, c(ve) < c(ue).

In any subsequent move of type (ii) we compute the new representation
from the previous one as was done above for the case u ∈ Vℓ, where ve was
computed from ue in O(n) steps.

For a move of type (i), assume that player II moves from ui = ξ(uie) ∈ Vp
with uie ⊆ Rj where j = ⌈log2(p + 1)⌉ to vi ∈ F (ui) with g(vi) > g(ui).
Then player I computes ui+1

e = γ(uie, vi) O(n) steps and moves to ui+1 =
ξ(ui+1

e) ∈ F (vi) ∩ Vp such that c(ui+1
e) < c(uie). This can be done as we saw

in Theorem 5.

Thus, c decreases strictly for both a move of type (i) and of type (ii).
Since c(ue) = O(n5), player I can win in O(n5) moves made in the acyclic
cellular automata game, for whatever sequence of moves of type (i) and (ii)
is taken. This is in addition to any other moves in the other sum compo-
nents. Since each computation of one move of type (ii) and of γ requires
O(n) steps, the entire computation time for player I in the acyclic cellular
automata game is O(n6).

17

6.1 Lexicodes From Winning Positions

We now explore how strategies and equations for forcing a win in acyclic
Celata games can be leveraged to create lexicodes with polynomial-time
complexity. This process utilizes previously developed polynomial-time al-
gorithms through the following steps:

1. Construct subgraphs G[2] and G[4] to isolate specific portions of the
original game graph G.

2. Apply the Generalized Sprague-Grundy (GSG) algorithm to compute
g-values and identify critical states. Using the follower function Fe, we
calculate g-values in polynomial time, ensuring transitions preserve the
structure required for error-correcting codes:

γ(ue, ξ(ve)) = we ⊆ Rj, ξ(we) ∈ F (ξ(ve)) ∩ Vp and c(we) < c(ue).

3. Represent these states to form basis vectors for the lexicode. Encode
each game state ue and its transitions ξ(ue) as binary strings. Transi-
tions are determined using the follower function Fe and the polynomial-
time computable function γ. Form the lexicode by concatenating these
binary representations.

4. Ensure the lexicode maintains a lexicographic order to guarantee a
minimum Hamming distance.

Example 5 Consider a game on a digraph G = (V,E) with vertices
{z0, z1, z2, z3, z4}. The adjacency matrix A is given by:

A =


0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
0 0 0 0 1
0 0 0 0 0


Following the algorithm to construct the lexicode:

1. Identify Subgraphs: Assume G[2] contains vertices {z0, z1, z2} and
G[4] contains vertices {z0, z1, z2, z3, z4}.

2. GSG Algorithm Application: Apply the GSG algorithm to G[4] to
find the set Q = {q1, q2} with vectors q1 = z1 + z2 and q2 = z2 + z3.

3. Compute g-values and Representations:

g(z0) = 0, g(z1) = 1, g(z2) = 2, g(z3) = 3, g(z4) = 4

ue(z0) = ∅, ue(z1) = {z0}, ue(z2) = {z1}, ue(z3) = {z2}, ue(z4) = {z3}

18

4. Form the Lexicode: Select vectors in lexicographic order:

{(0, 0, 0, 0, 0), (1, 0, 0, 0, 0), (1, 1, 0, 0, 0), (1, 1, 1, 0, 0), (1, 1, 1, 1, 0), (1, 1, 1, 1, 1)}

This lexicode has a minimum Hamming distance of 2, ensuring it can
correct single-bit errors.

Example 6 Consider another simple example with game states V =
{u, v, w} and their representations ue, ve, we:

ue = {u1, u2}, ve = {v1, v2}, we = {w1, w2}

Using the polynomial-time algorithm, classify u and v as P -positions
and w as an N -position. Compute the set of moves M leading from w to a
P -position:

ue → 00, ve → 01, we → 10

Form the lexicode by concatenating these binary representations:

{00, 01, 10}

To ensure the lexicodes preserve error-correcting properties, we use the
structure of game state transitions and the follower functions. Each transi-
tion is computed as follows:

1. Compute the follower function Fe for a given representation ue.

2. Use the function γ to find the next state we such that c(we) < c(ue).

3. Encode the state we as a binary string, maintaining polynomial-time
complexity for each transition.

7 Epilogue

In this paper, we have extended the framework of two-player cellular au-
tomata games to derive error-correcting codes, specifically focusing on the
construction of lexicodes. Our approach leverages the polynomial-time com-
putability of Grundy values and critical states, facilitated by the follower
function Fe and the polynomial-time function γ. This ensures that the de-
rived lexicodes maintain their error-correcting properties efficiently.

Moreover, we have shown that the derived lexicodes from these games
are not only theoretically sound but also practically implementable. The
polynomial strategy used for acyclic games guarantees the feasibility of com-
puting winning moves and subsequently the error-correcting codes.

19

A collection of two-player cellular automata games with only a minimum
of the underlying theory can be found in various references. An obvious re-
maining question is whether Celata games have a polynomial strategy for
every q > 1. We have, in fact, provided a polynomial infrastructure for
the general case, in the sense that everything up to the end of Section 6 is
consistent with a polynomial strategy for all q ≥ 1. However, V [q + 1] and
V [2(q+1)] are not restrictions of V when q > 1, so we cannot apply Lemma
3. Therefore, we cannot prove polynomiality for q > 1 in the same way we
used for 1-regular games.

The special case of 1-regular games has been analyzed in previous works.
Our current paper is a generalization, simplifying and clarifying many as-
pects of these earlier studies. Misère play of 1-regular games, where the
player making the last move loses, has been investigated as well. 1-regular
games are barely polynomial, with complexity O(|V |6), and any perturba-
tion typically results in PSPACE-hard games.

A strategy in the broad sense, defined by Kalmár and Smith, depends
on the present position and all its antecedents from the beginning of the
play. While both authors concluded that it suffices to consider strategies in
the narrow sense, depending only on the present position, our exploration
revealed that a broad sense strategy was necessary for computing a winning
move in polynomial time due to the constraints of maintaining polynomial-
ity within a small subgraph of the game-graph.

Cellular automata games can potentially lead to linear error-correcting
codes with Hamming distances greater than 4. The current work was mo-
tivated by the desire to create such games, which naturally induce codes
with superior error-correcting properties. In practice, the computation of
V0, which is all that’s needed for the codes, can often be done by inspection.
The best codes may be derived from a simplified digraph, where V0 can also
be computed easily.

We aimed to further explore polynomial games with token interactions
and to create two-player cellular automata games. Three key ideas were
used:(I) additivity of γ**, (II) computation by restriction, namely comput-
ing V0, Vf , and γ with a restricted linear span of sparse vectors of polynomial
size, (III)computing a winning move efficiently.

While (I) and (II) are polynomial for all two-player cellular automata
games, this has been shown for (III) only for the special case q = 1 (1-
regular games). Thus, the main open question is the complexity status of
(III) for q > 1. Another question that hasn’t been settled in this paper is
what happens when loops are permitted in the ground graph. Previously
this has been investigated by Fraenkel with his method of quantifying cyclic

20

cellular automata games.

References

[1] Fraenkel, A., “Combinatorial games with an annihilation rule,” in The
Influence of Computing on Mathematical Research and Education, Sym-
posium in Applied Mathematics, J. LaSalle, Ed., vol. 20. American
Mathematical Society, 1974, pp. 87–91.

[2] Fraenkel, A., “Complexity, appeal and challenges of combinatorial
games,” expanded version of a keynote address at Dagstuhl Seminar
“Algorithmic Combinatorial Game Theory”, Feb. 17–22, 2002. To ap-
pear in Theoretical Computer Science, special issue on Algorithmic
Combinatorial Game Theory. Preprint available: http://www.wisdom.
weizmann.ac.il/~fraenkel.

[3] Fraenkel, A., “Error-correcting codes derived from combinatorial
games,” in Games of No Chance, R. Nowakowski, Ed., vol. 29. Cam-
bridge University Press, 1996, pp. 417–431.

[4] Fraenkel, A., “Two-player games on cellular automata,” inMore Games
of No Chance, R. Nowakowski, Ed., vol. 42. Cambridge University
Press, 2002, pp. 279–306.

[5] Ferguson, T., “Misère annihilation games,” Journal of Combinatorial
Theory, Series A, vol. 37, pp. 205–230, 1984.

[6] Trachtenberg, A., and Vardy, A., “Lexicographic codes: Construc-
tions, bounds, and Trellis complexity,” in 31st Annual Conference on
Information Sciences and Systems, 1997. [Online]. Available: http:

//citeseer.nj.nec.com/448945.html

[7] Yesha, Y., Theory of Annihilation Games, PhD thesis, Weizmann In-
stitute of Science, Rehovot, Israel, 1978.

21

http://www.wisdom.weizmann.ac.il/~fraenkel
http://www.wisdom.weizmann.ac.il/~fraenkel
http://citeseer.nj.nec.com/448945.html
http://citeseer.nj.nec.com/448945.html

	Introduction
	Preliminaries
	Dimensionality and Sparsity of V
	Computation of the Lexicode
	The Special Case q=1
	Forcing a Win in Celata Games
	Lexicodes From Winning Positions

	Epilogue

