Carmichael Numbers

Dale Liu

July 12, 2024

ale	

Carmichael Numbers

July 12, 2024

< ∃⇒

• • • • • • • •

æ

Theorem (Fermat's little theorem)

If p is a prime and a is an integer coprime to p, we must have $a^{p-1} \equiv 1 \pmod{p}$

Naturally, the question arose as to whether p could be a composite integer and still satisfy the equation.

Definition

A composite number *n* is a Carmichael number if for any integer *a* coprime to *n*, we have $a^{n-1} \equiv 1 \pmod{n}$.

In 1910, Robert Carmichael began an in-depth study of these numbers. He noted that the first such number was 561. These numbers are useful because they are a class of pseudoprimes that pass Fermat's primality test while being composite.

Theorem (Korselt's Criterion)

A composite integer n > 2 is a Carmichael number if and only if n is squarefree and for all primes p dividing n, $(p-1) \mid (n-1)$.

Alwin Korselt proved this in 1899. We can see $561 = 3 \cdot 11 \cdot 17$ satisfies this because 2 | 560, 10 | 560, and 16 | 560.

Proposition

All Carmichael numbers are odd

Proof.

We will prove this is true by contradiction. Assume n > 2 is an even Carmichael number. Now, let a = n - 1. Since (n, n - 1) = 1, by definition,

$$a^{n-1} \equiv 1 \pmod{n} \implies (-1)^{n-1} \equiv 1 \pmod{n}.$$

But since *n* is even, $1 \equiv (-1)^{n-1} \equiv -1 \pmod{n}$, which gives us a contradiction.

Proposition

All Carmichael numbers have at least 3 prime factors

Proposition

All prime factors p of a Carmichael number n satisfy $p < \sqrt{n}$

Both proofs follow from Korselt's criterion.

In 1939, Jack Chernick found a way to generate Carmichael numbers.

Proposition

Given a positive integer k, if 6k + 1, 12k + 1, and 18k + 1 are all prime, then the product (6k + 1)(12k + 1)(18k + 1) is a Carmichael number.

Proof.

By Korselt's, we just need to show 6k, 12k, and 18k all divide (6k + 1)(12k + 1)(18k + 1) - 1. Expanding the product we get $36k(36k^2 + 11k + 1)$, which is clearly divisible by all 3 numbers.

The smallest such number is $1729 = 7 \cdot 13 \cdot 19$. Chernick's method provides a simple and easy way of generating very large Carmichael numbers.

イロト イヨト イヨト ・

For most of the 20th century, it was believed that the list of Carmichael numbers may be infinitely extended, but no one could come up with a proof.

Theorem (Alford, Granville, Pomerance)

Let C(x) denote the number of Carmichael numbers less than x. There exists a constant c such that if $x \ge c$, then $C(x) > x^{2/7}$.

In 1994 William Alford, Andrew Granville, and Carl Pomerance published a paper proving this lower bound. As x approaches infinity, C(x) also approaches infinity, thus there are infinitely many Carmichael numbers.

The idea behind the proof involves Number Theory and Group Theory

- Construct a large number L along with a set of k distinct primes such that for each prime p, we have $(p-1) \mid L$.
- Take a subset of the k primes and let its product be P. If $P \equiv 1 \pmod{L}$, then P is a Carmichael number from Korselt's criterion.
- Group Theory is used to find the lower bound on the amount of subsets that satisfy this property.
- There is no limitation on how large *L* can be, and as *L* approaches infinity, it can be shown that the lower bound on the number of subsets also approaches infinity.

- In 2005 Glyn Harman proved $C(x) > x^{0.332}$. Then in 2008, he improved his bound to $C(x) > x^{1/3}$
- Many mathematicians including Erdős and Knödel gave upper bounds to C(x). Currently, the best bound is from Richard Pinch, who provided an upper bound of

$$C(x) < x \cdot \exp\left(-\frac{\ln(x)\ln(\ln(\ln(x)))}{\ln(\ln(x))}\right)$$

Bounds compared to C(x)

Figure: Upper and lower bounds compared to C(x) for $x \le 10^{18}$

Da	

How do we check if a number n is a Carmichael number?

• Check if all integers a satisfy $a^{n-1} \equiv 1 \pmod{n}$

How do we check if a number n is a Carmichael number?

- Check if all integers a satisfy $a^{n-1} \equiv 1 \pmod{n}$
- Prime factorize n and check if Korselt's criterion holds.

The prime factorization process is the most time consuming part. Checking Korselt's criterion will only take as many iterations as $\omega(n)$, which is the number of distinct prime factors of n.

Theorem (Hardy-Ramanujan)

For most integers n, $\omega(n) \sim \ln(\ln(n))$

For example, if we take the 100th Carmichael number $9439201 = 61 \cdot 271 \cdot 571$, the Hardy-Ramanujan theorem states that $\omega(9439201) \sim 2.776$ which is pretty accurate.

15/22

What is an efficient way of finding the prime factors of n? A simple method is to check all numbers from 2 to \sqrt{n} and see if they divide n. This algorithm runs in $O(\sqrt{n})$.

Pollard's rho algorithm

This technique cleverly uses Floyd's cycle-detection algorithm to find prime factors. Let g(x) return the child node of node x.

Definition

Define the sequence *a* as $a_0 = 1$, and $a_{i+1} = g(a_i)$. Similarly, define the sequence *b* as $b_0 = a_0$, and $b_{i+1} = g(g(b_i))$.

Floyd's algorithm states that if there is an index j > 0 such that $a_j = b_j$, then the graph has a cycle.

Dale Liu

July 12, 2024

The idea was to use a polynomial f(x) to generate pseudorandom numbers, and detect cycles of $f(x) \pmod{p}$ for the prime divisors p of n.

Definition

Define the sequence x as $x_0 = f(0)$, and $x_{i+1} = f(x_i)$. Similarly, define the sequence y as $y_0 = x_0$, and $y_{i+1} = f(f(y_i))$.

The sequence f(x) taken modulo p must cycle, so there is an index j such that $x_j \equiv y_j \pmod{p}$. On each step i > 0, we check if $gcd(|x_i - y_i|, n) > 1$. If it is, then it is very likely that it's a prime factor. If not, change f(x) slightly and try again.

This algorithm runs in $O(n^{1/4})$ on average because the expected value of the smallest index j such that $x_j \equiv y_j \pmod{p}$ is \sqrt{p} . This method is a good way of checking large values of n.

Definition

A squarefree composite integer n is a Quasi-Carmichael number if every prime p that divides n satisfies p + b | n + b, with b being any nonzero integer.

This is a generalization of the Carmichael numbers. The smallest Quasi-Carmichael number is 35 with b = -3.

There are still many unsolved questions relating to Carmichael numbers. A few main ones are

- Understanding how Carmichael numbers are distributed (spacing and gaps)
- Finding the smallest Carmichael number with k prime factors
- Developing more efficient algorithms to identify Carmichael numbers Solving these problems may also give us more insight on the properties of prime numbers.

Thank you for listening!

• • • • • • • •

æ