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Abstract

In this paper, we begin by establishing a few fundamental properties of Carmichael

numbers. We then show the details and motivation behind Alford, Granville, and Pomer-

ance’s proof that there are infinitely many Carmichael numbers. Additionally, we present a

few bounds on these numbers, including an analogue of Bernard’s postulate for Carmichael

numbers. Finally, we analyze a few algorithms designed to generate and check large

Carmichael numbers.
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1 Introduction

Fermat’s little theorem states that for any prime p and integer a, coprime to p, we must have

ap−1 ≡ 1 (mod p). (1)

Naturally, the question arose as to whether p could be a composite integer and still satisfy

the equation. These composite integers are known as the Carmichael numbers.

Definition 1.1. A composite number n is a Carmichael number if for any integer a coprime

to n, we have an−1 ≡ 1 (mod n).

These numbers were named after Robert Carmichael, an American mathematician who

began an in-depth study of these numbers in 1910. Carmichael noted that the smallest such

number was 561. These numbers are important because they are composite numbers able to

pass primality tests such as the Fermat primality test for all possible bases. This makes them

useful in public key encryption systems such as the RSA Algorithm.

For most of the 20th century, a big unsolved question regarding the Carmichael numbers

was whether there were an infinite amount of them. It wasn’t until 1994, when Alford,

Granville, and Pomerance proved that this was true. In this paper, we will explain their

proof, as well as their motivation behind it. We will also explore a few interesting properties

of the Carmichael numbers, and a few algorithms used to identify these numbers.



2 Properties of Carmichael Numbers

First we will show a few proofs of some properties of Carmichael numbers. These proofs will

only require elementary techniques.

Theorem 2.1 (Korselt’s Criterion). A composite integer n > 2 is a Carmichael number if

and only if n is squarefree and for all primes p dividing n, (p− 1) | (n− 1). [Kor99]

Proof. We will first show that if n is a Carmichael number, then n must be squarefree. Denote

vp(x) as the largest integer e such that pe | x. For the sake of contradiction, assume vp(n) ≥ 2

for some prime p, and let k = vp(n). We can now write n = pkn′. We will use the Chinese

Remainder Theorem to get a contradiction.

Since (pk, n′) = 1, by the Chinese Remainder Theorem, there must be an integer a ≤ n such

that

a ≡ p+ 1 (mod pk) (2)

a ≡ 1 (mod n′) (3)

It follows that (a, n) = 1, so by the definition of Carmichael numbers, an−1 ≡ 1 (mod n).

Since k ≥ 2 =⇒ p2 | n, we can take this modulo p2 instead and get (p+1)n−1 ≡ 1 (mod p2).

By the binomial theorem,

1 ≡ (p+ 1)n−1 (4)

≡ pn−1 +

(
n− 1

1

)
pn−2 + · · ·+

(
n− 1

n− 2

)
p1 +

(
n− 1

n− 1

)
p0 (5)

≡ (n− 1)p+ 1 (mod p2) (6)

Since n−1 ≡ −1 (mod p2), we have 1−p ≡ 1 (mod p2), which is a contradiction, thus k = 1.

Next, we will show if n is a Carmichael number, then (p − 1) | (n − 1) for every prime

p | n. Since n is squarefree, (p, n/p) = 1. Now, by the Chinese Remainder Theorem, we

can pick an integer a such that a ≡ 1 (mod n/p) with a being a primitive root modulo p, so

(a, n) = 1. Then, an−1 ≡ 1 (mod n). We can reduce both sides modulo p to get an−1 ≡ 1

(mod p), and since a is a primitive root modulo p, the order of a (mod p) is p − 1, which

implies that (p− 1) | (n− 1).
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Now we will show that if n is a squarefree integer, and (p− 1) | (n− 1) for every prime p

that divides n, then n is a Carmichael number. For any integer a, where (a, n) = 1, we must

have (a, p) = 1 for all primes p dividing n. By Fermat’s Little Theorem, ap−1 ≡ 1 (mod p),

and since (p − 1) | (n − 1), an−1 ≡ 1 (mod p) for all primes p that divide n, and with the

condition that n is squarefree, we have an−1 ≡ 1 (mod n). By definition, this means n must

be a Carmichael number.

Alwin Korselt proved this theorem in 1899, 11 years before Robert Carmichael began an

in-depth study of these numbers. Unlike Carmichael, Korselt was unable to find any numbers

that satisfied this criterion, which is why they are called the Carmichael numbers.

Corollary 2.1 (Chernick). If k is a positive integer and 6k + 1, 12k + 1, and 18k + 1 are all

prime, then (6k + 1)(12k + 1)(18k + 1) is a Carmichael number. [Che39]

Proof. We will use Korselt’s Criterion to verify Chernick’s construction of Carmichael num-

bers. Let n = (6k + 1)(12k + 1)(18k + 1). n must be squarefree because it is the product of

three distinct primes. Now, we need to show n− 1 is divisible by 6k, 12k, and 18k, so that n

satisfies Korselt’s Criterion. We can do this by expanding the product

n− 1 = (6k + 1)(12k + 1)(18k + 1)− 1 = 36k(36k2 + 11k + 1)

And since 36k | n− 1, it follows that 6k, 12k, and 18k must also divide n− 1, so n must be a

Carmichael number.

The smallest number that can be constructed this way is 1729 = 7 ·13 ·19 which is indeed a

Carmichael number. By the Hardy-Littlewood k-tuples conjecture, there should be infinitely

many integers k such that 6k+1, 12k+1, and 18k+1 are all prime, which implies that there

are infinitely many Carmichael numbers.

Proposition 2.1. All Carmichael numbers are odd.

Proof. We will prove this is true by contradiction. Assume n > 2 is an even Carmichael

number. Now, let a = n − 1. Since (n, n − 1) = 1, by definition, an−1 ≡ 1 (mod n) =⇒

(−1)n−1 ≡ 1 (mod n). But since n is even, 1 ≡ (−1)n−1 ≡ −1 (mod n), which gives us a

contradiction.

Proposition 2.2. Every Carmichael number n has at least three prime factors.

Proof. Let n = pq for primes p and q. Since n is squarefree, p and q are distinct. Without

loss of generality, assume p > q. By Korselt’s Criterion, we have (p − 1) | (n − 1), so
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n−1
p−1 = pq−1

p−1 = q + q−1
p−1 must be an integer. But since p > q, this implies 0 < q−1

p−1 < 1, so

(p− 1) ∤ (n− 1). Therefore, n must have more than two prime factors.

Proposition 2.3. Every prime factor of a Carmichael number n is less than
√
n.

Proof. Let p be a prime factor of n. From Korselt’s criterion, we have p − 1 | n − 1, so 0 ≡

n−1 ≡ np
p −1 ≡ n

p −1 (mod p−1). We can’t have n = p, therefore n
p −1 ≥ p−1 =⇒ n ≥ p2.

Since n is squarefree, n ̸= p2 =⇒ n > p2.

3 There are infinitely many Carmichael numbers

For most of the 20th century, it was believed that the list of Carmichael numbers may be

infinitely extended, but no one could come up with a proof. In 1994, William Alford, Andrew

Granville, and Carl Pomerance published a paper proving that there are infinitely many

Carmichael numbers. The proof stated that there is a finite value c, such that if x ≥ c, then

the number of Carmichael numbers less than x is greater than x2/7 [AGP94]. In short, if x is

large enough, the number of Carmichael numbers less than x is at least x2/7.

The idea was to construct a large number L along with a set of k distinct primes such

that for each prime p, we have (p− 1) | L. Now, take a subset of the k primes, multiply them

together, and let this product be P . If P ≡ 1 (mod L), then P is a Carmichael number from

Korselt’s criterion because (p−1) | L | P −1 for every prime p that divides P . This simplifies

the problem to proving that there are infinitely many such products P as L approaches infinity.

3.1 The sets E and B

The motivation behind defining the sets E and B which we will see later on is to construct

the sets Q and P with certain properties, in Subsection 3.3. These sets would then be used

to construct the set P ′ = P\Q, which we will use to generate Carmichael numbers using the

products of various subsequences. This last part will involve some Group Theory, which is

why the next subsection is dedicated towards that topic.

Definition 3.1. Denote the function C(x) as the number of Carmichael numbers less than

x.

Definition 3.2. π(x) is the number of primes p less than x.

Definition 3.3. π(x, y) is the number of primes p less than x for which p − 1 has no prime

factors exceeding y.
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Definition 3.4. π(x, d, a) is the number of primes p less than x such that p ≡ a (mod d).

De la Vallée Poussin proved that as x approaches infinity,

π(x, d, a) ∼ π(x)/φ(d), (7)

given that (a, d) = 1 (In this case, φ represents Euler’s totient function).

Definition 3.5. Denote E as the set of numbers E ∈ (0, 1) for which there exists positive

numbers xE and γE such that π(x, x1−E) ≥ γEπ(x) for all x ≥ xE .

Proposition 3.1. If E ∈ E then (0, E] ⊂ E.

Proof. Let E′ ∈ (0, E], since E ≥ E′, π(x, x1−E′
) ≥ π(x, x1−E). Now, if we let γ

E′ = γE , the

inequality π(x, x1−E′
) ≥ γ

E′π(x) holds for all values x ≥ xE , so if we set x
E′ = xE , we are

done.

Proposition 3.2. The interval (0, 1− (2
√
e)−1) ⊂ E. [Fri89]

Definition 3.6. Denote B as the set of numbers B ∈ (0, 1) for which there exists a pos-

itive number xB and a positive integer DB such that if x ≥ xB , (a, d) = 1 and 1 ≤ d ≤

min(xB, y/x1−B), then π(y, d, a) ≥ π(y)
2φ(d) whenever d is not divisible by any member of a set

with DB integers, each of which exceeds log(x).

Alford, Granville, and Pomerance [AGP94] proved that the interval (0, 5/12) ⊂ B using a

bound on the zeros of Dirichlet L-functions.

Theorem 3.1 ([AGP94]). Let B ∈ B. There exists a number βx such that if x ≥ βx and L is

a squarefree integer not divisible by any prime exceeding x(1−B)/2 and for which
∑

prime p|L ≤

(1−B)/32, then there exists a positive integer k ≤ x1−B, relatively prime to L, such that

#{d | L : dk + 1 ≤ x, dk + 1 is prime} ≥ 2−(DB+2)

ln(x)
#{d | L : 1 ≤ d ≤ xB} (8)

3.2 Group Theory

A group G is defined from a set and an operation, say ⊕. The operation must be associative,

and the set must contain an identity element, say i. Associativity states that for any 3

elements a, b, c in G, (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c) holds. For every element a in G, the identity

element satisfies a⊕i = a. Every element of the group must also have an inverse element. The

inverse element of element a is defined to be an element in the group b, such that a⊕b = i. An

example of a group is the set of positive real numbers with the multiplication operation. The
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identity element is 1 since any number multiplied with 1 is equivalent to itself. The inverse

of a number n is 1
n because n · 1

n is equal to the identity element.

Group Theory plays a big role in this proof because the problem of finding Carmichael

numbers can be simplified into finding a subsequence of elements in a cleverly constructed

group with product equal to the identity.

Proposition 3.3. If G is a group with m elements, then any sequence of m elements of the

group contains a subsequence whose product is 1 (the identity).

Proof. Let the sequence be g1, g2, · · · , gm. If no subsequence has product 1, then the m

products g1, g1g2, · · · , g1g2 · · · gm can only contain m − 1 distinct values. This implies that

at least two subsequences have the same product. Let these two products be g1g2 · · · gi and

g1g2 · · · gj . Without loss of generality, assume j > i. Now, the product gi+1gi+2 · · · gj is equal

to 1.

Definition 3.7. An abelian group is a group that has a commutative group operation.

If G is communative, a⊕b = b⊕a must hold, where ⊕ denotes the operation of the group.

An example of an abelian group is the set of positive integers less than 10 that are relatively

prime to 10, with multiplication modulo 10 being the operation. Since multiplication is a

commutative operation, this group is abelian. We can also check that this set satisfies the

definition of a group. The operation is indeed associative, and the identity element is 1. The

inverse of the elements {1, 3, 7, 9} are {1, 7, 3, 9} respectively.

Definition 3.8. The order of an element g in a group G is the smallest positive integer m

such that gm is equivalent to the identity.

For example, let G = {1, 3, 7, 9} be the set of positive integers modulo 10 that are relatively

prime to 10. This can also be rewritten as (Z/10Z)∗. The element 3 has order 4 because 34 ≡ 1

(mod 10), and 4 is the smallest such value. Lagrange’s theorem states that the order of any

element divides the total number of elements in the group.

Definition 3.9. For a finite group G, denote n(G) as the length of the longest sequence of

(not necessarily distinct) elements in G for which no nonempty subsequence has product the

identity.

Theorem 3.2. If G is a finite abelian group and m is the maximal order of an element in

G, then n(G) < m(1 + ln(|G|/m)).
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Proposition 3.4. If G is a finite abelian group and let r > t > n(G) be integers. Then

any sequence of r elements in G contains at least
(
r
t

)
/
(

r
n(G)

)
distinct subsequences of length at

most t and at least t− n(G) whose product is equal to the identity.

Proof. Let R be a sequence of r elements of G. Since r > n(G), there must be some subse-

quence of R whose product is the identity. Let S be the longest such subsequence with length

s. Then s ≥ r−n(G) because if not, R\S has at least n(G) elements which means it contains

a subsequence with product equal to the identity. This subsequence can then be appended

into S to create a longer subsequence, which contradicts the maximality of S.

Let T be any subsequence of S with length t−n(G), and call the product of the sequence

g. Since the product of S is the identity, the elements of S\T has a product of g−1. Let U be

the smallest subsequence of S\T whose product is g−1. U cannot contain any subsequence

that has product equal to the identity since U is the smallest subsequence, so the length of

U must be less than or equal to n(G). Now, let V = T ∪ U , and clearly, V is a subsequence

of S, and also R. The product of the elements in V is the identity, and V has size at most t

and at least t− n(G).

The number of pairs of sequences (T,U) is at least the number of ways of choosing T ,

which is
(

s
t−n

)
. The maximum amount of pairs (T,U) that have the same sequence V = T ∪U

is at most
( |V |
t−n

)
≤

(
t

t−n

)
=

(
t
n

)
. Thus, the amount of distinct subsequences V is at least(

s

t− n

)
/

(
t

n

)
≥

(
r − n

t− n

)
/

(
t

n

)
=

(
r

t

)
/

(
r

n

)
, (9)

which proves the proposition.

3.3 Main theorem

Theorem 3.3 ([AGP94]). For each E ∈ E, B ∈ B, and ε > 0 there exists a number xEB such

that C(x) ≥ xEB−ε if x ≥ xEB .

Since there are positive reals in both sets E and B, this theorem would imply that there are

infinitely many Carmichael numbers because as x approaches infinity, xEB−ε also approaches

infinity if we set ε < EB.

Proof. Let θ = 1
1−E , and define a parameter y ≥ 2. DenoteQ as the set of primes p ∈ ( yθ

ln(y) , y
θ]

for which p− 1 is free of prime factors exceeding y. It is known that π(yθ) > yθ

2 ln(yθ)
for any
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sufficiently large y, so by the definition of E ,

|Q| ≥ γE
yθ

2 ln(yθ)
. (10)

Let L be the product of all primes p ∈ Q. We have,

ln(L) ≤ |Q| ln(yθ) ≤ π(yθ) ln(yθ) ≤ 2yθ (11)

since 2yθ

ln(yθ)
≥ π(yθ). Now, let λ(L), also known as the Carmichael function, be the least

common multiple of the numbers p − 1 for each prime p | L. If a is the largest integer such

that pa | λ(L), then pa ≤ yθ since p ≤ y. Now, if we let pap be the largest power of p such

that pap ≤ yθ, then

λ(L) ≤
∏
p≤y

pap ≤
∏
p≤y

yθ = yθπ(y) ≤ e2θy (12)

for all values of y that are sufficiently large. Now that we have a bound for the function

λ(L), we can relate this to the group theory theorems we stated earlier. Let G be the group

(Z/LZ)∗, which is the set of integers modulo L that are relatively prime to L. By Theorem

3.2,

n(G) < λ(L)

(
1 + ln

(
φ(L)

λ(L)

))
≤ λ(L)(1 + ln(L)) ≤ e3θy. (13)

Now, let α = εθ
4B and let x = ey

α+1
. Since∑

prime p|L

1

p
≤

∑
yθ

ln(y)
<p<yθ

1

p
≤ 2 ln(ln(y))

θ ln(y)
≤ 1−B

32
(14)

for all large y, we can apply Theorem 3.1 for B, x, and L. Let k be an integer coprime to

L, let P be the set of primes p ≤ x with p = dk + 1 for some divisor d of L, and let the set

H = {d | L : 1 ≤ d ≤ xB}. We know there exists a k such that

|P| ≥ 2−(DB+2)

ln(x)
|H|. (15)

Since the product of any r := ln(xB)
ln(yθ)

= B ln(x)
θ ln(y) distinct prime factors of L is a divisor d ≤ xB

of L, so

|H| ≥
(
ω(L)

r

)
≥

(
ω(L)

r

)r

≥
(

γEy
θ

2B ln(x)

)r

=

(
γEy

θ−1−α

2B

)r

(16)

where ω(L) is defined as the number of distinct prime factors of L. Since (θ−1−α)B
θ = EB− ε

4 ,

|P| ≥ 2−(DB+2)

ln(x)

(
γEy

θ−1−α

2B

)(
B ln(x)
θ ln(y)

)
≥ xEB−ε/3 (17)
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for all large values of y, and DB is the set defined in Definition 3.6. Now let P ′ = P\Q. Since

|Q| ≤ yθ, we have

|P ′| ≥ xEB−ε/2 (18)

for all sufficiently large y. Every element in P ′ is relatively prime to L, so we may view P ′ as

a subset of the group G which was previously defined as (Z/LZ)∗. If S is a subset of P ′ with

more than one element, and

Π(S) :=
∏
p∈S

p ≡ 1 (mod L), (19)

then Π(S) is a Carmichael number. To see why this is true, first note that each element in

P ′ is 1 mod k, so Π(S) ≡ 1 (mod k), and since (k, L) = 1, we have Π(S) ≡ 1 (mod kL).

Now, for every p ∈ P ′, we have p− 1 | kL because P ′ ⊂ P, and thus Π(S) satisfies Korselt’s

criterion.

Now let t = ey
α/2+1

. From Proposition 3.4, the number of subsets S where Π(S) ≡ 1

(mod L) and |S| ≤ t is at least(
|P ′|
t

)
/

(
|P ′|
n(G)

)
≥

(
|P ′|
t

)t

/|P ′|n(G) ≥
(
xEB−ε/2

)t−n(G)
t−t ≥ xt(EB−ε) (20)

for all large values of y. We know that the upper bound of Π(S) is xt, we can let X = xt

and see that C(X) ≥ XEB−ε for all sufficiently large values of y. Since X is defined by a

function of y, so the values of X and y are bijective, thus C(X) ≥ XEB−ε for all sufficiently

large values of X.

Since E is an open set, there must be some value E′ ∈ E such that E′ > E, where E is the

number defined in Theorem 3.3. This way, if we set ε = B(E′ −E), we can see C(X) ≥ XEB

for all sufficiently large values of X. We know that (0, 1 − (2
√
e)−1) ⊂ E and (0, 5/12) ⊂ B,

so any value of EB < 5
12(1 − 1

2
√
e
) = 0.2903 works, for example, 2/7 = 0.2857 < 0.2903, so

C(X) ≥ x2/7 for sufficiently large values of X.

4 Further bounds on Carmichael numbers

In 2005, Glyn Harman [Har05] improved the lower bound to C(x) > x0.332, and 3 years later,

improved this again to C(x) > x1/3. Before a lower bound was proved, many mathematicians

including Knödel and Erdős, supplied upper bounds on C(x), with the best from Richard

Pinch [Pin93] who proved

C(x) < x · exp
(
− ln(x) ln(ln(ln(x)))

ln(ln(x))

)
(21)

10



0.0 0.2 0.4 0.6 0.8 1.0
x 1e18

104

105

106

107

108

109

1010

1011

1012

Ap
pr
ox
im

at
io
n 
of
 C
(x
)

Pinch
C(x)
Harman
Al, Gr, Po

Figure 1: Upper and lower bounds compared to C(x) for x ≤ 1018

where exp(n) = en.

In Figure 1, the bounds given by Pinch, Harman, Alford, Granville, and Pomerance are

graphed and scaled logarithmically alongside the function C(x) for x ≤ 1018, using data from

Richard Pinch’s website [Pin20]. In total, there are 1,401,644 Carmichael numbers less than

1018. From the graph, we can see that Harman’s lower bound of x1/3 seems to be a very

accurate approximation of C(x) for all x ≤ 1018.

In Alford, Granville, and Pomerance’s paper, they conjectured that a statement similar

to Bertrand’s postulate could be proven for Carmichael numbers. Bertrand’s postulate states

that for any integer n > 1, there is at least one prime p such that n < p < 2n. In 2021, a 17

year old Daniel Larson [Lar21] published a paper proving that for any δ > 0, there is a finite

value x
δ
such that when x ≥ x

δ
, there exists at least exp

(
ln(x)

(ln(ln(x)))2+δ

)
Carmichael numbers

between x and x + x

(ln(x))
1

2+δ
. Since exp

(
ln(x)

(ln(ln(x)))2+δ

)
> 1 for all positive values of δ and

x, there must be at least one Carmichael number between every range given in the theorem.

Larson built his ideas upon the techniques developed by Yitang Zhang and James Maynard

relating to small gaps between primes.
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5 Finding larger Carmichael numbers

As the numbers become larger, Carmichael numbers appear less and less. Using Harman’s

lower bound of C(x) > x1/3, the frequency of Carmichael numbers can be approximated

with x1/3/x = x−2/3 which is a decreasing function. When x = 1018, there is approximately

one Carmichael number every trillion numbers. This makes it hard to find large Carmichael

numbers. Using Korselt’s criterion, checking whether a number n is Carmichael is equivalent

to finding its prime factorization because after factorization, we can check each prime p | n

if (p − 1) | (n − 1) holds. Denote ω(n) as the number of distinct prime factors of n. By the

Hardy-Ramanujan theorem [HR17],

ω(n) ∼ ln(ln(n)) (22)

Which makes the running time of checking if Korselt’s criterion holds negligible compared to

the prime factorization of n.

5.1 Prime factorization algorithms

A simple method to finding prime factors of n is to check every integer from 2 to
√
n and see

if it divides n. If it does, it is a prime factor, and we divide n by this value. If this value

divides n more than once, we know n cannot be a Carmichael number since n isn’t squarefree.

This algorithm has a running time of O(n1/2).

Another algorithm is the Sieve factorization algorithm which has a running time ofO(log(n))

for each query n. The idea is to precompute the smallest prime that divides each integer up

to a specified value larger than the largest query. This way, for each query n, simply divide n

by its smallest prime factor, and repeat that on the new value of n until n becomes 1. Using

Table 1 as an example, we will show how n = 12 is factorized. Let sp[n] be the smallest prime

that divides n. We know that sp[12] = 2 is a factor, so our new value is 12/sp[12] = 6. Now,

sp[6] = 2 is the second factor, so our new value is 6/sp[6] = 3. Our third factor is sp[3] = 3,

and this is our last factor because 3/sp[3] = 1. The time complexity is O(log(n)) because the

most amount of prime factors any number n can have is log(n) (log is in base 2). Although

this algorithm is a lot faster than the previous one, the time complexity of precomputing

the array sp[] is O(nlog(n)), and the auxiliary space is O(n), so for large values of n, this

algorithm may not be feasible.

There is another algorithm known as Pollard’s rho algorithm [Pol75]. This technique

cleverly uses Floyd’s cycle-detection algorithm to find prime factors. The idea is to define a
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n 2 3 4 5 6 7 8 9 10 11 12

sp[n] 2 3 2 5 2 7 2 3 2 11 2

n
sp[n] 1 1 2 1 3 1 4 3 5 1 6

Table 1: Example values for Sieve up to n = 12

polynomial f(x) computed modulo n, where n is the number we want to factor, to serve as

a pseudorandom generator. Then define two integer sequences a and b such that a0 = b0.

During step i > 0 of the algorithm, we set ai = f(ai−1) and bi = f(f(bi−1)). Since f is

taken modulo n, there is a finite amount of distinct values in the sequences a and b, so the

values must repeat eventually. Once a repeated value occurs, the sequence will cycle. For

each prime p that divides n, the sequences a (mod p) and b (mod p) must also cycle, and it’s

highly likely that its cycles are shorter than the cycles modulo n. By Floyd’s algorithm, there

exists a step j where aj ≡ bj (mod p) for every prime p | n, so on every step i > 0, the rho

algorithm checks if gcd(|ai− bi|, n) > 1, and if this is true, then gcd(|ai− bi|, n) almost always

is a prime factor of n. This will guarantee every prime p | n will be found. This works well

because for any prime p, the lengths of the cycles of a (mod p) and b (mod p) are expected

to be
√
p, so the time complexity to factor n is said to be around O(n1/4). There is still an

issue with this algorithm because in some cases, gcd(|ai− bi|, n) is not prime. In this case, we

need to run the algorithm again on the value gcd(|ai− bi|, n), but with a different polynomial

f . We can keep on doing this until the likelihood of getting a non-prime factor is so low that

it’s negligible.

5.2 Pollard’s rho on checking Carmichael numbers

In this section, we implemented Pollard’s rho algorithm using C++ to check if a number n is a

Carmichael number. First off, if n is even, then it is not a Carmichael number by Proposition

2.1. Then, we run Pollard’s rho algorithm on n with a total of 10 different polynomials

f . The number of polynomials used can be changed, depending on how accurate you need

the algorithm to be. As the number of polynomials used increases, the accuracy increases

exponentially, while the run time only increases linearly. After finding all the prime factors,

we insert them into a set. If the total amount of factors is greater than the size of the set,

n is not squarefree, therefore it’s not a Carmichael number. From Proposition 2.2, we know

that n must have at least 3 factors to be a Carmichael number, so if the size of the set of

factors is less than 3, n is not Carmichael. Finally, we check if each prime p in the set satisfies
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(p− 1) | (n− 1). If it does, then n satisfies Korselt’s criterion, which means it’s a Carmichael

number. Our pseudocode is given in Algorithm 1.

6 Further Research

Mathematicians have also studied other types of numbers with similar properties to Carmichael

numbers.

6.1 Lucas-Carmichael numbers

Lucas-Carmichael numbers are squarefree numbers n that satisfy p + 1 | n + 1 for every

prime p | n. These numbers were named after Édouard Lucas. They share many similar

properties with the Carmichael numbers, for example, Proposition 2.1, 2.2, and 2.3 holds for

both Carmichael and Lucas-Carmichael numbers. The first five Lucas-Carmichael numbers

are 399, 935, 2015, 2915, and 4991. The distribution of these numbers seems to be more

compact than that of the Carmichael numbers.

6.2 Quasi-Carmichael numbers

These numbers are a generalization of the Carmichael numbers and the Lucas-Carmichael

numbers. A squarefree composite integer n is a Quasi-Carmichael number if every prime p

that divides n satisfies p+ b | n+ b, with b being any nonzero integer. The subcase of b = −1

are the Carmichael numbers and the subcase of b = 1 are the Lucas-Carmichael numbers.

The smallest such Quasi-Carmichael number is 35, and we can see that if b = −3, it’s true

that 2 | 32 and 4 | 32.

6.3 Unsolved problems

There are still many problems relating to Carmichael numbers that are unsolved. The distri-

bution and density of the Carmichael numbers are still not fully understood by mathemati-

cians. It is also difficult to determine the smallest Carmichael numbers with k prime factors

as k becomes large. We hope that solving these problems will not only help us understand

more about Carmichael numbers, but also reveal more insight on other questions such as the

distribution of primes.
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A Appendix

Algorithm 1 Carmichael Number checker using Pollard’s Rho Algorithm
1: factors = ∅
2: amt = 0

3: function f(x,m, c)

4: return (x× x+ c) mod m

5: procedure rho(n, start, c)

6: if c > 10 then

7: factors.insert(n)

8: amt← amt+ 1

9: return

10: if n == 1 then

11: return

12: x← start

13: y ← start

14: d← 1

15: while d == 1 do

16: x← f(x, n, c)

17: y ← f(f(y, n, c), n, c)

18: d← gcd(|x− y|, n)
19: if d == n then

20: call rho(n, start, c+ 1)

21: else

22: call rho(n/d, start, c)

23: call rho(d, start, c+ 1)

24: function is carmichael(n)

25: if n mod 2 == 0 then

26: return false

27: call rho(n, 2, 1)

28: if amt > factors.size() or amt < 3 then

29: return false

30: for each factor in factors do

31: if (n− 1) mod (factor − 1) ̸= 0 then

32: return false

33: return true

34: input n

35: if is carmichael(n) then

36: print ”Yes”

37: else

38: print ”No”
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