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Abstract

In this paper we prove that there are no rational torsion points of order 11 on
an elliptic curve, which is what is known as the Billing-Mahler theorem. We will
assume no prior knowledge of elliptic curves, but we will assume an understanding
of group theory, number theory, and linear algebra.

1 Introduction

The study of Diophantine equations, i.e. the study of integer and rational solutions to
polynomial equations, has an extremely rich and long history dating back to ancient
Greece. For the most basic types of Diophantine equations, namely linear and quadratic
equations in two variables, this topic has been studied extensively, and tools such as
Hasse’s principle, quadratic reciprocity, and Hensel’s lemma have been developed.

The next simplest type of Diophantine equation is the elliptic curve, which are cubic
equations in two variables. Elliptic curves appear naturally when finding the length of
an arc on an ellipse, and the theory of elliptic curves has applications in several different
areas of math, including in cryptography and in the proof of Fermat’s Last Theorem. In
this paper we will take a look at few results on the surface of a very deep field.

We will start with the group law on the rational points on elliptic curves, as well as
briefly looking at the Nagell-Lutz theorem. After that we will prove Mordell’s theorem,
and finally we will use the proof of Mordell’s theorem to prove the Billing-Mahler theorem.
We also include appendices to cover the necessary background from projective geometry
and algebraic number theory.

2 The Group Law and the Nagell-Lutz Theorem

An elliptic curve is a non-singular curve E given by

E =
{
(x, y) : y2 = f(x) = x3 + ax2 + bx+ c

}
∪ {O} .
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Figure 1: The elliptic curve y2 = x3 − 2x2 − 8x.

where a, b, c ∈ Z and the point O is the point at infinity where vertical lines meet. Non-
singular means that the partial derivatives of f with respect to x and y are never both
zero, or in other words, that the curve has a tangent line at every point. An example of
an elliptic curve is shown in Figure 1.

There is a certain group structure that points on these elliptic curves satisfy. Let
ℓ be the line through points P and Q on the curve E; then define P ∗ Q as the third
intersection point of ℓ with E. Then we will define P +Q as follows:

P +Q = O ∗ (P ∗Q).

In other words, we take the third intersection, P ∗ Q, of the line through P and Q, and
then we take the third intersection of the vertical line through P ∗Q. This is illustrated
in Figure 2.

Figure 2: Adding two points P and Q on elliptic curve E.
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Through some computation, we can find explicit formulas for the sum of two points.
Let P1 = (x1, y1), P2 = (x2, y2), P1 + P2 = (x3, y3). Then if m is the slope of the line
through P1 and P2, we get

x3 = m2 − a− x1 − x2 and y3 = −mx3 − (y1 −mx1) .

. If P1 ̸= P2, then m = y2−y1
x2−x1

, and if P1 = P2, the slope is m = f ′(x1)
2y1

(where f(x) =
x3 + ax2 + bx+ c is the equation for the cubic). These formulas will frequently be useful
to us.

Proposition 1. The following properties are satisfied for points P , Q on an elliptic curve
E:

(a) Closure: P +Q is in E.
(b) Commutativity: P +Q = Q+ P .
(c) Identity: P + O = O + P = P .
(d) Inverses: P + (−P ) = O, where −P is the point P reflected across the x-axis.
(e) Associativity: P + (Q+R) = (P +Q) +R.

Therefore, (E,+) is an abelian group.

Proof. Statements (a) and (b) follow from the definition of ∗.
(c) We have P ∗O = −P (where −P is P reflected across the x-axis), and O ∗(−P ) =

P , so P + O = O ∗ (P ∗ O) = P .
(d) We have P ∗ (−P ) = O, and O ∗ O = O, so P + (−P ) = O ∗ (P ∗ (−P )) = O.
(e) We can check that associativity is true using the explicit formulas for the addition

operation.

We now turn our attention to properties of rational points of finite order on these
elliptic curves.

Definition. A rational point is a point (x, y) with both x and y in Q. We will use the
notation E(Q) to denote the set of rational points on an elliptic curve E.

Definition. A point of finite order is a point such that there exists an n with

nP = P + P + · · · + P︸ ︷︷ ︸
n times

= O,

and kP ̸= O for all 1 ≤ k < n.

Note the points of order 2 are the points with y = 0 and x ̸= 0, since those (together
with (0, 0)) are the only points that are their own inverse.
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Using some real and complex analysis we can obtain a very good description of the
real and complex points on elliptic curves. Namely, if the group of real points on a curve
is connected, then it is isomorphic to the circle group (the multiplicative group of complex
numbers of magnitude 1), and if the group of real points has two connected components,
then it is isomorphic to the direct product of the circle group with a group of order 2.
Furthermore, the group of complex points on the elliptic curve is the direct product of
two circle groups. This allows us to understand the real and complex points of finite
order very well. Therefore we will only look at rational points of finite order.

One critical piece of information associated with any polynomial is the discriminant.
For a cubic f(x) = x3 + ax2 + bx+ c, it is

Df = −4a3c+ a2b2 + 18abc− 4b3 − 27c2.

If x1, x2, and x3 are the roots of f , then Df can be rewritten as

Df = (x1 − x2)2(x2 − x3)2(x3 − x1)2.

It follows that Df is nonzero if and only if f has distinct roots in C. For elliptic curves
it can tell us even more about the rational points, as shown by the following theorem:

Theorem (Nagell-Lutz). If P = (x, y) is a rational point of finite order on E, then it
has integer coordinates, and furthermore either y = 0 or y divides the discriminant of
f(x).

A proof of this is given in [2].
The Nagell-Lutz theorem allows us to find all the rational points of finite order through

a finite number of operations: for each of the τ(D) values of y, any rational solutions
to 0 = x3 + ax2 + bx + c − y2 will be integers that divide c − y2 (by the rational root
theorem), so testing all of them yields the set of rational solutions.

3 Mordell’s Theorem

In order to prove the Billing-Mahler theorem we still need a little more information about
the group of rational points, which will be provided by the implications of the following
theorem, along with sub-results contained in its proof.

Theorem (Mordell). For a non-singular cubic curve C defined over Q, the group of
rational points is a finitely generated abelian group.

To prove this theorem, we will first need a property of rational numbers called the
height, which will define an ordering on the rational points.
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Definition. If x = m
n

for relatively prime integers m and n, then the height h(x) is
log(max{|m|, |n|}).

From this we will define the height of a rational point as the height of its x-coordinate.
Additionally, we will say h(O) = 0, and that h(P ) = 0 if P has an x-coordinate of 0.

3.1 The Proof

To prove Mordell’s theorem we will require four lemmas. We will assume the lemmas for
now in order to prove Mordell’s theorem, and afterwards we will take a closer look at the
lemmas.

Lemma 1. For every real number M , the set of rational points on C with height at most
M is finite.

Lemma 2. Let P0 be a fixed rational point of C. There is a constant κ0 depending on
P0, a, b, and c such that

h(P + P0) ≤ 2h(P ) + κ0 for all P ∈ C(Q).

Lemma 3. There is a constant κ, depending on a, b, and c, so that

h(2P ) ≥ 4h(P ) − κ for all P ∈ C(Q).

Lemma 4. The index (C(Q) : 2C(Q)) is finite.

We are using 2C(Q) to denote the set of points in C(Q) that are twice of other points
in C(Q).

Proof. The proof is by descent. We will find a sequence of points descending in height
until we reach a certain fixed threshold.

By Lemma 4 the number of cosets of 2C(Q) in C(Q) is finite, so suppose there are n
of them, and let Q1, . . . , Qn be representatives for the cosets. Take any point P in C(Q).
It must be in one of these cosets, say the i1-th coset. Then

P −Qi1 = 2P1 for some P1 ∈ C(Q).

Similarly, P1 is in one of the cosets, so we can continue this process to get

P1 −Qi2 = 2P2

P2 −Qi3 = 2P3

...
Pm −Qim = 2Pm,

5



where the Qij
are all coset representatives and the Pj are elements of C(Q). Substituting

these equations back into the equation for P , we get

P = Qi1 + 2Qi2 + · · · + 2m−1Qim + 2mPm.

We want to show that eventually the height of Pm is below a fixed threshold γ, since by
Lemma 1 that would mean there are only a finite set of possibilities for what Pm could
be.

If we set P0 to −Qi for i = 1, 2, . . . , n in Lemma 2, we get h(P −Qi) ≤ 2h(P ) +κi for
some constant κi and all P ∈ C(Q). If we let κ′ be the largest of the κi’s, then we get

h(P −Qi) ≤ 2h(P ) + κ′

for all P ∈ C(Q) and all i ∈ {1, 2, . . . , n}. On the other hand, by Lemma 3 there is a
constant κ so that for each j = 1, 2, . . . , n, we have

4h(Pj) − κ ≤ h(2Pj) = h(Pj−1 −Qij
),

therefore, combining the two inequalities,

4h(Pj) − κ ≤ 2h(Pj−1) + κ′.

By rewriting this as

h(Pj) ≤ 3
4h(Pj−1) − 1

4 (h(Pj−1) − (κ+ κ′)) ,

we can conclude for all values of j with h(Pj−1) ≥ κ+ κ′, we will have h(Pj) ≤ 3
4h(Pj−1).

Thus the sequence of points Pj has heights that are strictly descreasing, and eventually
we will find an M such that h(PM) ≤ κ + κ′. The set of points that have height less
than κ + κ′ is finite due to Lemma 1. Therefore, C(Q) is generated by the finite set of
coset representatives together with the finite set of elements of C(Q) with height at most
κ+ κ′.

Now we take a closer look at the lemmas. Lemma 1 is obvious because the set of
points in C(Q) with height at most M is in the set of points (m1

n1
, m2

n2
) where m1, n1 ∈

{±1,±2, . . . ,±M}. This set has finite size. Lemmas 2 and 3 relate the geometric prop-
erties of the point addition operation to the number theoretic nature of the height of
points, and while their proofs are interesting, they are not so relevant to our main goal
of proving the Billing-Mahler theorem, so we will not cover them in this paper. Their
proofs can be found in [5].
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3.2 2C(Q) in C(Q)

The proof of Lemma 4 will provide us with tools that will turn out to be useful in the
proof of Billing-Mahler. We restate it and then present the proof.
Lemma 4. The index (C(Q) : 2C(Q)) is finite.

Proof. To compare C(Q) and 2C(Q), we will study the duplication map P 7→ 2P by
breaking it into two parts ϕ : C 7→ C and ψ : C 7→ C, where C is a second cubic curve
defined in terms of C.

Suppose that the polynomial f(x) has at least one rational root and translate the
curve C so that this rational root is at T = (0, 0). The new curve is isomorphic to the
old one over the rationals so we can simply study the translated curve instead. Then the
cubic is

C : y2 = f(x) = x3 + ax2 + bx.

We will define C as follows:

C : y2 = f(x) = x3 + (−2a)x2 + (a2 − 4b)x.

We now show that there is a homomorphism ϕ from C to C, and similarly that there
is a homomorphism ψ from C to C, giving an automorphism on the complex points of
C. Given a point P = (x, y), we define ϕ as

ϕ(P ) =


((

y
x

)2
, y

x2 (x2 − b)
)

if P ̸= O, T

O if P = O or P = T .

Similarly, for a point P = (x, y) on C, we define ψ as

ψ(P ) =


((

y
x

)2
, y

x2 (x2 − (a2 − 4b))
)

if P ̸= O, T

O if P = O or P = T .

Using the explicit formulas for the addition of points we can show that ϕ and ψ satisfy the
homomorphism property, and ψ◦ϕ is an isomorphism from C to C satisfying ψ◦ϕ(x, y) =
2(x, y). The kernel of ϕ is {O, T}, since the only point with x = 0 is T = (0, 0) and all
other points with complex values of x ̸= 0 and y get mapped to points that are not O.
Similarly, the kernel of ψ is

{
O, T

}
.

Now we look at how ϕ and ψ affect C(Q) and C(Q) (which we’ll call G and G for the
sake of notation). For the two “exceptional” points in G, namely O and T , we can see
that O is always in the image of G, and T is in the image of G if and only if there is a
point (x, y) ∈ G with x ̸= 0 and y = 0, which happens if and only if the discriminant of
0 = x2 + ax+ b is a perfect square. As for the remaining points in G, we claim that they
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are exactly the set of points where the x-coordinate is a square of a rational number. We
get an analagous statement for ψ with a similar proof.

Let Q× denote the multiplicative group of nonzero rational numbers, and let (Q×)2

be the group of rational numbers that are the square of an element in Q×. Referring to
the definition of ϕ, it is clear that anything in the image of G under ϕ must have an x-
coordinate in (Q×)2, so we just need to prove that anything in C(C) with an x-coordinate
in (Q×)2 is in the image of G.

Since the kernel of ϕ is {O, T}, for each point of ϕ(G), there should be two points in
G that map to it. Let (x, y) be a point in ϕ(G), where x = t2 for a t ∈ Q×, and we will
show that the points (x1, y1) and (x2, y2) are both on G and map to (x, y), where

x1 = 1
2

(
t2 − a+ y

t

)
, y1 = x1t,

x2 = 1
2

(
t2 − a− y

t

)
, y2 = −x2t.

We can show that (x1, y1) and (x2, y2) lie on C by simply checking that they satisfy
the equation y2 = x3 + ax2 + bx, because expanding the product x1 · x2 shows that it is
actually equal to b. So the equation y2

1 = x3
1 + ax2

1 + bx1 is equivalent to t2 = x1 + a+ x2

after we divide both sides by x1 and substitute b = x1x2, and we know this is true from
the definitions of x1 and x2. We can check that (x2, y2) satisfy the equation as well in
the same way.

To show that (x1, y1) and (x2, y2) are in the image of G, we need to show that

y2
i

x2
i

= x and yi

x2
i

(x2
i − b) = y

are true for i = 1 and i = 2. The first one follows from the definitions of y1 and y2.
Plugging the definitions into the second equation and using the fact that b = x1x2 gives

y1

x2
1
(x2

1 − b) = x1t

x1
(x2

1 − x1x2) = t(x1 − x2),

which is true from the definitions of x1 and x2. We can do the same calculation for the
point (x2, y2).

We now show that ψ(G) has finite index in G, since showing that ϕ(G) has finite
index in G would be a similar proof. We do this by finding an injective homomorphism
from the quotient group G/ψ(G) to a finite group. Let the mapping µ : G → Q×/(Q×)2
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be defined as

µ(O) = 1
(
mod (Q×)2

)
,

µ(T ) = b
(
mod (Q×)2

)
,

µ((x, y)) = x
(
mod (Q×)2

)
if x ̸= 0,

and we claim this is a homomorphism with kernel ψ(G).
If µ is indeed a homomorphism, then the statement that the kernel is ψ(G) is clear due

to the fact we proved earlier that the image of ψ is exactly the points with x-coordinates
in Q×. To show it’s a homomorphism, first note that µ(−(x, y)) = x = 1

x
· x2 and thus

µ(−(x, y)) ≡ 1
x

= 1
µ(x, y) = (µ(x, y))−1

(
mod (Q×)2

)
,

so µ sends inverses to inverses. So, if we just show that when P1 +P2 +P3 = O (i.e. when
P1, P2, P3 lie on a line), then µ(P1)µ(P2)µ(P3) ≡ 1 (mod (Q×)2), and then we would
get

µ(P1)µ(P2) ≡ µ(P3)−1 ≡ µ(−P3) = µ(P1 + P2)
(
mod (Q×)2

)
,

which is the homomorphism property we want to show. Let y = mx + k be the line
passing through P1, P2, and P3 (which must be collinear). Substituting this for y in
y2 = x3 + ax2 + bx and rearranging means that the three points satisfy

0 = x3 + (a−m2)x2 + (b− 2mk)x− k2.

The x-coordinates of the three points are roots of this equation. Suppose that the x-
coordinates are x1, x2, and x3; then x1x2x3 = k2, which is in Q2, so we have obtained

µ(P1)µ(P2)µ(P3) = x1x2x3 = k2 ≡ 1
(
mod (Q×)2

)
.

Therefore, µ is a homomorphism with kernel ψ(G).
We now look at what rational numbers can occur as the x-coordinate of a point in

G. If there is a point (x, y) in G, then we can write it as ( m
e2 ,

m
e3 ) and substitute it into

y2 = x3 + ax2 + bx to get
n2 = m(m2 + ame2 + be4).

Let d be the greatest common divisor of the two terms on the right. Since e and m are
relatively prime, d | m2 + ame2 + be4 implies that d | b. Then every prime dividing m

that doesn’t also divide b must appear to an even power in the prime factorization of m,
and only the primes dividing both m and b can appear to an odd power. Therefore

m = ±(m′)2 · pϵ1
1 p

ϵ2
2 . . . pϵt

t

9



for some integer m′, where the pi are all the distinct primes dividing b, and ϵi ∈ {0, 1} for
all i. So there are 2t+1 possibilities for m (and therefore x) (mod (Q×)2). So, the image
of the quotient group G/ψ(G) in Q×/(Q×)2 under the injective homomorphism induced
by µ has size at most 2t+1, hence (G : ψ(G)) is at most 2t+1. We can similarly find that
(G : ϕ(G)) ≤ 2s+1 where s is the number of distinct prime divisors of a2 − 4b.

Because these indexes are finite, we can find elements g1, . . . , gn to represent the cosets
of ψ(G) in G, and similarly we can find elements g1, . . . , gm to represent the cosets of
ϕ(G) in G. Then we claim that the set of representatives of the cosets of 2G in G is
contained in {

gi + ψ(gj) | 1 ≤ i ≤ n, 1 ≤ j ≤ m
}
.

To show this, let g be an element of G. Then there is a representative gi so that g− gi =
ψ(g) for some g ∈ G. Similarly we can find a representative gj so that g − gj = ϕ(g′) for
some g′ ∈ G. Then we have

g = gi + ψ(g) = gi + ψ(gj + ϕ(g′))
= gi + ψ(gj) + ψ(ϕ(g′))
= gi + ψ(gj) + 2g′,

so any element of G can be expressed as the sum of two elements in the finite set{
gi + ψ(gj)

}
along with an element of 2G. Hence 2G has finite index in G.

To summarize the proof of Lemma 4: we defined a pair of homomorphisms ϕ : C → C

and ψ : C → C so that ϕ ◦ ψ = ψ ◦ ϕ = 2 is an automorphism on C(C). Then we
showed that the images of G and G = ϕ(G) under ϕ and ψ are exactly the points in C

and C with x- and x-coordinates being in (Q×)2. After gathering this information about
ϕ and ψ, we aimed to show that (G : ψ(G)) and (G : ϕ(G)) are finite; in order to do
this we defined a new homomorphism µ : G → Q×/(Q×)2 with kernel ψ(G) so that an
injective homomorphism G/ψ(G) ↪→ Q×/(Q×)2 was induced. The image of this injective
homomorphism turns out to be finite, implying (G : ψ(G)) and (G : ϕ(G)) are finite, and
from there it follows that (G : 2G) is finite.

3.3 Consequences

Mordell’s theorem says that G = C(Q) is a finitely generated abelian group, so from the
fundamental theorem of finitely generated abelian groups, we know that G is isomorphic
to a direct sum of infinite cyclic groups and finite cyclic groups of prime power order:

G ∼= Z ⊕ Z ⊕ · · · ⊕ Z︸ ︷︷ ︸
r times

⊕Zp
ν1
1

⊕ Zp
ν2
2

⊕ · · · ⊕ Zpνs
s
.
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Here r is called the rank of G. Also, the subgroup

Zp
ν1
1

⊕ Zp
ν2
2

⊕ · · · ⊕ Zpνs
s

corresponds to the points of finite order, or torsion points, in G. It is accordingly called
the torsion subgroup of G.

4 The Billing-Mahler Theorem

We will now look at the main result of this paper:

Theorem (Billing-Mahler). There are no rational torsion points of order 11 on an elliptic
curve defined over Q.

To prove this theorem, we will first study what happens if there does exist a point P
of order 11 on an elliptic curve defined over Q. Let

Pi = P + P + · · · + P︸ ︷︷ ︸
i times

= iP.

Then note that Pi +Pj +Pk = O if and only if i+ j+ k ≡ 0 (mod 11), and furthermore
these statements are equivalent to saying that Pi, Pj, and Pk are collinear.

4.1 Setup

We have P0 = O = (0, 1, 0), and let P1 = (a, b, c) and P2 = (α, β, γ). Since the three
vectors {(0, 1, 0), (1, 0, 0), (0, 0, 1)} in Q3 are linearly independent, we can apply a lin-
ear transformation (change of basis) mapping the three original points (0, 1, 0), (a, b, c),
(α, β, γ) to the points P ′

0 = (0, 1, 0), P ′
1 = (1, 0, 0), P ′

2 = (0, 0, 1). This is an invertible
linear map from Q3 to Q3, and since it can also be considered as a bijective map from
P2(Q) to P2(Q), it maps lines to lines. Now we look at the point P ′

3 = (u, v, w), which is
not on the same line as P ′

0, P ′
1, and P ′

2, since 1+2+3 ̸≡ 0 (mod 11); we can again take a
linear map, this time defined by x 7→ x/u, y 7→ y/v, and z 7→ z/w, which doesn’t change
P ′

0, P ′
1, or P ′

2 (since they are considered points in P2), and maps P ′
3 to P3 = (1, 1, 1).

Thus, now we can write

P0 = (0, 1, 0), P1 = (1, 0, 0), P2 = (0, 0, 1), P3 = (1, 1, 1).

Let P4 be (x1, x2, x3), for some x1, x2, x3 ∈ Q.
Using the fact that the cross product of two points in P2 gives the line through them,

we can determine equations for lines passing through points we have written down, and
then take the unique intersections of pairs of lines to find new multiples of P . For example,
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for the point P−3, since the equation of the line through P0 and P3 is x − z = 0, and
the equation of the line through P1 and P2 is y = 0, and P−3 is the intersection of these
two lines, we have P−3 = (1, 0, 1). Then, the equation of the line through P−3 and P4 is
−x2x+ (x1 − x3)y+ x2z = 0, and P−1 is the intersection of this line and the line through
P0 and P1, so we get P−1 = (x1 − x3, x2, 0). Continuing with this method, we find

P−3 = (1, 0, 1)
P−1 = (x1 − x3, x2, 0)
P−2 = (0, x1 − x2 − x3, x1 − x3)
P−5 = (x2, x2, x3)
P5 = ((x1 − x3)x2,−x1x2 + x1x3 + x2

2 − x2
3, (x1 − x3)x3).

Here x1 ̸= x3, as that would imply P−2 = P0 (a contradiction since P doesn’t have order
2), and also x2 ̸= 0, as that would imply P−5 = P2 (a contradiction since P doesn’t have
order 7).

Since 2 + 4 + 5 ≡ 0 (mod 11), we know that P2, P4, and P5 lie on a line, which is
given by

x2
1x2 − x2

1x3 + x1x
2
3 − x2

2x3 = 0.

So we have obtained the following proposition:

Proposition 2. If there exists a rational torsion point of order 11 on an elliptic curve
defined over Q, then the cubic curve C given by

u2v − u2w + uw2 − v2w = 0

has more than five rational solutions.

Proof. We can check that P0, P1, P2, P3, and P−3 satisfy this equation. Furthermore, we
have just found that P4 is a sixth rational solution.

4.2 The Elliptic Curve E

We reduce C to Weirstrass form using the algorithm given by T. Nagell in [3], so that we
can instead look at the elliptic curve E given by the equation

y2z = x3 − 4x2z + 16z3,

since we get a bijection from the points on C to the points on E. So, in order to show that
Proposition 2 is false and thus obtain a contradiction on the assumption that a rational
torsion point of order 11 exists, we need to show that y2 = x3 − 4x2 + 16 has exactly five
rational solutions.
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Proposition 3. The elliptic curve E given by the equation

y2 = f(x) = x3 − 4x2 + 16

has exactly five rational solutions.

With the Nagell-Lutz theorem we see that the torsion subgroup of E is of order 5,
and is generated by (0, 4). Since Mordell’s theorem implies that

E(Q) = E(Q)tors × Zr

where E(Q)tors is the torsion subgroup and r is the rank, we want to show that r = 0.
Let θ be the real root of f(x) (an explicit value can be found with a calculator), and let

K be the cubic field Q[θ]. Also with a calculator, we can compute that the discriminant
of K is −22 · 11, the ring of integers is

OK = Z + Z · 1
2θ + Z · 1

4θ
2,

the unit rank is 1, and a fundamental unit is η = 1 − 1
2θ. Then the ring of integers is

O×
K = ⟨−1⟩ × ⟨η⟩, and the class number of K is 1 (so OK is a principal ideal domain).

From the proof of Mordell’s theorem, there is a homomorphism µ from E(Q) to
K×/(K×)2 with kernel 2E(Q), meaning E(Q)/2E(Q) is isomorphic to the image of µ.
However, from the implications of Mordell’s theorem,

2E(Q) ∼= 2Z ⊕ · · · ⊕ 2Z ⊕ 2Zp
ν1
1

⊕ · · · ⊕ 2Zpνs
s
,

so the quotient group G/2G looks like

E(Q)/2E(Q) ∼= Z/2Z ⊕ · · · ⊕ Z/2Z ⊕ Zp
ν1
1
/2Zp

ν1
1

⊕ · · · ⊕ Zpνs
s
/2Zpνs

s
,

where Zp
νi
i
/2Zp

νi
i

is isomorphic to Z/2Z if pi = 2, and 0 if pi ̸= 2. So we actually have

Im(µ) ∼= E(Q)/2E(Q) ∼= (Z/2Z)r.

Hence showing that r = 0 is the same as showing that Im(µ) is trivial, or in other words,
that every rational point on E has x-coordinate in K2.

Suppose now for the sake of contradiction that there is a rational point (x, y) on E

so that x− θ is not in K2. We can write x = r
t2 and y = s

t3 , where r, s, t are integers so
that gcd(r, t) = gcd(s, t) = 1. Then since

µ(x, y) = x− θ ≡ r − t2θ
(
mod (K×)2

)
,
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we know that r − t2θ ̸∈ (K×)2.
Due to Mordell’s theorem, we can write the integral ideal (r − t2θ) of OK as

(r − t2θ) =
(∏

i

pϵi
i

)
I2, (1)

where ϵi ∈ {0, 1}, I is an integral ideal, and the pi are prime ideals of OK dividing the
discriminant of f(x), which is −28 ·11. Hence the pi divide either 2 or 11. In fact, (2) = p3,
and (11) = q2q′ where q ̸= q′. Furthermore, NK/Q(p) = 2, and NK/Q(q) = NK/Q(q′) = 11.

We now have ∏
i

pϵi
i = pϵ1qϵ2(q′)ϵ3 ,

and we’d like to show that the ϵi are all 0. Taking the norm of both sides gives

∏
i

NK/Q(pϵi
i ) = 2ϵ111ϵ2+ϵ3 .

Taking the norm of both sides of (1) gives

∏
i

NK/Q(pi)ϵi ·NK/Q(I)2 = NK/Q(r − t2θ).

We can compute the RHS of the above equation to be (t6(x− θ1)(x− θ2)(x− θ3)), which
is (t6y2), a square. So we know that ϵ1 = 0, while ϵ2 + ϵ3 is either 0 or 2.

If ϵ2 + ϵ3 = 2, i.e. ϵ2 = ϵ3 = 1, then qq′ | r − t2θ, and therefore 11 | (r − t2θ)2. This
means that r2−2rt2θ+t4θ2

11 is in OK , so 11 divides both r and t. This is a contradiction since
we assumed gcd(r, t) = 1.

So, ϵ2 = ϵ3 = ϵ1 = 0, meaning (r − t2θ) = I2, where I = (α) for some α ∈ OK due to
K having class number 1. Then we know that

r − t2θ = u · α2,

where u is a unit that is not a square in K (since we assumed r − t2θ isn’t a square in
K). We assume that u ∈ {−1, η,−η}, and we choose α appropriately. However, since
the norm of the LHS of r − t2θ = u · α2 is positive (due to it being a square), we know
that the norm of u must also be positive, so u can’t be −1 or −η. Thus

r − t2θ = η · α2

for some α ∈ OK . We are still looking for a contradiction, so we look more closely at α.

14



Define β = ηα ∈ OK and say that β = a+ b · 1
2θ + c · 1

4θ
2. Then

(
1 − 1

2θ
)

(r − t2θ) = β2 =
(
a+ b · 1

2θ + c · 1
4θ

2
)2
.

Using θ3 − 4θ2 + 16 = 0, some calculations give

r −
(
r

2 + t2
)

· θ + t2

2 · θ2 = (a2 − 4c2 − 4bc) + (ab− c2) · θ +
(
b2

4 + ac

2 + bc+ c2
)

· θ2.

Matching coefficients gives us the three equations

r = a2 − 4c2 − 4bc
−r − 2t2 = 2ab− 2c2

2t2 = b2 + 2ac+ 4bc+ 4c2.

The second implies 2 | r, but then from the first equation we know 2 | a, so then 2 | b from
the third equation. However, this means that 4 divides the RHS of the third equation,
so 2 | t. This is a contradiction since we assumed gcd(r, t) = 1.

Hence we arrive at a contradiction in all cases, meaning the rank of E(Q) is indeed
0. Therefore Proposition 3 is true, which contradicts Proposition 2. Thus it follows that
there cannot exist a rational torsion point of order 11.

Appendices

A Projective Geometry

In the (x, y)-plane, any two distinct points uniquely define a line. Also, two distinct lines
uniquely define a point where they intersect, except when the lines are parallel. To keep
things consistent and remove this “non-parallel” condition, we can define the points at
infinity as the theoretical points where parallel lines intersect. We can’t just have one
single point at infinity, since that would imply this single point at infinity would lie on
all lines, contradicting the fact that any two lines have exactly one point of intersection.
We actually need a point at infinity for every distinct direction in the ordinary plane.

We will call this plane consisting of the ordinary plane together with the added points
at infinity, the projective plane, denoted by P2. We can write this as

P2 = A2 ∪
{
directions in A2

}
,

where A represents the affine (Cartesian) plane.
We can now see that in the projective plane, any two lines intersect in exactly one
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point, which would be an ordinary point in A2 if they are not parallel, and a point at
infinity corresponding to their common direction if they are parallel. So, in P2 we can
eliminate the notion of parallel lines altogether. Additionally, all the points at infinity
lie on a common line, being the line at infinity that consists entirely of the points at
infinity. Thus, in the projective plane any two distinct points still uniquely define a line.
Notationally, we can let P1 represent the line at infinity so that we can say P2 = A2 ∪P1.

For a point (x, y) ∈ A2, we let [x : y : 1] be the coordinates of its counterpart in P2,
and we let [x : y : 0] in P2 represent the direction of the line passing through the origin
and (x, y) in A2. In other words, we introduce a third coordinate, letting it be 0 if the
point is a point at infinity, and nonzero if it comes from A2. Then, we define the points
[x : y : z] as being equivalent to [x

z
: y

z
: 1] in P2, and associate it with the point (x

z
, y

z
) in

A2. In other words, points in P2 are considered up to a scalar.
This is the connection between the geometric description of P2 that we give above, to

the algebraic description that follows. Rational solutions to the equation

xn + yn = 1

are of the form (a
c
, b

c
), where a, b, c ∈ Z and gcd(a, c) = gcd(b, c) = 1. We can homogenize

this equation, or in other words, we can introduce a third variable Z so that every term
has the same degree, and so that the solution (a/c, b/c) of the first equation corresponds
to the integer solution (a, b, c) to the homogenized Fermat equation.

Xn + Y n = Zn. (2)

Homogenization is useful because, as we can see, for any t ∈ Z with t ̸= 0, the triple
(ta, tb, tc) is a solution if and only if (a, b, c) is. So when solving equation (2), we can
consider (ta, tb, tc) and (a, b, c) as equivalent triples. Thus we get an equivalence relation
among the non-trivial solutions to equation (2).

Let S be the set of these non-trivial solutions under the equivalence relation. Then
the solutions (a, b, c) in S with c being nonzero map to the solutions (a

c
, b

c
) to the original

equation xn +yn = 1, and correspond to the points (a
c
, b

c
) in A2, which are [a

c
: b

c
: 1] in P2

from our geometric description. The solutions (a, b, c) ∈ S with c = 0 don’t correspond
to a solution to xn + yn = 1, and so they correspond to the points [a : b : 0] at infinity in
P2. We can also check that the points in our geometric description of P2 map injectively
to S, since a point (x, y) ∈ A2 corresponds to the solution (x, y, 1) to equation (2), while
a point [x : y] ∈ P1 corresponds to the solution (x, y, 0). So S and P2 are the same.

After developing an understanding of points, we naturally would like to move on to
curves. For a curve C in the projective plane, we can consider it as being the union of an
ordinary curve C0 in A2 along with the set of its points at infinity, which are the limiting
directions of the tangent lines to C0. For example, if C0 is a hyperbola, then C consists
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of C0 along with the directions that the asymptotes of C0 have.
Through homogenization we get an injective mapping from the set of curves in A2

to the set of curves in P2 that don’t contain the line at infinity. To move in the other
direction, we can dehomogenize by fixing one of the variables. For example, let us take
the affine cubic y2 = x3 + 1. This is degree 3, so homogenizing gives the projective
curve Y 2Z = X3 +Z3. This sends the point at infinity on the original curve to the point
[0 : 1 : 0] on the projective curve (and lets us work with the point at infinity algebraically).
Letting Z = 1 lets us dehomogenize and returns the affine curve y2 = x3 + 1 again. We
could also dehomogenize by setting Y = 1 to be the line at infinity, which sends our point
at infinity to the point (x, z) = (0, 0) on the affine curve z = x3 + z3. Taking different
lines to be the line at infinity essentially gives us overlapping affine curves, that, when
taken together, form the projective curve.

I hope this brief tangent provides enough background to understand the rest of the
paper. Interested readers can learn more about projective geometry using [1].

B Algebraic Number Theory

We will list some definitions and results in algebraic number theory that are necessary
for Proposition 3 of the proof of the Billing-Mahler theorem. This is only meant to be a
short overview, so we will not prove anything or go into much detail; interested readers
can refer to an algebraic number theory text such as [4].

Definition. A number field is an extension K of the rational numbers Q with degree
(K : Q) being finite. When (K : Q) = 3 it is called a cubic field.

For example, Q[ 3
√

2] is a cubic field.

Definition. An algebraic integer is a number that is the root of some nonzero monic
one-variable polynomial of finite degree.

For example,
√

2 and 1 + i are algebraic integers, while π and e are not.

Definition. Let K be a number field. The ring of integers OK is the set of algebraic
integers of K. In other words, OK = K ∩ Z, where Z is the set of algebraic integers.

Definition. For a number field K and its ring of integers OK, a fundamental unit is
a generator for the group of units of OK, when this group of units has rank 1.

By Dirichlet’s unit theorem, the unit group has rank 1 if and only if the number field
is either a real quadratic field, a complex cubic field, or a purely imaginary quartic field.
(The number field used in our proof of Billing-Mahler is a complex cubic field.) Readers
can learn more about Dirichlet’s unit theorem from Section 1.7 of [4].
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Definition. For a commutative ring (R,+,×), an ideal is an additive subgroup of R
such that for all r ∈ R and x ∈ I, the product rx is in I.

For example, the multiples of 5 in Z (denoted by 5Z) is an ideal of Z.

Definition. Let R be a commutative ring and let p be an ideal in R. This ideal is called
prime if it satisfies the condition that if a and b are ideals of R with ab ⊂ p, then either
a ⊂ p or b ⊂ p.

Definition. An ideal is principal if it can be generated by a single element.

For example, the ideal 5Z is principal (generator being 5).

Definition. Let R be a commutative ring with no zero divisors (product of nonzero ele-
ments is nonzero). If I is an R-submodule of the field of fractions of R such that there
exists an r ∈ R with rI ∈ R, then I is a fractional ideal.

In the above definition, multiplication by r can be thought of as “clearing the denom-
inators.”

Definition. Let K be a number field, and let OK be its ring of integers. Let JK be the
group of fractional ideals of OK, and let PK be the subgroup of JK containing the principal
ideals. Then the ideal class group of K is the quotient group JK/PK. This group is
finite, and its order is called the class number of K.

If the class number of a number field K is 1, then the ring of integers OK is a principal
ideal domain, meaning that every ideal is principal.

For example, Z and Z[ω], where ω is a primitive third root of unity, have class number
1 and have trivial ideal class groups. On the other hand, the class group of Z[

√
−5] is

cyclic of order 2.
Since principal ideal domains are also unique factorization domains, we also know

that every ideal in a number field with class number 1 has a unique factorization (up to
order) into powers of prime ideals. We may also obtain divisibility rules on the ideals
from here.

Finally, we take a look at the norm of elements and ideals in a field extension. First
we require some terms from Galois theory:

Definition. Let the field L be a finite extension of of an arbitrary field K. Then the
Galois group of L over K, denoted by Gal(L/K), is the group of automorphisms on L

that fix K. In other words, it is the group

{σ : L ↪→ L | σ(x) = x for all x ∈ K} .

Definition. For a field K, the finite extension L/K is a Galois extension if the order
of the Galois group is equal to the degree of the extension, i.e. |Gal(L/K)| = (L : K).
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Definition. For a field K and a finite extension L of K, the field L is a finite dimensional
vector space over K, and multiplication by an α ∈ L is a K-linear transformation from
L to itself. Then the norm of α, denoted by NL/K(α), is defined as the determinant of
this linear transformation.

When L/K is a Galois extension, the norm of α is the product of the roots of the
minimal polynomial of α over K. This is equivalent to saying

NL/K(α) =
∏

σ∈Gal(L/K)
σ(α).

The norm is a group homomorphism from L× to K×. In other words, for α and β in L×,
we have

NL/K(αβ) = NL/K(α)NL/K(β).

Furthermore, for α ∈ OK , the norm NL/K(α) is ±1 if and only if α is a unit in OK .
We can define a generalization of this norm for ideals in the field extension. In our

conditions, where all ideals are principal and L/K is a Galois extension, we have

NOL/OK
(a) = K ∩

∏
σ∈Gal(L/K)

σ(a),

for some ideal a in the set of nonzero fractional ideals of OL. This norm for ideals is
compatible with the norm for elements, so

|NL/K(x)| = NOL/OK
(xOK)

for all elements x ∈ L and the corresponding ideals xOK . By abuse of notation we write
NL/K in the place of NOL/OK

.
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