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1 Abstract

Elliptic integrals are mathematical functions that include the integration of
combinations of polynomials and square roots of cubic or quartic functions, and
these integrals cannot be stated using fundamental functions. These integrals
have been an integral part of mathematical analysis since their introduction in
the 18th century. Elliptic functions play a crucial role in several applications,
particularly in physics and engineering. These functions are essential for ad-
dressing complex issues such as pendulum motion and electrical circuit designs.
The classification of mathematicians such as Fagnano, Euler, Gauss, and Leg-
endre into canonical forms is the product of their significant efforts. Modern
computer tools, including transformations and series expansions, are also used
in this process. This paper aims to explore the historical background of elliptic
integrals, their complex features, and computational techniques.

2 Introduction

A general form of an elliptic integral can be represented as:

E(x) =

∫
R
(
x,
√

P (x)
)
dx,

where R is a rational function of its arguments, and P (x) is a polynomial of
degree three or four.

Elliptic integrals possess a profound level of complexity, making them inher-
ently challenging to compute and apply due to their intricate nature.

There exist three major types of elliptic integrals. They are distinguished
according to the form of their integrands and to the field of their applications:
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2.1 Elliptic Integrals of the First Kind

The elliptic integral of the first kind, denoted by F (ϕ, k), is represented as:

F (ϕ, k) =

∫ ϕ

0

dθ√
1− k2 sin2 θ

,

where ϕ is the amplitude and k (0 ≤ k < 1) is the modulus.

In terms of geometry, this integral represents the arc length of an ellipse.
The function F (ϕ, k) an be alternatively seen as a mapping from amplitude ϕ
and modulus k to a real number, effectively converts the angular parameteriza-
tion by introducing a length parameter.

In the special case where ϕ = π
2 , the integrand reduces to the complete el-

liptic integral of the first kind, denoted by K(k):

K(k) =

∫ π
2

0

dθ√
1− k2 sin2 θ

.

2.2 Elliptic Integrals of the Second Kind

The elliptic integral of the second kind, denoted by E(ϕ, k), is defined as:

E(ϕ, k) =

∫ ϕ

0

√
1− k2 sin2 θ dθ.

This integral also covers the arc length of the ellipse, though differently from
the integral of the first kind. In this case, the integrand contains a square root
of 1− k2 sin2 θ, which changes the weight of the integrand over the integration
interval.

For the complete elliptic integral of the second kind, we have:

E(k) =

∫ π
2

0

√
1− k2 sin2 θ dθ.
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2.3 Elliptic Integrals of the Third Kind

The elliptic integral of the third kind, denoted by Π(n;ϕ, k), involves an addi-
tional parameter n known as the characteristic, and is defined as:

Π(n;ϕ, k) =

∫ ϕ

0

dθ

(1− n sin2 θ)
√
1− k2 sin2 θ

.

This integral generalizes the first and second kinds by incorporating a pole
at θ = arcsin(1/n) if n > 1. The parameter n allows for the elliptic integral of
the third kind to address more complicated geometries and physical situations.

For the complete elliptic integral of the third kind:

Π(n; k) =

∫ π
2

0

dθ

(1− n sin2 θ)
√
1− k2 sin2 θ

.

For a class of addition equations to be true, elliptic integrals have some
pleasant properties: they are periodic and symmetric, therefore allowing a com-
plex integral to be reduced into multiple simple ones. These addition equations
also include correction terms; the mentioned correction terms in them reflect
the outcomes of the interaction of the integrals upon their combination.

For the first kind, the addition formula can be expressed as:

F (ϕ1 + ϕ2, k) = F (ϕ1, k) + F (ϕ2, k) + correction terms

where F (ϕ, k) is the incomplete elliptic integral of the first kind:

F (ϕ, k) =

∫ ϕ

0

dθ√
1− k2 sin2 θ

The correction terms in this addition formula can be derived based on the
properties of Jacobi’s elliptic functions. Specifically, the correction term involves
the sine and cosine of the angles being summed and the elliptic modulus k. The
explicit correction term is:
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k2 sinϕ1 sinϕ2 sin(ϕ1 + ϕ2)

1− k2 sin2 ϕ1 sin
2 ϕ2

In certain limits, elliptic integrals can be turned into simpler forms. When
k = 0:

F (ϕ, 0) = ϕ

E(ϕ, 0) = ϕ

Here, E(ϕ, k) is the incomplete elliptic integral of the second kind:

E(ϕ, k) =

∫ ϕ

0

√
1− k2 sin2 θ dθ

As k approaches 1, the integrals exhibit logarithmic behavior. For instance,
the complete elliptic integrals of the first kind K(k) and the second kind E(k)
behave as:

K(k) ∼ −1

2
ln(4(1− k))

E(k) ∼ 1 +
1

2
ln(4(1− k))

To derive the addition formula and the correction terms for the first kind,
we can use the properties of the Jacobi elliptic functions. The incomplete el-
liptic integral of the first kind can be expressed in terms of the Jacobi elliptic
function sn(u, k), where u = F (ϕ, k) and ϕ = am(u, k). Here, am(u, k) is the
Jacobi amplitude.

Using the addition formulas for Jacobi elliptic functions, we can write:

sn(u1 + u2, k) =
sn(u1, k)cn(u2, k)dn(u2, k) + sn(u2, k)cn(u1, k)dn(u1, k)

1− k2sn2(u1, k)sn2(u2, k)

When we put these functions back into their form with ϕ, we get the cor-
rection term for the addition formula.
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3 History of Elliptic Integrals

The theory of elliptic integrals began largely in the 18th century and began to
develop rapidly due to the work of many leading mathematicians. This section
will provide a rather detailed history of the development of the theory of ellip-
tic integrals, at that time with an emphasis on mathematical accuracy, and a
plethora of equations that came into circulation.

The foundations of elliptic integral theory were laid by the work of Giulio
Carlo Fagnano, 1682–1766. He studied the lemniscate, whose Cartesian equa-
tion is:

(x2 + y2)2 = a2(x2 − y2)

and in polar coordinates as:

r2 = a2 cos 2θ,

led to the exploration of the lemniscatic integral:

s(r) =

∫ r

0

dt√
1− t4

.

The lemniscatic integral gives the arc length of the lemniscate from the ori-
gin to a point on the curve. This integral is expressed as s(r) =

∫ r

0
dt√
1−t4

. The

integral stands for the sum of infinitesimal portions of the arc length, each seg-
ment being dt√

1−t4
long. When these segments are added from 0 to r, the total

arc length of the lemniscate from the origin to the point at r is obtained.

A major contribution of Fagnano’s was in how he was able to deal with these
integrals. For instance, he demonstrated that:

∫
dr√
1− r4

=
√
2

∫
dt√
1 + t4

,

using the substitution:

t =
1

r

√
1±

√
1− r4.
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And these reductions were the bases for further developments.

Leonhard Euler, 1707–1783, followed with his own work on Fagnano, and
he pushed the elliptical integrals to a more established field. He made a lot of
change in the field of ellipticials, to which Euler made contributions including
the formulation of addition theorems:

∫ u

0

dt√
1− t4

+

∫ v

0

dt√
1− t4

=

∫ w

0

dt√
1− t4

,

where u and v are related by:

w =
u
√
1− v4 + v

√
1− u4

1 + u2v2
.

The importance of such addition formulae to the development of the theory
of elliptic integrals is truly comparable to that of addition formulae for trigono-
metric functions. These developments established the modern theory of elliptic
functions and their numerous applications in mathematics and physics.

Adrien-Marie Legendre worked much on elliptic integrals. He was the first
to systematize them and proposed dividing them into three types, which are
now named Legendre’s forms.

Among the works of Legendre are those developing properties and series
expansions for these integrals. The complete elliptic integral of the first kind
is one of the significant examples, which is normally denoted by K(k). This
integral is defined as:

K(k) =

∫ π
2

0

dθ√
1− k2 sin2 θ

.

Legendre also developed a series expansion for K(k). This suggests a repre-
sentation of the integral as an infinite series. The series expansion for K(k) is:

K(k) =
π

2

∞∑
n=0

(
(2n− 1)!!

(2n)!!

)2

k2n.
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Here, (2n− 1)!! and (2n)!! denote double factorials. The double factorial of
a number n is the product of all the integers from 1 to n that have the same
parity (odd or even) as n. For example:

The double factorial of an odd number: (2n−1)!! = (2n−1)·(2n−3)·· · ··3·1.

The double factorial of an even number: (2n)!! = (2n) · (2n− 2) · · · · · 4 · 2.

To learn more about where this series expansion comes from, let’s consider
the definition of the integral of K(k). This integral is of the form that is diffi-
cult to integrate directly, and he instead used a method called binomial series
expansion.

First, we write the integrand in a form that makes it easier to expand:

1√
1− k2 sin2 θ

= (1− k2 sin2 θ)−
1
2 .

Using the binomial series expansion for (1− x)−
1
2 , we get:

(1− x)−
1
2 =

∞∑
n=0

(
− 1

2

n

)
(−x)n.

Here,
(− 1

2
n

)
is a generalized binomial coefficient. For our case:

(
− 1

2

n

)
=

(− 1
2 )(−

3
2 )(−

5
2 ) · · · (−

2n−1
2 )

n!
.

Simplifying this, we get:

(
− 1

2

n

)
= (−1)n

(2n− 1)!!

2nn!
.

Substituting back into the series expansion, we get:
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(1− k2 sin2 θ)−
1
2 =

∞∑
n=0

(2n− 1)!!

2nn!
(k2 sin2 θ)n.

Now, integrating term-by-term from 0 to π
2 :

K(k) =

∫ π
2

0

∞∑
n=0

(2n− 1)!!

2nn!
k2n sin2n θ dθ.

Interchanging the sum and integral, which is allowed in a particular sense,
we obtain:

K(k) =

∞∑
n=0

(2n− 1)!!

2nn!
k2n

∫ π
2

0

sin2n θ dθ.

The integral
∫ π

2

0
sin2n θ dθ can be evaluated using the following known for-

mula for definite integrals of sine functions::

∫ π
2

0

sin2n θ dθ =
(2n− 1)!!

(2n)!!
· π
2
.

Thus, substituting this back into our series, we get:

K(k) =
π

2

∞∑
n=0

(
(2n− 1)!!

(2n)!!

)2

k2n.

It follows to complete the proof of series expansion of the complete elliptic in-
tegral of the first kind K(k). This expansion is useful because it allows us to
approximate K(k) for small values of k and gives an insight into the behavior
of elliptic integrals.
Carl Gustav Jacob Jacobi,1804–1851, extended the theory of elliptic integrals
by introducing the Jacobi elliptic functions: sn(u, k), cn(u, k), and dn(u, k). Ja-
cobi worked on the inversion of elliptic integrals and succeeded in discovering a
major property about them.
Jacobi’s inversion problem involves solving for u in terms of ϕ and k. This is
essential to the understanding of elliptic integrals, as it turns what was an un-
gainly elliptic integral into more tractable functions.
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The Jacobi elliptic functions are defined as follows:

sn(u, k) : the sine amplitude function,

cn(u, k) : the cosine amplitude function,

dn(u, k) : the delta amplitude function.

These functions relate to the elliptic integral of the first kind F (ϕ, k):

F (ϕ, k) =

∫ ϕ

0

dθ√
1− k2 sin2 θ

.

When you solve this integral for ϕ, you get:

u = F (ϕ, k).

The inverse problem is to find ϕ given u:

ϕ = am(u, k),

where am(u, k) is the amplitude function. The Jacobi elliptic functions
sn(u, k), cn(u, k), and dn(u, k) are then defined by:

sn(u, k) = sin(am(u, k)),

cn(u, k) = cos(am(u, k)),

dn(u, k) =

√
1− k2 sin2(am(u, k)).

With those functions we can do more work with elliptic integrals, since it uses
a back-way to invert them.

Karl Weierstrass (1815–1897) further developed the theory by introducing
the Weierstrass elliptic function ℘(z), along with related functions ζ(z) and
σ(z). The work of Weierstrass unified elliptic integrals and functions with the
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help of complex analysis, and the theoretical background of this field was en-
riched.

The Weierstrass elliptic function ℘(z) is defined by:

℘(z) =
1

z2
+
∑
ω∈Λ∗

(
1

(z − ω)2
− 1

ω2

)
,

where Λ is a lattice in the complex plane, and Λ∗ is the lattice excluding the
origin.

Similarly, such a function is doubly periodic, expressing elliptic integral be-
havior over a lattice of complex numbers.

3.1 Equations and Series Expansions

Elliptic integrals can be expressed using series expansions, which are important
for their numerical evaluation.

To explore the series expansions of the complete elliptic integrals of the sec-
ond and third kinds, and understand how these series are derived, first, consider
the complete elliptic integral of the second kind, E(k):

E(k) =

∫ π
2

0

√
1− k2 sin2 θ dθ.

To derive the series expansion for E(k), we can use a technique similar to
the binomial series expansion. Let’s rewrite the integrand in a more convenient
form:

√
1− k2 sin2 θ = (1− k2 sin2 θ)

1
2 .

Now, we can use the binomial series expansion for (1− x)
1
2 :

(1− x)
1
2 = 1− 1

2
x− 1 · 3

2 · 4
x2 − 1 · 3 · 5

2 · 4 · 6
x3 − · · · .
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By substituting x = k2 sin2 θ, we get:

√
1− k2 sin2 θ = 1− 1

2
k2 sin2 θ − 1 · 3

2 · 4
k4 sin4 θ − · · · .

Now, we integrate term by term from 0 to π
2 :

E(k) =

∫ π
2

0

(
1− 1

2
k2 sin2 θ − 1 · 3

2 · 4
k4 sin4 θ − · · ·

)
dθ.

Each term in the series can be integrated separately:

E(k) =

∫ π
2

0

dθ − k2

2

∫ π
2

0

sin2 θ dθ − 3k4

32

∫ π
2

0

sin4 θ dθ − · · · .

We use the following integrals for the sine functions:

∫ π
2

0

sin2 θ dθ =
π

4
,

∫ π
2

0

sin4 θ dθ =
3π

16
.

Substituting these values, we get:

E(k) =
π

2
− k2

2
· π
4
− 3k4

32
· 3π
16

− · · · .

Simplifying, we get the series expansion for E(k):

E(k) =
π

2

(
1− k2

4
− 3k4

64
− 5k6

256
− · · ·

)
.

Next, consider the complete elliptic integral of the third kind, Π(n, k):

Π(n, k) =

∫ π
2

0

dθ

(1− n sin2 θ)
√
1− k2 sin2 θ

.

11



To find the series expansion for Π(n, k), we can use a perturbation approach,
assuming n is small. For small n, the integrand can be expanded as:

1

1− n sin2 θ
≈ 1 + n sin2 θ + n2 sin4 θ + · · · .

Substituting this into the integral, we get:

Π(n, k) =

∫ π
2

0

(
1 + n sin2 θ + n2 sin4 θ + · · ·

) dθ√
1− k2 sin2 θ

.

This can be separated into individual integrals:

Π(n, k) =

∫ π
2

0

dθ√
1− k2 sin2 θ

+ n

∫ π
2

0

sin2 θ dθ√
1− k2 sin2 θ

+ · · · .

The first term is just the complete elliptic integral of the first kind K(k):

∫ π
2

0

dθ√
1− k2 sin2 θ

= K(k).

The second term involves the complete elliptic integral of the second kind
E(k). Using the relation for integrals involving sin2 θ:

∫ π
2

0

sin2 θ dθ√
1− k2 sin2 θ

= K(k)− E(k).

Thus, the series expansion for Π(n, k) is:

Π(n, k) = K(k) +
n

4
(K(k)− E(k)) + · · · .

These series converge rapidly for small values of k and n, making them useful
for practical computations. By breaking down the integrals into simpler parts,
we can approximate the values of these elliptic integrals more easily.
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4 Computational Methods

One of the important ways to find the values of elliptic integrals is to find
answers to solve the problems of modern analysis, especially when analytical
answers are very hard to find and, moreover, impossible. This chapter goes
in-depth about numerical methods such as Gaussian quadrature, numerical in-
tegration techniques like Romberg integration, and the Arithmetic-Geometric
Mean method. There are mathematics formulas and ways of their applications.

4.1 Gaussian Quadrature

Gaussian quadrature is an integration technique for numerical integrals to ap-
proximate a function’s integral as the sum of values of this function at certain
points within the domain of integration. The collection of points and weights
are chosen such that, for example, the rule integrates exactly all polynomials of
the highest possible grade, or degree of exactness.

For an elliptic integral of the form

F (ϕ, k) =

∫ ϕ

0

dθ√
1− k2 sin2 θ

,

Gaussian quadrature can be applied by transforming the integral into a suitable
form. Typically, this involves mapping the integral to the interval [−1, 1] using
a change of variables, and then applying the quadrature rule. The standard
Gaussian quadrature rule is given by:∫ 1

−1

f(x) dx ≈
n∑

i=1

wif(xi),

where xi are the quadrature points (roots of the Legendre polynomial Pn(x))
and wi are the corresponding weights. For example, for n = 2,

∫ 1

−1

f(x) dx ≈ w1f(x1) + w2f(x2),

with x1 = − 1√
3
, x2 = 1√

3
, w1 = w2 = 1.

To apply Gaussian quadrature to the elliptic integral, first, we need to ex-
press it in the form:
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F (ϕ, k) =

∫ ϕ

0

dθ√
1− k2 sin2 θ

.

Letting θ = ϕ
2 (1 + x), the integral becomes:

F (ϕ, k) =
ϕ

2

∫ 1

−1

1√
1− k2 sin2

(
ϕ
2 (1 + x)

) dx.

Applying Gaussian quadrature:

F (ϕ, k) ≈ ϕ

2

n∑
i=1

wi
1√

1− k2 sin2
(

ϕ
2 (1 + xi)

) .

4.2 Romberg Integration

Romberg integration is an algorithm that gives successive improvement in the
accuracy of the trapezoidal rule by means of Richardson’s extrapolation. The
definition of an elliptic integral, such as

E(ϕ, k) =

∫ ϕ

0

√
1− k2 sin2 θ dθ,

the trapezoidal rule may then be used for an approximate evaluation of the
integral over an initial partition of the interval [0, ϕ]:

T1 =
ϕ

2
[f(0) + f(ϕ)].

Refinement of partition by halving the step size results in more accurate
estimate:

T2 =
ϕ

4

[
f(0) + 2f

(
ϕ

2

)
+ f(ϕ)

]
.
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Romberg integration refines this estimate by using the result of the trape-
zoidal rule with different step sizes and then applying Richardson extrapolation:

Rk,j = Rk−1,j +
Rk−1,j −Rk−1,j−1

4j − 1
,

whereRk,j is the Romberg estimate after k refinements and j levels of extrap-
olation. This method goes on progressively to reduce error through refinement
and extrapolation.

4.3 Arithmetic-Geometric Mean (AGM)

The Arithmetic-Geometric Mean (AGM) method is another powerful technique
for computing elliptic integrals. The convergence of the AGM can be demon-
strated by noting that both sequences {an} and {bn} are bounded and mono-
tonic. Since an+1 ≤ an and bn+1 ≥ bn, and both sequences are bounded by a0
and b0, they converge to a common limit M(a0, b0). Formally, we can write:

lim
n→∞

an = lim
n→∞

bn = M(a0, b0).

The AGM iteration can be effectively applied to compute the complete el-
liptic integrals. We start with the initial values:

a0 = 1, b0 =
√

1− k2, c0 = k.

The iteration process is then given by:

an+1 =
an + bn

2
, bn+1 =

√
anbn, cn+1 =

an − bn
2

.

This process is repeated until an and bn converge. Let a∞ be the common
limit of the sequences {an} and {bn}.

The complete elliptic integral of the first kind K(k) can be computed using
the AGM as follows:
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K(k) =
π

2a∞
.

Firstly, start with the AGM iterations for an and bn:

an+1 =
an + bn

2
, bn+1 =

√
anbn.

Then, both sequences converge to the AGM M(a0, b0):

lim
n→∞

an = lim
n→∞

bn = a∞.

The integral form of the complete elliptic integral is:

K(k) =

∫ π
2

0

dθ√
1− k2 sin2 θ

.

Using the AGM method, we can express K(k) as:

K(k) =
π

2M(1,
√
1− k2)

.

Since a0 = 1 and b0 =
√
1− k2, it follows that:

K(k) =
π

2a∞
.

The complete elliptic integral of the second kind E(k) can be computed us-
ing the AGM and the sequence {cn}:

E(k) =
π

2a∞

(
1− 2

∞∑
n=0

2−nc2n

)
.
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To compute this sequence, first, start with the initial values and iterations:

a0 = 1, b0 =
√

1− k2, c0 = k.

an+1 =
an + bn

2
, bn+1 =

√
anbn, cn+1 =

an − bn
2

.

The sequences {an} and {bn} converge to a∞:

lim
n→∞

an = lim
n→∞

bn = a∞.

The sequence {cn} is used to adjust the calculation for the second kind inte-
gral. The formula for E(k) is derived by considering the additional terms from
cn:

E(k) =
π

2a∞

(
1− 2

∞∑
n=0

2−nc2n

)
.

5 Advanced Topics

Elliptic integrals generalize widely to more sophisticated mathematical topics,
most notably, to complex analysis, and to relationships with certain special
functions. This module takes a look at these more subtle features of the theory,
with special emphasis on methods of contour integration, many applications to
complex differential equations, and the relationship to hypergeometric functions
and elliptic functions.

In the subject of complex analysis, elliptic integrals can be adopted with
the contour integration techniques and have the considerable application to the
solution of complex differential functions.
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5.0.1 Contour Integration Methods

Contour integration is a significant method in complex analysis for the compu-
tation of integrals along arbitrary paths in the complex plane. The applicability
of contour integration in handling integrals involving branch cuts and poles is
in integrals for elliptic functions.

Consider the elliptic integral of the first kind:

F (z, k) =

∫ z

0

dθ√
1− k2 sin2 θ

.

By transforming this integral into the complex plane, we can utilize residues
and contour deformations to evaluate it more efficiently. For example, if we take
the substitution θ = am(u, k), where am(u, k) is the Jacobi amplitude function,
we can rewrite the integral as:

F (z, k) =

∫ am(z,k)

0

d(am(u, k))√
1− k2 sin2(am(u, k))

.

In the complex plane, we consider a contour that encircles the branch points
of the integrand. By applying the residue theorem, we can evaluate the integral
by summing the residues at the poles within the contour:∮

Γ

dθ√
1− k2 sin2 θ

= 2πi
∑

Res

(
1√

1− k2 sin2 θ
, θj

)
,

where θj are the poles of the integrand inside the contour Γ.

5.0.2 Applications to Complex Differential Equations

Elliptic integrals naturally come out as solutions of complex differential equa-
tions. Among them are the differential equations which define elliptic functions,
such as Jacobi elliptic functions. Consider the following differential equation:

d2y

dz2
= (a− 2b cos(2y)) y,

where a and b are constants. The solutions to such equations can often
be expressed using elliptic integrals. For instance, by making the substitution
y = sn(u, k), where sn(u, k) is the Jacobi elliptic sine function, we can transform
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the differential equation into:(
dy

du

)2

= (1− y2)(1− k2y2),

which is directly related to the elliptic integral of the first kind:

u = F (sin−1(y), k).

5.1 Connections with Special Functions

Elliptic integrals are closely related to several classes of special functions, in-
cluding hypergeometric functions and elliptic functions.

5.1.1 Hypergeometric Functions

Elliptic integrals can be expressed in terms of hypergeometric functions. For
example, the incomplete elliptic integral of the first kind can be written as:

F (ϕ, k) = ϕ 2F1

(
1

2
,
1

2
; 1; k2 sin2 ϕ

)
,

where 2F1(a, b; c; z) is the Gaussian hypergeometric function defined by the
series:

2F1(a, b; c; z) =

∞∑
n=0

(a)n(b)n
(c)n

zn

n!
,

with (a)n being the Pochhammer symbol (rising factorial):

(a)n = a(a+ 1)(a+ 2) · · · (a+ n− 1).

This bond supplies a channel to move from elliptic integrals into relationships
containing hypergeometric functions, or making use of some hypergeometric se-
ries and transformations on the related function in order to evaluate or provide
an approximation for an elliptic integral.
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5.1.2 Elliptic Functions and Modular Forms

Elliptic integrals are intimately connected with elliptic functions, such as the
Weierstrass ℘-function and Jacobi elliptic functions. These functions can be
defined via the inversion of elliptic integrals. For instance, the Jacobi elliptic
function sn(u, k) is defined as the inverse of the incomplete elliptic integral of
the first kind:

u = F (sn(u, k), k).

The differential equation satisfied by sn(u, k) is:(
d

du
sn(u, k)

)2

= (1− sn2(u, k))(1− k2sn2(u, k)),

which directly ties back to the elliptic integral.

The modular forms, which are functions of the complex upper half-plane
transforming under the action of the modular group in certain ways, reside to-
gether with elliptic integrals. The periods of elliptic integrals define lattices in
the complex plane used in the construction of modular forms. For instance, the
Eisenstein series Ek(τ), a type of modular form, can be expressed in terms of
lattice sums involving elliptic integrals:

Ek(τ) =
∑

(m,n)̸=(0,0)

1

(m+ nτ)k
,

where τ is in the upper half-plane.

The following advanced topics demonstrate deep connections and applica-
tions to complex analysis and special functions, therefore making elliptic inte-
grals fundamentally important in mathematical theory.

6 Conclusion

Ever since their discovery in the 18th century, elliptic integrals have formed
the center of mathematical analysis and have had numerous applications. The
great contribution of the mathematicians Fagnano, Euler, Legendre, Jacobi, and
Weierstrass have been on the foundation of contemporary understanding and
classification of their canonical forms.

Defined through integrals with respect to polynomials and cubic or quar-
tic functions square roots, elliptic integrals are surpassed in importance to any
of the elementary functions and are vital in solving complicated problems of
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physics and engineering- from pendulum motion, electrical circuit design, to
magnetic field calculations in elliptical coordinates.

More particularly, Gaussian quadrature and Romberg’s integration are a
product of the development of numerical methods, and their corresponding re-
lationship has tremendously improved accuracy and applicability in the evalua-
tion of elliptic integrals. The arithmetic-geometric mean method is an effective
method of calculating full elliptic integrals of both the first and second kinds
based on its strong convergence properties.

With more of Jacobi’s elliptic functions and introduction from the Weier-
strass elliptic functions, it was vastly enriched in this area, offering powerful
tools for inverting elliptic integrals, powerful tools for the complex analysis uni-
fication process.

In a sense, elliptic integrals form a critical intersection of theoretical math-
ematics with practical application. Research into properties and continuous in-
novation in computational techniques keep elliptic integrals as a dynamic area
at the very center of the mathematical research arena.
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