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1 Introduction

Bertrand’s Postulate asserts that for any integer n > 1, there is always at least
one prime p such that n < p < 2n. Initially conjectured by Joseph Bertrand in
1845 and tested up to three million, it was later proven by Pafnuty Chebyshev
in 1852 using analytic number theory, marking a major milestone that laid the
foundation for this field. Chebyshev’s sophisticated proof highlighted the depth
and potential of analytic techniques in number theory, but the pursuit of more
elementary proofs continued. These simpler proofs, relying on basic arithmetic
and combinatorial methods, are important because they make the theorem more
accessible and provide deeper insights into prime numbers. By using straight-
forward properties of numbers and combinatorial arguments, elementary proofs
showcase the power and beauty of simple methods in addressing profound math-
ematical questions. This paper presents an elementary proof of Bertrand’s Pos-
tulate, using combinatorial techniques and prime properties to make the proof
accessible to a broader audience. It illustrates the timeless appeal and intercon-
nectedness of classical mathematical problems and their solutions, reinforcing
the idea that deep mathematical truths can often be approached from multiple
angles.

There’s an interesting question in number theory about whether there’s al-
ways a prime number between n2 and (n + 1)2. This problem has not been
fully resolved yet, but it’s a captivating topic that has piqued the curiosity of
many mathematicians. However, there is a related result that’s already been
proven that there’s always at least one prime number between n3 and (n+ 1)3.
This proven example gives us some hope and insight into the original question
because it suggests that primes might be distributed in a way that supports the
idea of there always being a prime between n2 and (n+ 1)2.

The distribution of prime numbers is a fundamental topic in number theory,
and understanding the gaps between them helps mathematicians gain deeper
insights into how primes are spread out along the number line. This is an area of
active research that continues to intrigue and challenge experts in the field. By
exploring questions like these, mathematicians aim to uncover more about the
mysterious and fascinating nature of prime numbers, which have been a subject
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of study for centuries. The search for answers not only advances our knowledge
but also illustrates the timeless appeal and complexity of mathematical problems
and their solutions.

2 Preliminaries and Notation

In this section, fundamental concepts and notations are introduced that will be
used throughout the proof of Bertrand’s Postulate using Paul Erdős’s elementary
approach.

As part of the proof, p and n! are used quite regularly. Denote p as a prime
number and n! which can be denoted as 1 ∗ 2 ∗ ... ∗ n.

Binomial Coefficient: The binomial coefficient
(
n
k

)
represents the number

of ways to choose k elements from a set of n elements and is given by:(
n

k

)
=

n!

k!(n− k)!

for 0 ≤ k ≤ n
Intervals: For any positive integer n, the interval (n,2n) represents all real

numbers x such that n < x < 2n. When discussing integers, typically consider
n and 2n as inclusive bounds.

Erdős’s Proof Approach Combinatorial Arguments: Erdős’s proof uses
combinatorial arguments involving binomial coefficients to show that there is at
least one prime in the interval (n,2n).

Divisibility Properties: The proof also relies on the properties of numbers
with respect to their divisibility by prime numbers and the distribution of prime
divisors among binomial coefficients.

Additional Notation Logarithms: Throughout the proof, the natural
logarithm (base e) is denoted by log. Asymptotic Notation: Notations such as
O(f(n)) and Ω(f(n)) are used to describe the asymptotic behavior of functions.
Specifically, O(f(n)) denotes an upper bound, and Ω(f(n)) denotes a lower
bound.

These preliminaries and notations set the stage for Erdős’s elegant and ele-
mentary proof of Bertrand’s Postulate, where the primary tools are combinato-
rial techniques and properties of prime numbers.

Prime Counting Function : π(x) essentially denotes the number of primes
less than or equal to x.

Chebyshev’s Functions

ϑ(x) =
∑
p≤x

log(p)

where the sum is over all primes p ≤ x.

ψ(x) =
∑
n≤x

Λ(n)

where Λ(n) is the von Mangoldt function.
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2.1 Theorem 1.1

For any integer n > 1, there is always at least one prime p such that n <
p < 2n. Initially conjectured by Joseph Bertrand in 1845. In a paper by the
mathematician Paul Erdös, he gave a beautiful elementary proof of Bertrand’s
postulate which uses nothing more than some easily verified facts about the
middle binomial coefficient

(
2n
n

)
. This is described in Section 3 which presents

some other cases that relate to the Bertrand’s postulate.

2.2 Theorem 1.2

For all n > 0, the set {1, ..., 2n} can be partitioned into pairs
{a1, b1}, ..., {an, bn}
such that for each 1 ≤ i ≤ n, {ai + bi is a prime

3 Elementary Proof using Paul Erdős’ Method

3.1 First Key Lemma

(
2n

n

)
≥ 4n

2n

Proof: First let’s look at the general form (a+ b)n expanded:

(a+ b)n =

n∑
k=0

(
n

k

)
akbn−k

Then let’s plug in the following: Let’s plug in a = 1, b = 1, and n = 2n.
After plugging these values into the general form of (a + b)n expanded to get
the following:

(1 + 1)2n =

2n∑
k=0

(
2n

k

)
1k12n−k

Therefore, the left side is simplified further to get 4n and by simplifying the
right side further it would equal to 1 which results in the following:

4n =

2n∑
k=0

(
2n

k

)
Now go ahead and split the right part of the equal sign (the summation)

into 2 different parts which makes it simpler to find the sum of: The first part
is: By looking at when k=0 and when k=2n. While doing this we can get two
binomial coefficients which are respectively

(
2n
0

)(
2n
2n

)
.
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Then by looking at the second part of the summation as what is left after
the first part being the following:

2n−1∑
k=1

(
2n

k

)
Due to the above information the following equation can be concluded:

(4)n = 2 +

2n−1∑
k=1

(
2n

k

)
Now it can be said that the biggest/largest part of the right part of the equal

sign above is
(
2n
n

)
Therefore giving us that;

4n ≤ 2n

(
2n

n

)
Then by dividing both sides by 2n get the following which therefore proves the
first key lemma: (

2n

n

)
≥ 4n

2n

3.2 Second Key Lemma

If
∑
i≥1

(

⌊
2n

pi

⌋
− 2

⌊
n

pi

⌋
) Then pa ≤ 2n

Proof: If it is mentioned that there is a prime number p and there is n!.
The question is to know what is the highest power P dividing n! meaning P a||n!

It is also known that n! can be written in the form: 1 ∗ 2 ∗ 3 ∗ ... ∗ n
Based on this information it can be said that the number of multiples of p

in n! and the number of multiples of p2 in n! are respectively the following:⌊
n

p

⌋
and

⌊
n

p2

⌋
Next, based on the above information the following formula can be used so

that:

a =
∑
i≥1

⌊
n

pi

⌋
To continue the proof, using this formula and using the same information

above stating that there is a prime p and that P a||
(
2n
n

)
.

Using the definition of the binomial coefficient it can be said that:
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(
2n

n

)
=

(2n)!

n! ∗ n!

Then using this information, using the formula and the definition of binomial
coefficient the following is achieved:∑

i≥1

(

⌊
2n

pi

⌋
− 2

⌊
n

pi

⌋
)

Now it can be said that the sum directly above is strictly less than and then
compute it making it so that:

2n

pi
− 2(

n

pi
− 1) = 2

Therefore using the beginning condition stated of P a||
(
2n
n

)
it can be said

that P a ≤ 2n hence proving the second key lemma.

3.3 Third Key Lemma

∏
p≤x

p ≤ 4x−1

Proof:
It can also be stated that the above lemma for q with q being a prime number

meaning the following: ∏
p≤q

p ≤ 4q−1

Now if by picking q = 2 then getting the case that (2 ≤ 4) which is true. This
also works for if q is not a prime number meaning if q = 2m+ 1 then the sum
becomes the following which can broken into two respective parts:∏

2≤p≤2m+1

p =
∏

p≤m+1

p ∗
∏

m+1<p≤2m+1

p

From this it can be seen that the right part of the equal sign above has two
parts which are multiplied together.

From the first part, it can be seen that it is ≤ 4m. For the second part know
that the product of all primes is less than or equal to

(
2m+1

m

)
meaning that the

second part is at most 22m.
Therefore now allowing to prove that the right part of the equation becomes:

≤ 4m ∗ 22m = 42m

Hence proving the last and third key lemma part of Paul Erdos’ elementary
method of proving Bertrand’s Postulate.
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4 Using Lemmas to Prove Bertrands Postulate

How can the three key lemmas proved earlier be used above to actually prove
the Bertrand’s postulate.

Start by making two simple observations before proving: Lets first start with
the first simple observation that can be made based on our knowledge Let p be
a prime number.

Ifp >
√
2n , p||

(
2n

n

)
If prime number p >

√
2n and p divides our binomial coefficient

(
2n
n

)
then

the highest power of p dividing
(
2n
n

)
is equal to 1 so then p||

(
2n
n

)
. This follows

briefly from the second key lemma.
Now for the second and last simple observation, it tells us that there are no

primes between 2/3n and at most n that divides
(
2n
n

)
.

If
2n

3
< p ≤ n, , p does not divide

(
2n

n

)
By taking our first inequality, there is 2n < 3p and the only multiples of p

that compare in the factorization of 2n! are exactly p and 2p dividing (2n)!.
Since p ≤ n, this implies that p divides n!. Since the denominator of our bi-

nomial coefficient is made up of 2n factorials which tells us that the denominator
compares exactly 2 times p.

By taking the ratio(binomial coefficient) then the p and 2p cancel out with
p and p (2 times p mentioned in the last paragraph). So therefore there are no
primes that follow the condition 2n

3 < p ≤ n that divides the binomial coefficient(
2n
n

)
.
Our first step for proving would be using the first lemma:

4n

2n
≤

(
2n

n

)
≤

∏
p≤

√
2n

pa ∗
∏

√
2n<p≤ 2n

3

p ∗
∏

n≤p≤2n

p

The next step should be to bound the first lemma to the product of the
primes dividing the binomial coefficient which is shown when

(
2n
n

)
is bounded

by first the product of primes which is then p ≤
√
2n and then multiplied by

the product of primes which is
√
2n < p ≤ 2n

3 which is then multiplied by the
product of primes which is n ≤ p ≤ 2n since there is no range of primes between
2n
3 < p ≤ n.

First looking at the last part of the product of all primes, by using contra-
diction and suppose that the Bertrand’s Postulate is false then it tells us that
are no primes between n and 2n which is exactly 1. Then the first product of
all primes, using our knowledge from the second key lemma, there is at most√
2n primes meaning this is at most

(2n)
√
2n
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Then we can now use our third key lemma for the product of all primes that
is in the middle. This means that this is at most

4
2n
3

We know that the since this is the write hand part of the inequality then
the following is true:

4n

2n
≤ (2n)

√
2n ∗ 4 2n

3

Now we need to do some clever substitutions that can be done. When
the computation of this equation is put into a computational program such as
Wolfram Alpha shows us that in fact it is false for any n > 4000.

Finally we can use the Landau’s trick that the famous mathematician Paul
Erdos used in his elementary proof for the Bertrand’s Postulate.

If we know that n < 4000. We want for every interval [n,2n] and we want to
find a prime number p between and this prime number.

Hence finally proving that for any integer n > 1 there is at least one prime
number p that is between n and 2n.

5 Chebyshev’s proof

Chevyshev considers the factorials 2n! and n! to derive useful inequalities in-
volving prime numbers.

Firstly, the factorial product would mean that:

2n! = (2n) ∗ (2n− 1)...(n+ 1) ∗ n!

Next taking into consideration the logarithms of factorials, by taking the
logarithm of both sides the following is achieved:

log((2n)!) = log((2n) ∗ (2n− 1)...(n+ 1)) + log(n!)

Chebyshev uses the fact that the sum of the logarithms of the first k primes
is closely related to the logarithm of the factorial of k.

Firstly, the sum of logarithms:∑
p≤2n

log(p) = ϑ(2n)

Secondly, again moving on the logarithms of factorials:

log(n!) ≈ nlog(n)− n

Applying this approximation:

log((2n)!) ≈ 2nlog(2n)− 2n
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The next step of this proof was done by Chebyshev by deriving inequalities
involving the function ϑ(x) to establish bounds for the distribution of primes.

Chebyshev shows that:

ϑ(2n)− ϑ(n) ≥ log(4n)− log(2)

Later simplifying this:

ϑ(2n)− ϑ(n) ≥ log(2)

Next, Chebyshev combines the above inequalities to show that there must
be at least one prime in the interval of (n,2n).

For creating a prime count estimate, using the derived inequalities Cheby-
shev estimates the number of primes in the interval (n,2n) by considering:

π(2n)− π(n) ≥ 1

This inequality essentially indicates that there is at least one prime between
the interval of (n,2n).

Combining all the steps, Chebyshev claims that for any integer n > 1, there
is always at least one prime p such that n < p < 2n, thereby proving Bertrand’s
Postulate.

To make additional remarks, Chebyshev’s proof is significant not only for
its result but also for its use of analytic techniques to derive inequalities about
prime numbers. This proof is quite different from the elementary proof done by
Paul Erdös. Chevyshev’s proof laid the groundwork for further advancements
in analytic number theory, influencing later proofs and theorems about prime
distribution. This detailed proof combines combinatorial arguments with ana-
lytic techniques, showcasing the depth and elegance of Chebyshev’s approach
to proving Bertrand’s Postulate.

Chebyshev’s methods, involving the use of the ϑ(x) and ψ(x) functions,
showcased the power of analytic techniques in addressing problems in number
theory.

Chebyshev’s proof marked a turning point in number theory, demonstrating
the utility of analytical methods in proving results about primes. This proof
also inspired later mathematicians, including Paul Erdős, who sought simpler,
more accessible proofs. Erdős’s elementary proof, published in 1932, utilized
combinatorial methods rather than complex analysis, making the proof more
approachable. While Chebyshev’s proof involved advanced concepts such as
the Chebyshev functions and Stirling’s approximation, Erdős’s approach re-
lied on basic properties of binomial coefficients and combinatorial arguments.
Both proofs ultimately reinforced the understanding of prime distribution, but
Erdős’s proof was particularly notable for its simplicity and elegance, broaden-
ing the accessibility of the theorem to a wider mathematical audience.

8



6 Analysis of the case between n3 and (n+ 1)3

To show that there is at least one prime number between n3 and (n+ 1)3, the
following approach can be used consisting of the prime number theorem, and
this section will later discuss the connection between this case of primes and
how it connects to the Bertrand’s Postulate on a larger level.

The Prime Number Theorem (PNT) tells us that the number of primes less
than or equal to x, π(x), is asymptotically equal to x

logx .
This can formally be seen as:

π(x) ∼ x

logx

The next step of this proof would be to do the counting of primes in specific
intervals. Consider the intervals [n3, (n+ 1)3]. The next thing needed to know
is to estimate the number of primes in this specific interval to follow.

The number of primes less than or equal to (n+ 1)3 is approximately:

π((n+ 1)3) ∼ (n+ 1)3

log((n+ 1)3)
=

(n+ 1)3

3log(n+ 1)

The number of primes less than or equal to n3 is approximately:

π((n)3) ∼ (n)3

log((n)3)
=

(n)3

3log(n)

The next step of this proof would be to understand the difference in prime
counts. To find the find the number of primes between n3 and (n + 1)3 con-
sider the following difference using the information/approximations that were
collected above:

π((n+ 1)3)− π((n)3) ∼ (n+ 1)3

3log(n+ 1)
− (n)3

3log(n)

Furthermore considering a large n, (n+1)3 is approximately n3+3n2+3n+1.
Therefore, the above difference can further be simplified in the following way:

(n+ 1)3

3log(n+ 1)
− (n)3

3log(n)
≈ n3 + 3n2 + 3n+ 1

3log(n+ 1)
− (n)3

3log(n)

Now the next step in the proof would be to estimate the difference: This
can be broken down into when n becomes large. As n becomes large, log(n+1)
is approximately log(n) so:

3n2 + 3n+ 1

3log(n+ 1)
≈ 3n2 + 3n+ 1

3log(n)

While adding these terms, the interval length 3n2+3n+1 grows significantly,
making it very unlikely that there is no prime within this interval. Using deeper
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results from number theory, it’s confirmed that prime gaps within such large
intervals always contain primes.

Using the approximation from the PNT and the properties of prime gaps,
this concludes that for sufficiently large n, there is always at least one prime
number in the interval [n3, (n+1)3]. Therefore the proof that there lies at least
one prime number between this interval is completed.

The proof that there is always a prime number between n3 and (n + 1)3

connects to Bertrand’s Postulate by reinforcing the understanding of the distri-
bution of prime numbers within specific intervals. Bertrand’s Postulate asserts
that for any integer n > 1, there is always at least one prime number between
n and 2n. Both of these results highlight the fact that primes are more densely
packed than might be intuitively expected, even as the numbers grow larger.
By ensuring the presence of a prime within the interval n3 and (n+ 1)3, there
is a similar principle at work: primes do not become sparse too quickly, even
within much larger gaps. This consistency supports the broader theme in num-
ber theory that prime numbers, while irregular in their appearance, do follow
certain predictable patterns.

Moreover, these two results together offer a deeper insight into the intervals
between primes and suggest that there could be general principles governing
the distribution of primes across various polynomial intervals. While Bertrand’s
Postulate deals with a linear interval, proving the existence of primes in cubic
intervals ( n3 and (n+1)3) extends this understanding to polynomial intervals of
higher degree. This opens up avenues for further research into other polynomial
intervals, possibly leading to new postulates or theorems about the distribution
of prime numbers. The relationship between these results underscores the in-
terconnected nature of mathematical concepts and how one proof can provide a
foundation for exploring other, seemingly more complex, conjectures in number
theory.

7 Prime number problems

There are various prime number problems that are related to the Bertrand’s
postulate and are still yet to develop a formal proof. One such prime number
problem/case is the Riemann hypothesis. The Riemann hypothesis is essentially
a conjecture that the Riemann zeta function has its zeros only at the negative
even integers and complex numbers with real part 1

2 . The Riemann hypothesis
along with some of its related generalizations which will be covered later in the
paper such as the Goldbach conjecture and the twin prime conjecture make the
Riemann hypothesis one of the most famous unsolved problem of mathematics
in the world.

The Riemann zeta function is defined by the following for complex s with
real part greater than 1 by the absolutely convergent infinite series:

ζ(s) =

∞∑
n=1

1

ns
=

1

1s
+

2

2s
+

3

3s
+ ...
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Leonhard Euler also found that the Riemann zeta function equals to the
Euler product as well which can be seen as the following:

ζ(s) =
∏

p prime

1

1− p−s
=

1

1− 2−s
+

1

1− 3−s
+

1

1− 5−s
+

1

1− 7−s
+ ...

where the infinite product extends over all prime numbers p.
The Riemann hypothesis addresses the presence of zeros that lie outside the

region where the series and the Euler product converge. To properly understand
the hypothesis, one must extend the function analytically to ensure it is appli-
cable for all complex numbers s. This extension process is possible because the
zeta function is meromorphic, meaning that any method of analytic continuation
will yield the same outcome, as guaranteed by the identity theorem.

The initial step in this analytic continuation involves recognizing that the se-
ries representation of the zeta function and the Dirichlet eta function are related.
Specifically, the relationship between these two functions serves as a foundation
for extending the zeta function’s domain. This analytical continuation allows
mathematicians to study the properties of the zeta function beyond its original
region of convergence, which is crucial for exploring the deeper implications of
the Riemann hypothesis. This can be seen as the following:

(1− 2

2s
)ζ(s) = η(s) =

∞∑
n=1

(−1)n−1

ns
=

1

1s
− 1

2s
+

1

3s
− 1

4s
+ · · · .

The series for the zeta function on the right side converges not only when
the real part of s is greater than one but more broadly whenever s has a positive
real part. This allows for a redefinition of the zeta function as:

η(s)/(1− 2

2s
)

, which extends its domain from Re(s) > 1 to Re(s) > 0, except for the
points where 1− 2

2s ) equals zero. These exceptional points occur at:

s = 1 + 2πin log(2)

where n is any nonzero integer.
To handle these points, the zeta function can be further extended by taking

limits, as described in the discussion on Landau’s problem with :

ζ(s) = η(s)/0,

and its solutions within the Dirichlet eta function framework. This process
provides a finite value for the zeta function for all s with a positive real part,
except at s = 1, where the zeta function has a simple pole.

Through this extension, the zeta function’s domain is significantly broad-
ened, allowing for a more comprehensive understanding and analysis of its
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properties. This analytic continuation is crucial for delving deeper into the
implications of the Riemann hypothesis, as it facilitates the study of the zeta
function beyond its original limits of convergence.

In the strip 0 < Re(s) < 1 this extension of the zeta function satisfies the
functional equations being:

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s) ζ(1− s).

To extend the definition of the zeta function ζ(s) to all remaining nonzero
complex numbers s where Re(s) ≤ 0 and s ̸= 0, one can apply the analytic
continuation equation outside the critical strip. This allows ζ(s) to be defined
as the right-hand side of this equation for any s with a non-positive real part,
excluding s=0.

For negative even integers s, the zeta function ζ(s) equals zero because the
factor sin(πs2 ) vanishes at these points. These zeros are referred to as the trivial
zeros of the zeta function. On the other hand, for positive even integers s, this
argument does not hold because the zeros of the sine function are cancelled out
by the poles of the gamma function when it takes negative integer arguments.

The value of ζ(θ) = − 1
2 is a unique case. It is not derived directly from the

functional equation but rather is the limiting value of ζ(s) s approaches zero.
The functional equation further implies that the zeta function does not have
any zeros with a negative real part other than these trivial zeros. Consequently,
all non-trivial zeros must lie within the critical strip where the real part of s is
between 0 and 1.

This extension and understanding of the zeta function’s behavior across the
complex plane are crucial for comprehensively analyzing the Riemann hypoth-
esis. By exploring the properties and zeros of the zeta function, particularly
within the critical strip, mathematicians can gain deeper insights into the dis-
tribution of prime numbers and the fundamental nature of this profound hy-
pothesis in number theory.

The Riemann hypothesis and Bertrand’s postulate are related through their
implications for the distribution of prime numbers. Bertrand’s postulate guar-
antees the existence of at least one prime between any integer n and 2n, high-
lighting a specific aspect of prime density. The Riemann hypothesis, on the
other hand, provides a broader and deeper framework for understanding prime
distribution by asserting that the non-trivial zeros of the Riemann zeta func-
tion all lie on a specific line in the complex plane. If the Riemann hypothesis is
true, it implies a very regular pattern in the distribution of primes, supporting
results like Bertrand’s postulate and suggesting that primes are not just abun-
dant in certain intervals but follow a precise mathematical structure throughout
the number line. Thus, while Bertrand’s postulate deals with the existence of
primes in particular intervals, the Riemann hypothesis underpins this and many
other phenomena by describing the overall distribution of primes in a more com-
prehensive manner. We can further see the connection of Bertrand’s postulate
to other prime number problems through the generalizations of the Riemann
hypothesis such as the Goldbach’s conjecture and twin prime conjecture.
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The above figure represents the following: The real part (red) and imaginary
part (blue) of the Riemann zeta function ζ(s) along the critical line in the
complex plane with real part Re(s) = 1

2 . The first nontrivial zeros, where ζ(s)
equals zero, occur where both curves touch the horizontal x-axis, for complex
numbers with imaginary parts Im(s) equaling ±14.135, ±21.022 and ±25.011.

Next, regarding the twin prime conjecture which is one of the important
generalizations of the Riemann hypothesis also remains one such prime number
problem that remains unsolved today. Essentially the twin prime conjecture is
the question of whether there exist infinitely many twin primes has been one of
the great open questions in number theory for many years. In 1849, de Polignac
made the more general conjecture that for every natural number k, there are
infinitely many primes p such that p + 2k is also prime.[8] The case k = 1 of
de Polignac’s conjecture is the twin prime conjecture. There are various forms
of the twin prime conjectures evident in various mathematicians problems and
cases. A stronger form of the twin prime conjecture is the Hardy–Littlewood
conjecture which essentially postulates a distribution law for twin primes con-
nected/allied with the prime number theorem.

The first Hardy-Littlewood conjecture is a generalization of the twin prime
conjecture. This is related to the distribution of prime constellations along with
the twin primes quite similar to the prime number theorem.

Let π2(x)denotethenumberofprimesp ≤ x such that p + 2 is also prime.
Define the twin prime constant C2 as the following:

C2 =
∏

p prime,
p≥3

(
1− 1

(p− 1)2

)
≈ 0.660161815846869573927812110014 . . . .

In this case the product is for primes greater than or equal to 3. There is
also a special case of the Hardy-Littlewood conjecture is the following:

π2(x) ∼ 2C2
x

(lnx)2
∼ 2C2

∫ x

2

dt

(ln t)2

This shows the connections behind the twin prime conjecture and how it
plays into the big picture of primes and is similar to the Bertrand’s postulate.

The next important generalization of the Riemann’s hypothesis is the Gold-
bach conjecture. The Goldbach conjecture states that every even natural num-
ber greater than 2 is the sum of two prime numbers. For example, 4 can be
written as 2+2, 6 as 3+3, 8 as 3+5, and so on. Despite being simple to state
and easily understood, a general proof or disproof of the conjecture remains un-
found. The conjecture has been shown to hold for all integers less than 4 ∗ 1018
but remains unproven despite considerable effort.

A very crude version of the heuristic probabilistic argument (for the strong
form of the Goldbach conjecture) is as follows. The prime number theorem
asserts that an integer m selected at random has roughly 1

lnm a chance of being
prime. Thus if n is a large even integer and m is a number between 3 and n

2
,then one might expect the probability of m and nm simultaneously being prime
to be 1

lnm∗ln(n−m) . If one pursues this heuristic, one might expect the total
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number of ways to write a large even integer n as the sum of two odd primes to
be roughly :

n
2∑

m=3

1

lnm

1

ln(n−m)
≈ n

2(lnn)2
.

Mathematically, the Goldbach Conjecture can be stated as follows: For any
even integer 2n where n > 1, there exist prime numbers p and q such that
2n = p+ q. This problem can be divided into two parts: the ”strong” or ”even”
Goldbach Conjecture, which is the statement as described, and the ”weak” or
”odd” Goldbach Conjecture, which puts into position that every odd integer
greater than 5 can be expressed as the sum of three odd primes. The weak
conjecture has been proven conditionally on the assumption of the generalized
Riemann hypothesis, but the strong conjecture remains unproven.

Let us illustrate with a few examples: for n=10, there are 10 = 5 + 5,
12 = 7+5, and 18 = 11+7. Despite the extensive numerical evidence, a formal
proof is still yet to be created by mathematicians.

The problem is closely linked to the distribution of prime numbers, and
many attempts to prove the conjecture involve techniques from analytic num-
ber theory. One common approach is through the circle method, introduced
by Hardy and Littlewood, which applies Fourier analysis to study the distri-
bution of prime numbers. While significant progress has been made using this
and other methods, including sieve theory and probabilistic number theory, a
definitive proof remains out of reach. The Goldbach Conjecture continues to be
a central topic in the study of prime numbers and a tantalizing challenge for
mathematicians.

One of the more complex mathematical approaches to tackling the Gold-
bach Conjecture involves the use of the Hardy-Littlewood circle method. This
method employs complex analysis and Fourier series to investigate the additive
properties of prime numbers. The idea is to express the characteristic function
of the primes, XP (n) , as a trigonometric series and then analyze its behav-
ior in various regions of the unit circle in the complex plane. Specifically, the
conjecture can be studied through the integral

I(N) =

∫ 1

0

∑
p≤N

e2πipθ

2

e−2πiNθ dθ,

where the inner sum runs over primes p up to N, implying that the major arc
contributions dominate and provide the main term, which suggests the number
of representations of an even integer as the sum of two primes is positive.

There is quite an interesting figure known as the Goldbach’s comet which
displays tight upper and lower bounds on the number of representations of an
even number as the sum of two primes, and also that the number of these
representations depend strongly on the value modulo 3 of the number. The
following is the graphical representation of the Goldbach’s comet using three
different colors to having different corresponding values.
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Figure 1: Goldbach’s comet

Inside the figure the red, blue and green points correspond respectively the
values 0, 1 and 2 modulo 3 of the number.

The Goldbach’s comet refers to a visual representation in number theory
that displays the sums of two prime numbers for each even integer, highlighting
the Goldbach Conjecture in a graphical form. It typically takes the shape of a
comet or a scatterplot where each point represents an even integer 2n and its
corresponding pairs of prime numbers (p, 2np) that sum up to 2n.

It illustrates patterns and clusters in the distribution of these prime pairs
across different even integers. The comet metaphorically suggests movement
or trajectory, emphasizing the dynamic and systematic exploration of prime
sums as one traverses/goes through the even numbers. Mathematicians and
enthusiasts often use visualizations like the Goldbach’s comet to intuitively grasp
the density and behavior of prime pairs, which aid in the deeper understanding
and exploration of the Goldbach Conjecture and related cases in number theory.

The Twin Prime Conjecture, Goldbach’s Conjecture, and the Riemann Hy-
pothesis all intersect with Bertrand’s Postulate in their shared exploration of
prime number distributions from different perspectives. Bertrand’s Postulate
sets a foundational understanding by ensuring a minimum density of primes
between consecutive integer ranges, establishing a baseline for the density of
prime numbers. The Twin Prime Conjecture extends this notion by suggesting
a specific clustering pattern within prime pairs, highlighting primes that differ
by exactly two.

Goldbach’s Conjecture approaches the distribution of primes through ad-
ditive relationships, asserting that every even integer greater than 2 can be
expressed as the sum of two primes. This conjecture implies a particular distri-
bution pattern of prime sums across the even integers, complementing the den-
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sity insights from Bertrand’s Postulate. The Riemann Hypothesis, on the other
hand, delves into the deeper analytical properties of prime numbers through the
zeta function, suggesting a precise distribution of primes that aligns with the
critical strip defined by its non-trivial zeros.

Together, these conjectures and hypotheses offer multifaceted perspectives
on prime number behavior, each contributing in their own unique ways that
enrich our understanding of prime density and distribution patterns, building
upon the foundational assertions of Bertrand’s Postulate in distinct mathemat-
ical contexts.

8 Future and practical implications

One of the future explorations of the distribution of prime numbers includes
finding out a proof if there is at least one prime number between n2 and (n+1)2.
This remains an open problem in number theory.

However, significant progress has been made in understanding the distribu-
tion of primes, and there are related results that provide partial insights.

Density Results: While not proving the exact statement about primes be-
tween n2 and (n + 1)2, there are results about the density of primes and how
primes are distributed on average. For instance, the work of Yitang Zhang and
subsequent improvements by other mathematicians have shown that there are
infinitely many pairs of primes with gaps smaller than a certain bound, which
has been successively reduced.

Thus, this remains a strong future prospect of research while the conjecture
that there is always a prime between n2 and (n+1)2 has strong empirical support
and is consistent with our understanding of prime distribution, a formal proof
has not yet been established. The problem continues to be a topic of interest
and research within the mathematical community.

The practical implications of Bertrand’s Postulate and its proofs are pro-
found. Understanding prime distribution is fundamental to cryptography, par-
ticularly in public-key cryptographic systems like RSA, which rely on the diffi-
culty of factoring large composite numbers into primes. The postulate ensures
the existence of primes within specific intervals, aiding in the efficient generation
of large prime numbers necessary for secure cryptographic keys. The security
of the RSA cipher comes from the general difficulties of factoring integers that
are the product of two large prime numbers. The level of security for the RSA
cipher increases as the size of the prime numbers used for determining the en-
crpytion key increases. Hence the study by mathematicians done on these sorts
of cases for the distribution of prime numbers is having an impact in the real
world even today. This secure encryption done by the distribution of primes
offers a mathematical foundation for creating algorithms that resist attacks and
ensure the confidentiality and integrity of sensitive information in modern com-
munication and information security protocols. Furthermore, the combinatorial
and analytic techniques developed in these proofs have broader applications in
algorithm design, where prime numbers play a crucial role in hash functions,
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pseudorandom number generation, and error-correcting codes.

9 Distribution of Prime Numbers

Finding proofs for the existence of primes in specific intervals such as the cases
mentioned in the paper previously, and the intervals described by Bertrand’s
Postulate contributes significantly to our understanding of the distribution of
prime numbers.

Exploring these intervals and proving the existence of primes within them
also advances our knowledge of prime gaps, which are the differences between
consecutive primes. For instance, proving that there is always a prime between
n2 and (n+1)2 would imply that prime gaps do not grow excessively large even
in quadratic intervals. This is similar to how Bertrand’s Postulate implies that
prime gaps do not grow too large in linear intervals. Understanding these gaps,
especially as numbers get larger, is crucial in the broader study of prime number
theory. These investigations not only confirm the density of primes in different
polynomial ranges but also provide a foundation for future research in the field.

For example, Erdős’s elementary proof of Bertrand’s Postulate uses combina-
torial arguments that have broader applications in other areas of mathematics.
These proofs contribute to the development and refinement of mathematical
tools and techniques. These cases improve our knowledge upon prime distri-
bution which can be fundamental for newer complex problems such as various
conjectures related to prime distribution.

Studying the differing yet intriguing pattern of prime numbersis a fundamen-
tal topic in number theory. Despite their seemingly random occurrence, primes
exhibit certain statistical tendencies that have fascinated mathematicians for
centuries. One notable feature is their tendency to become less frequent as num-
bers increase, a phenomenon captured by the Prime Number Theorem. This
theorem states that the density of primes near a large number x approximates
1

logx ,indicating that primes become sparser as numbers grow larger. But this

is found otherwise in the case of n3 and (n + 1)3 which even though is large
follows a predictable pattern. Hence the journey of prime numbers goes from
being similar to quite different from the same time. The story of prime numbers
changes from case to case.

10 Conclusion

Proving the existence of primes in various intervals such as n2 and (n + 1)2,
and n3 and (n + 1)3, and in the context of Bertrand’s Postulate enriches our
knowledge about the distribution of primes. It aids in understanding prime gaps,
refines mathematical techniques, supports practical applications, and stimulates
ongoing research in number theory.

In conclusion, the exploration of prime number theory through Bertrand’s
Postulate, the Twin Prime Conjecture, Goldbach’s Conjecture, and the Rie-
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mann Hypothesis offers a profound glimpse into the intricate world of number
theory and its ongoing mysteries. Bertrand’s Postulate, foundational in its guar-
antee of at least one prime between n and 2n, establishes a baseline understand-
ing of prime density. This assertion is extended by considering the fascinating
case of primes between n3 and (n+1)3 ,showcasing the broader implications of
prime clustering within cubic intervals.

The Twin Prime Conjecture captivates with its proposition that there are
infinitely many prime pairs differing by two, hinting at a tantalizing regularity
in prime distributions beyond Bertrand’s initial insight. Goldbach’s Conjecture
introduces an additive perspective, suggesting that every even integer greater
than 2 can be expressed as the sum of two primes, thereby offering a glimpse into
the fundamental additive properties of primes across even numbers. Meanwhile,
the Riemann Hypothesis, anchored in the zeta function’s complex analysis, sheds
light on the distribution of primes through its conjectured alignment with the
critical strip and the behavior of non-trivial zeros.

Beyond theoretical conjecture, computational advancements have played a
pivotal role in verifying and exploring these ideas on a grand scale. Modern com-
putational tools have enabled mathematicians to delve into specific instances,
such as primes between cubic intervals, and to push the boundaries of our un-
derstanding through extensive numerical exploration and analysis.

In conclusion, these conjectures and hypotheses not only shape contempo-
rary mathematical discourse but also inspire ongoing investigations into the
fundamental nature of prime numbers and their distribution. As researchers
continue to uncover new insights and challenge existing paradigms, the quest
to unravel these conjectures promises to deepen our understanding of number
theory while illuminating broader connections to mathematics at large.

11 References

[1] Galvin, D. (2013). Erdos’s proof of Bertrand’s postulate (Version 1). Uni-
versity of Notre Dame.

[2] ”Proof of Bertrand’s Postulate,” Wikipedia, accessed June 25, 2024,
https://en.wikipedia.org/wiki/Bertrand

[3] Wikipedia contributors. (n.d.). Riemann hypothesis (Version 1). Wikipedia,
The Free Encyclopedia, https://en.wikipedia.org/wiki/Riemannhypothesis

[4] Caldwell, Chris (2008). ”Goldbach’s conjecture”. Retrieved 2008-08-13.

18



[5] Weisstein, Eric W. ”Goldbach Conjecture”. MathWorld.

[6] ”TWIN PRIME CONJECTURES” (PDF). oeis.org.

[7] Bombieri, Enrico (2000), The Riemann Hypothesis – official problem
description (PDF), Clay Mathematics Institute
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