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Abstract. The Circle Method was created in 1916 by G. H. Hardy and
Ramanujan to find the behavior of the Partition function. It was later used to
solve the asymptotic form of Waring’s problem on the sum of powers, and has
been used in efforts to prove the weak Goldbach conjecture. The Circle Method
can be summarized in a few steps:

1. Find the generating function of a sequence, an.

2. Turn this generating function into an integral.

3. Choose major arcs M and minor arcs m.

4. Bound the generating function over these arcs, so the minor arcs contribute
less than the major arcs.

5. Use the major arcs to find an asymptotic formula for an.

In this paper, we will present a proof that pn, the number of partitions of n,
satisfies

Theorem 1.

pn ∼ eπ
√

2n/3

4n
√
3

(1)

in a proof due to [New62] found in [A‘C17].

0.1 Big-O Notation

Definition 1. We will write f(x) = O(g(x)) if and only if there exist M,x0 ∈ R
such that

|f(x)| ≤ Mg(x)

for all x ≥ x0.
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1 Partitions

Consider pn, the number of ways to form an unordered partition of n. For
example, p4 = 5 because 4 = 1 + 3 = 2 + 2 = 1 + 1 + 2 = 1 + 1 + 1 + 1. We
would like to determine the behavior of pn.

1.1 The Formal Product

Let us define f(z) := 1 +
∑∞

k=1 pkx
k. To put f into a nice form, we consider

what a partition is made of. Each partition of n is of the form a1 ·1+a2 ·2+ · · · ,
where ak is the number of k’s in the partition. We therefore define

P (z) := (1 + z1 + z2 + · · · )(1 + z2 + z4 + · · · )(1 + z3 + z6 + · · · ) · · ·

To get a partition of n, we choose za1 from the first sum, z2a2 from the second
sum, and so on. Manipulating this product formally, we have

P (z) =

∞∏
n=1

∞∑
m=0

zmn

=

∞∏
n=1

1

1− zn

if |z| < 1. Now, we would like to work with P (z) rather than f(z); however, we
must make sure it converges first.

Lemma 2. When |z| < 1, the product P (z) converges absolutely, thus f(z) =
P (z).

Proof. Consider the series

logP (z) = −
∞∑

n=1

log(1− zn).

If we know this series converges, we know the product must converge because
exp is continuous. Since |z| < 1, the Taylor series of log converges, thus we have
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∞∑
n=1

|log(1− zn)| =
∞∑

n=1

∣∣∣∣∣
∞∑

m=1

zmn

m

∣∣∣∣∣
≤

∞∑
n=1

∞∑
m=1

∣∣∣∣zmn

m

∣∣∣∣
≤

∞∑
n=1

∞∑
m=1

|zmn|

=

∞∑
n=1

∞∑
m=1

|z|mn

=

∞∑
n=1

|z|n

1− |z|n

≤
∞∑

n=1

|z|n

1− |z|

<

∞∑
n=1

|z|n

1− |z|

=
|z|

(1− |z|)2
.

Therefore P (z) is absolutely convergent. Assuming |z| < 1, we must have
f(z) = P (z) by rearranging the terms.

1.2 Approximating the Generating Function

Normally when applying the circle method, we would like to express pn in the
form

pn =

∮
Cr

f(z)

zn+1
dz.

However, here we will instead find an approximation of f and use the circle
method on their difference. When we do this, we expect the difference to be at
its largest near 1 because the formal product has many factors of 1

1−z . In fact,
an arc around 1 will be our only major arc.

To make this approximation, we want to consider a function that will be
continuous when z is near 1, as that will be easier to work with. We consider
the logarithm of the formal product and remove the pole via a few terms. The
reader can consider the Taylor series of the functions to see the order of these
poles. In this, we set z = e−w as it makes the substitution nice.

Since the sum in log f absolutely converges, we can switch the order of the
sum and

log f(e−w) =
∞∑

n=1

e−nw

n(1− e−nw)
= w

∞∑
n=1

1

nw(enw − 1)
. (2)
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Now, we consider what an approximation of 1
u(eu−1) would be. Since we are

observing its behavior around u = 0 as w is close to 0, we want to subtract the
poles and consider the difference later. Let us analyze 1

u(eu−1) around 0. Using

the Taylor expansion of eu − 1, we can see that

1

u(eu − 1)
=

1

u(−1 + 1 + u+ u2

2 + · · · )

=
1

u(u+ u2

2 + · · · )

=
1

u2(1 + u
2 + · · · )

.

Thus we would expect 1
u(eu−1) to have a pole of maximal order 2. In fact,

lim
u→0

u2

u(eu − 1)
= lim

u→0

u

eu − 1

= lim
u→0

1

eu

= 1,

by L’Hôpital’s rule. We will then subtract 1
u2 to remove this pole. When

considering this in the infinite sum of Equation 2, we see that it will result in a

term of π2

6 . We then calculate the residue of the first order pole,

lim
u→0

u

(
1

u(eu − 1)
− 1

u2

)
= lim

u→0

1

eu − 1
− 1

u

= lim
u→0

u− eu + 1

u(eu − 1)

= lim
u→0

1− eu

eu − 1 + ueu

= lim
u→0

−eu

eu + eu + ueu

= −1

2
.

In this case, just adding 1
2u will not work, because in the sum of Equation 2 we

would have a sum of
∑∞

n=1
1
2u = ∞. Therefore we use e−u

2u because summing
this results in a logarithm via the Taylor series and its 1

u term has the right
coefficient. If we call our error term g(u), we have

g(u) :=
1

u(eu − 1)
− 1

u2
+

e−u

2u
(3)
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and

log f(e−w) = w

∞∑
n=1

(
g(nw) +

1

(nw)2
− e−nw

2nw

)

= w

∞∑
n=1

g(nw) +
1

w

∞∑
n=1

1

n2
+

1

2

∞∑
n=1

e−nw

n

= w

∞∑
n=1

g(nw) +
π2

6w
+

1

2
log(1− e−nw).

(4)

We have a sum which is hard to work with, so we will convert it into an integral
and bound the difference. Now, we state a technical theorem:

Theorem 3. ∫ ∞

0

g(u) du = −1

2
log 2π.

Proof. The proof of this theorem is too long to include in this paper. It is
in [A‘C17], Pages 9-11. However, this theorem is useful because of the next
section.

1.3 The Total Variation

We begin this section with a definition.

Definition 2. The total variation of γ, denoted Vγ , is defined as

Vγ = sup


k−1∑
j=0

|γ(tj+1)− γ(tj)| : k ∈ N, 0 ≤ t0 < t1 < · · · < tk

 .

Why will we use the total variation? Because it bounds exactly what we
want, in fact,

Lemma 4. If γ : [0,∞) → C is continuous and integrable∣∣∣∣∣
∫ ∞

0

γ(t) dt−
∞∑

n=1

γ(n)

∣∣∣∣∣ ≤ 2Vγ

Proof. We turn the integral on (0,∞) into infinitely many integrals on unit
intervals: ∫ ∞

0

γ(t) dt =

∞∑
n=0

∫ n+1

n

γ(t) dt.

Suppose γ(t) = u(t) + iv(t). We know u and v are continuous, therefore we use
the Mean Value Theorem for integrals:∫ n+1

n

γ(t) dt = u(an) + iv(bn)
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for some an, bn ∈ [n, n+ 1]. Therefore∣∣∣∣∣
∫ ∞

0

γ(t) dt−
∞∑

n=1

γ(n)

∣∣∣∣∣ =
∣∣∣∣∣
∞∑

n=0

(u(an) + iv(bn))−
∞∑

n=0

(u(n+ 1) + iv(n+ 1))

∣∣∣∣∣
≤

∞∑
n=0

|u(an)− u(n+ 1)|+
∞∑

n=0

|v(an)− v(n+ 1)|

≤
∞∑

n=0

|γ(an)− γ(n+ 1)|+
∞∑

n=0

|γ(an)− γ(n+ 1)| .

Set α2n = an, α2n+1 = n + 1, β2n = bn, and β2n+1 = n + 1. Each sum on the
last line is a variation over one of the sequences but missing terms. Therefore∣∣∣∣∣

∫ ∞

0

γ(t) dt−
∞∑

n=1

γ(n)

∣∣∣∣∣ ≤
∞∑

n=0

|γ(αn)− γ(αn+1)|+
∞∑

n=0

|γ(βn)− γ(βn+1)|

≤ 2Vγ .

Now we find a bound for Vγ that can be more easily used:

Lemma 5. If γ, in addition to being continuous and integrable, is differentiable,
we have

Vγ ≤
∫ ∞

0

|γ′(t)| dt.

Proof. We know

k−1∑
j=0

|γ(tj+1)− γ(tj)| =
k−1∑
j=0

∣∣∣∣∣
∫ tj+1

tj

γ′(t)

∣∣∣∣∣ dt
≤

k−1∑
j=0

∫ tj+1

tj

|γ′(t)| dt

=

∫ tk

t0

|γ′(t)| dt

≤
∫ ∞

0

|γ′(t)| dt.

Therefore the supremum also satisfies this inequality.

1.4 Using the Total Variation

We would like to apply the last section to γ : t 7→ g(wt). However, first we
must make sure g is holomorphic (complex differentiable in a neighborhood of
every point in the domain) on the line parameterized by wt for t ∈ [0,∞). We
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know g has a pole when eu − 1 = 0 and u ̸= 0, or u = 2πik where k ̸= 0
because we removed the pole at 0. Since we are interested in z inside the
unit circle, we are only interested in −w with real part strictly negative, so
|z| = |e−w| = |eℜ(−w)| < 1. Therefore, we do not need to consider ℜ(u) ≤ 0
where we will be substituting w. We know g is continuous on this half-plane.

We now consider g′. We have

g′(u) =
2

u3
− e−u

2u2
− 1

u2 (eu − 1)
− e−u

2u
− eu

u (eu − 1)
2 (5)

from calculation; we have already removed the pole so this will g has continuous
derivative with |u| < 1. For larger |u| we factor the derivative:

g′(u) =
1

u2

(
2

u
− 1

2eu
− 1

eu − 1
− u

2eu
− ueu

(eu − 1)
2

)
.

On a line parameterized by wt, the ewt dominates, thus all the terms in the
parentheses go to 0, and u2g′(u) → 0 as |u| → ∞. We will make this convergence
absolute so we can take the integral. Since we must bound e−u, we pick 0 <
K < π and restrict the domain of g to T = {z ∈ C | |arg(z)| < K}. Then
|eu| = eℜ(u) = e|u| cos arg u ≥ e|u| cos(K). Then all the terms each go to zero; the
last one does because ueu

(eu−1)2
∼ ueu

e2u = u
eu . This means we must have some

M(K) so u2g(u) ≤ M(K) for |u| > 1. We will assume for now that we have
chosen some K.

We then have ∣∣∣∣∣
∞∑

n=1

g(nw)−
∫ ∞

0

g(tw) dt

∣∣∣∣∣ ≤ 2V

with V defined as the total variation on g(tw) with t as the input. But we know∣∣∣∣∣
∞∑

n=1

g(nw)−
∫ ∞

0

g(tw) dt

∣∣∣∣∣ =
∣∣∣∣∣
∞∑

n=1

g(nw)−
∫ ∞

0

g(tw) dt

∣∣∣∣∣
=

∣∣∣∣∣
∞∑

n=1

g(nw)− 1

w

∫
Lw

g(u) du

∣∣∣∣∣
=

1

w

∣∣∣∣∣w
∞∑

n=1

g(nw)−
∫
Lw

g(u) du

∣∣∣∣∣ .
Now, we would like to compare the integral along Lw and the integral from 0 to
∞. To do this, we create a sequence of closed contours that are a counterclock-
wise parameterization of the perimeter of a sector of a circle defined by σ + 0i
and Lw with some radius r, an example arc is shown in the following picture.
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x

y

0

Lw

Figure 1: Contour integral on g

We have already found the complex poles, and know they are not in this
sector. Thus we only have to consider the arc. We see that in the definition of
g in Equation 3, we know g is O

(
1
u2

)
. Thus, even with the expanding length

of the arc, the contour integral along this arc goes to 0 as r goes to ∞. This
means that the integral from 0 to ∞ plus the integral from ∞ to 0 on Lw is 0
by Residue Theorem and ∫ ∞

0

g(t) dt =

∫
Lw

g(z) dz.

We thus have
1

|w|

∣∣∣∣∣w
∞∑

n=1

g(nw)−
∫ ∞

0

g(t) dt

∣∣∣∣∣ ≤ 2V

and ∣∣∣∣∣w
∞∑

n=1

g(nw)−
∫ ∞

0

g(t) dt

∣∣∣∣∣ ≤ 2|w|V.

Now, we have calculated that g′(wt) = O
(

1
w2t2

)
. Then∫

Lw

g′(u) du = w

∫ ∞

0

g′(wt) dt

= O

(
w

1

wt

)
Rearranging, using Theorem 3, and accounting for the extra |w| above, we have

w

∞∑
n=1

g(nw) = −1

2
log 2π +O(w).
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Now, returning to Equation 4, we have

log f(e−w) =
π2

6w
+

1

2
log(1− e−w)− 1

2
log 2π +O(w).

We would like to turn this into a function of z, since we want an approximation
of f(z). We have

w = − log z = − log(1− (1− z)) = (1− z) +
(1− z)2

2
+ · · · .

When z is close to 1, w = O(1− z). We also know

1

w
=

1

(1− z) + (1−z)2

2 + · · ·

=
1

1− z
+

1

(1− z)(1 + (1−z)
2 + (1−z)2

3 · · · )
− 1

1− z

=
1

1− z
+

1− (1 + (1−z)
2 + (1−z)2

3 · · · )
(1− z)(1 + (1−z)

2 + (1−z)3

3 · · · )

=
1

1− z
+

− 1
2 − (1−z)

3 · · ·
(1− z)(1 + (1−z)

2 + (1−z)3

3 · · · )

=
1

1− z
+

− 1
2 − (1−z)

3 · · ·
1 + (1−z)

2 + (1−z)3

3 · · ·

=
1

1− z
− 1

2
+O(1− z).

We now have

log f(z) =
π2

6

(
1

1− z
− 1

2
+O(1− z)

)
+

1

2
log

(
1− z

2π

)
+O(1− z)

=
π2

6(1− z)
− π2

12
+

1

2
log

(
1− z

2π

)
+O(1− z).

Therefore, let us set ϕ to be the non-error term of this equation, i.e.

ϕ(z) :=

√
1− z

2π
exp

(
π2

6(1− z)
− π2

12

)
,

so
log f(z) = log ϕ(z) +O(1− z)

and

f(z) = ϕ(z)eO(1−z)

= ϕ(z)(1 +O(1− z) +
1

2
O
(
(1− z)2

)
+ . . . ).

Therefore
f(z) = ϕ(z)(1 +O(1− z)). (6)
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1.5 Defining the Major and Minor Arcs

If the coefficients of f and ϕ are pn and qn, by Residue Theorem, we have

pn − qn =

∫
Cr

|f(z)− ϕ(z)|
zn+1

dz.

Now, motivated by the pole at 1, we will choose our major and minor arcs. We
choose the radius of our circle, C, to be 1−v(n), and our major arc to be near 1,
so we define M = {z ∈ C : |z− 1| < s(n)} where we choose some s(n), v(n) → 0
as n → ∞.

1− v(n)

1 x

y

0

C

M s(n)

Figure 2: The Major Arc

To choose s(n), v(n), and ultimately chooseK, we state the following lemma.

Lemma 6. Suppose w ∈ C with |argw| < π and e−w ∈ M. For large enough
n,

|argw| ≤ arccos
v(n)

2s(n)
.

Proof. Since e−w ∈ C, we have

eℜ(−w) = |e−w| = 1− v(n).

Since exp(−x) is convex, exp(0) = 1, and exp′(0) = 1, 1− ℜ(w) ≤ e−ℜ(w). We
therefore have v(n) ≤ ℜ(w). Now, for sufficiently large n, w is close to 0 since
e−w ∈ M. Then

1

2
≤ |e−w − 1|

|w|
.
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By definition, |e−w − 1| < s(n), so

1

2
≤ s(n)

|w|
=

s(n)

v(n)|w|
v(n) ≤ s(n)

v(n)

ℜ(w)
|w|

=
s(n)

v(n)
cos argw.

Thus

cos argw ≥ 2v(n)

s(n)

We have a bound for argw; thus we shall make this bound easy to work
with. Setting s(n) = csn

−t and v(n) = cvn
−t for some cs, cv, t yields constant

K = arccos 2v(n)
s(n) = arccos 2cv

cs
. Therefore we can use the approximation in

Equation 6.

1.6 Bounding the Major Arc

We have ∫
M

f(z)− ϕ(z)

zn+1
dz =

∫
M

(1 +O(1− z))ϕ(z)− ϕ(z)

zn+1
dz

=

∫
M

z−n−1O(1− z)ϕ(z) dz

=

∫
M

O(z−n−1(1− z)ϕ(z)) dz

= O

(∫
M

z−n−1(1− z)ϕ(z) dz

)
.

(7)

To bound |z|n, we use the next lemma.

Lemma 7. We have
|z|n = O

(
ecvn

1−t
)
.

Proof. We do this by proving limn→∞
(1−an−t)n

ean1−t = 1. We take the logarithm
of the numerator and denominator and compare them. Using L’Hôpital’s Rule,
we have

lim
n→∞

−n log(1− an−t)

an1−t
= lim

n→∞

− log(1− an−t)

an−t

= lim
n→∞

1

1− an−t
· −tan−t−1

−tan−t−1

= 1.

Then we have

|z|n = (1− v(n))−n

= (1− cvn
−t)n

= O(ecvn
1−t

).
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Now, we substitute this into Equation 7:∫
M

f(z)− ϕ(z)

zn+1
dz = O

(∫
M

z−n−1(1− z)ϕ(z) dz

)
= O

(∫
M

z−1(1− z) exp
(
cvn

1−t
)√1− z

2π
exp

(
π2

6(1− z)
− π2

12

)
dz

)

= O

(∫
M

|1− z| 32 exp
(
cvn

1−t +
π2

6(1− z)

)
dz

)
.

Here we drop terms that make the equation simpler yet do not violate the
definition of 1 (z−1 ≈ 1)1. Now, using our definition of the major arc, where
|1− z| < s(n) = csn

−t and |1− z|−1 ≤ (1− |z|)−1 = v(n)−1 = c−1
v nt, we have∫

M

f(z)− ϕ(z)

zn+1
dz = O

(∫
M

(
csn

−t
) 3

2 exp

(
cvn

1−t +
π2nt

6cv

)
dz

)
= O

(∫
M

n− 3
2 t exp

(
cvn

1−t +
π2nt

6cv

)
dz

)
.

Finally, we also know the length of M is O(n−t) because the radius of both
circles are also O(n−t), so∫

M

f(z)− ϕ(z)

zn+1
dz = O

(
n− 5

2 t exp

(
cvn

1−t +
π2nt

6cv

))
.

To create the best bound, we see that we have both nt and n1−t; we thus choose
t = 1

2 . To choose cv we take the parameter of the exponential and look for its
minimum with respect to cv. It is achieved at cv = π√

6
. Thus we collect the

terms and ∫
M

f(z)− ϕ(z)

zn+1
dz = O

(
n− 5

4 eπ
√

2n
3

)
. (8)

1.7 Bounding the Minor Arc

We will prove another bound on f for this case.

Lemma 8. For |z| < 1,

|log f(z)| < 1

|1− z|
+

1

1− |z|
.

Proof. We switch the order of the sum of log f because it is absolutely conver-

1Though we could eliminate this via the integral, we do not here because our bound works
with the minor arc case well, too.
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gent; thus

log f(z) =

∞∑
n=1

∞∑
m=1

zmn

m

=

∞∑
m=1

1

m

∞∑
n=1

zmn

=

∞∑
m=1

zm

m(1− zm)
.

Then

| log f(z)| ≤
∞∑

m=1

∣∣∣∣ zm

m(1− zm)

∣∣∣∣
=

∣∣∣∣ z

1− z

∣∣∣∣+ ∞∑
m=2

|z|m

m(1− |z|m)

=

∣∣∣∣ z

1− z

∣∣∣∣+ 1− |z|
1− |z|

∞∑
m=2

|z|m

m(1− |z|m)

=

∣∣∣∣ z

1− z

∣∣∣∣+ 1

1− |z|

∞∑
m=2

|z|m

m(1 + |z|+ · · ·+ |z|m−1)

≤
∣∣∣∣ 1

1− z

∣∣∣∣+ 1

1− |z|

∞∑
m=2

1

m(|z|−1 + · · ·+ |z|−m)
.

Since |z| < 1, the second sum is less than
∑∞

m=2
1

m2 . This sum is less than 1,
and thus the lemma is true.

We now have∣∣∣∣∫
m

f(z)− ϕ(z)

zn+1
dz

∣∣∣∣ ≤ ∫
m

|f(z)|+ |ϕ(z)|
|z|n+1

dz

<

∫
m

1

|z|n+1

(
exp

(
1

|1− z|
+

1

1− |z|

)
+ |ϕ(z)|

)
dz.

To bound this, we use the definition of the minor arcs: we have |1 − z| ≥ cs√
n

and 1− |z| = π√
6n

which results in∣∣∣∣∫
m

f(z)− ϕ(z)

zn+1
dz

∣∣∣∣ < ∫
m

1

|z|n+1

(
exp

(√
n

cs
+

√
6n

π

)
+ |ϕ(z)|

)
dz.

For |ϕ(z)| we use |1− z|−1 ≤ (1− |z|)−1 =
√
6n
π . We have

ϕ(z) =

√
1− z

2π
exp

(
π2

6(1− z)
− π2

12

)
= O

(√
1− z exp

(
π2

6(1− z)

))

13



so

|ϕ(z)| = O

(√
1− z exp

(
π2

6(1− z)

))
= O

(√
1− z exp

(
ℜ
[

π2

6(1− z)

]))
= O

(√
1− z exp

(∣∣∣∣ π2

6(1− z)

∣∣∣∣))
= O

(√
1− z exp

(
π2

6

√
n

cs

))
= O

(√
1− z exp

(
π2

√
n

6cs

))
.

We again have by Lemma 7 that

|z|−n = O
(
eπ
√

n
6

)
.

Substituting the bound on ϕ into the integral we have∣∣∣∣∫
m

f(z)− ϕ(z)

zn+1
dz

∣∣∣∣ = O

(∫
m

1

|z|n+1

(
exp

(√
n

cs
+

√
6n

π

)
+
√
1− z exp

(
π2

6

√
n

cs

))
dz

)

= O

(∫
m

1

|z|

(
exp

(
π

√
n

6
+

√
n

cs
+

√
6n

π

)
+

√
1− z exp

(
π

√
n

6
+

π2
√
n

6cs

))
dz

)

= O

(
exp

(
π

√
n

6
+

√
n

cs
+

√
6n

π

)
+ exp

(
π

√
n

6
+

π2
√
n

6cs

))
.

We now just choose cs so

π√
6
+

1

cs
+

√
6

π
< π

√
2

3

and
π√
6
+

π2

6cs
< π

√
2

3

because as long as the exponential term grows faster, the whole error term on
the major arc will grow faster. A sufficient example of some cs that satisfies
both of these equations is cs =

2π√
6
. Thus by both of these estimates we have

pn = qn +O
(
n− 5

4 eπ
√

2n
3

)
. (9)

1.8 Asymptotic Behavior of qn

We turn ϕ into an integral to eliminate the square root.

14



Lemma 9. For a, b ∈ R with a > 0,∫ ∞

−∞
e−(ax2+bx) dx =

√
π

a
· e b2

4a .

Proof. We complete the square in the integral:∫ ∞

−∞
e−(ax2+bx) dx = e

b2

4a

∫ ∞

−∞
e−a(x+ b

2a )
2

dx.

We now set u = x+ b
2a so the integral is equal to∫ ∞

−∞
e−au2

du.

Finally, we set v =
√
au so dv =

√
adu. The integral is thus

1√
a

∫ ∞

−∞
e−v2

dv =

√
π

a
.

The lemma follows by substituting this integral into the previous equation.

We now rearrange to

ϕ(z) =

√
1− z

2π
exp

(
π2

6(1− z)
− π2

12

)
=

√
π

1− z

e−
π2

12

π
√
2
(1− z) exp

(
π2

6

1− z

)
.

We now set a = 1− z and b = −π
√

2
3 . Then

ϕ(z) =
e−

π2

12

π
√
2
(1− z)

∫ ∞

−∞
e−(1−z)x2+π

√
2
3x dx

We write this integral using a power series:∫ ∞

−∞
e−(1−z)x2+π

√
2
3x dx =

∫ ∞

−∞
e−x2+π

√
2
3xe−z2

dx

=

∫ ∞

−∞
e−x2+π

√
2
3x

∞∑
n=0

x2n

n!
zn dx.

We can flip the summation and integral since the power series converges abso-
lutely. Thus the integral is

∞∑
n=0

zn
∫ ∞

−∞
e−x2+π

√
2
3x

x2n

n!
dx.
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We now have

qn =

∫
C

ϕ(z)

zn+1
dz

=

∫
C

z−(n+1) e
−π2

12

π
√
2
(1− z)

∞∑
k=0

zk
∫ ∞

−∞
e−x2+π

√
2
3x

x2k

k!
dx dz

=
e−

π2

12

π
√
2

∫
C

∞∑
k=0

(
zk−n−1 − zk−n

) ∫ ∞

−∞
e−x2+π

√
2
3x

x2k

k!
dx dz

=
e−

π2

12

π
√
2

∫
C

∞∑
k=0

zk−n−1

∫ ∞

−∞
e−x2+π

√
2
3x

(
x2k

k!
− x2k−2

k!

)
dx dz,

where we collect the zk−n−1 terms. By Cauchy’s Residue Theorem, we only
need to consider the z−1 term, so

qn =
e−

π2

12

π
√
2

∫ ∞

−∞
e−x2+π

√
2
3x

(
x2n

n!
− x2n−2

n!

)
dx

We substitute x → x+
√
n, which, ironically, makes the expression work well.

qn =
e−

π2

12

π
√
2n!

∫ ∞

−∞
(x+

√
n)2n−2e−(x2+2

√
nx+n)+π

√
2
3x+π

√
2n
3

(
x2 + 2

√
nx
)
dx

=
eπ
√

2n
3 −π2

12

π
√
2

en

n!

∫ ∞

−∞
(x+

√
n)2n−2

(
x2 + 2

√
nx
)
e−x2−2

√
nx+π

√
2
3x dx

=
eπ
√

2n
3 −π2

12

π
√
2

en

n!

∫ ∞

−∞
x

(√
n

(
1 +

x√
n

))2n−2(√
n

(
2 +

x√
n

))
e−x2−2

√
nx+π

√
2
3x dx

=
eπ
√

2n
3 −π2

12

π
√
2n

ennn

n!

∫ ∞

−∞
x

(
1 +

x√
n

)2n−2(
2 +

x√
n

)
e−x2−2

√
nx+π

√
2
3x dx

=

(
1 +O

(
1

n

))
eπ
√

2n
3 −π2

12

π
3
2 2n

∫ ∞

−∞
x

(
1 +

x√
n

)2n−2(
2 +

x√
n

)
e−x2−2

√
nx+π

√
2
3x dx

(10)
by Stirling’s approximation formula for n!. We now define

sn(x) :=

(
1 +

x√
n

)2n−2(
1 +

x

2
√
n

)
e−

√
nx.

We would like to remove this factor in the integral, thus we state the following
lemma:

Lemma 10. As n → ∞, we have∫ ∞

−∞
xsn(x)e

π
√

2
3x−x2

dx =
(
1 +O

(
n− 1

8

))∫ ∞

−∞
xeπ

√
2
3x−2x2

.
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Proof. We will prove that their difference is bounded by O
(
n− 1

8

)
by bounding

the integral ∫ ∞

−∞
n

1
8xeπ

√
2
3x−x2

∣∣∣sn(x)− ex
2
∣∣∣ dx

where the bound does not depend on n. We will do this by bounding the integral
on certain intervals, namely,

(i) [−n
1
8 , n

1
8 ]

(ii) [−
√
n,∞) \ [−n− 1

8 , n− 1
8 ]

(iii) (∞,−
√
n)

In case (i) we have

log sn(x) = (2n− 2) log

(
1 +

x√
n

)
+ log

(
1 +

x

2
√
n

)
− 2x

√
n.

We use the Taylor expansion of log. Since |x| ≤ n
1
8 , x√

n
= O

(
n− 3

8

)
. Then

log sn(x) = (2n− 2)

(
1 +

x√
n
− x2

2n
+O

(
n− 9

8

))
+ 1 +O

(
n− 3

8

)
− 2x

√
n

= (2n− 2)

(
x√
n
− x2

2n
+O

(
n− 9

8

))
+O

(
n− 3

8

)
− 2x

√
n

= 2x
√
n− x2 +O

(
n− 1

8

)
+O

(
n− 3

8

)
+O

(
n− 3

8

)
− 2x

√
n

= −x2 +O
(
n− 1

8

)
.

Now, we have sn(x) = e−x2
(
1 +O

(
n− 1

8

))
and

n
1
8 |x|eπ

√
2
3x−x2

∣∣∣sn(x)− e−x2
∣∣∣ = O

(
|x|eπ

√
2
3x−2x2

)
.

Since the exponential term decays faster than the linear term grows, this is
integrable. Now, if |x| > n

1
8 we can bound the integrand by

n
1
8 |x|eπ

√
2
3x−x2

∣∣∣sn(x)− e−x2
∣∣∣ ≤ x2eπ

√
2
3x−x2

(
|sn(x)|+ e−x2

)
. (11)

For case (ii), x ≥ −
√
n, so

1 +
x√
n
≤ e

x√
n

by convexity and (
1 +

x√
n

)2n−2

≤ e
2x

√
n− 2x√

n .
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We then know that

|sn(x)| ≤ e
2x

√
n− 2x√

n

∣∣∣∣1 + x

2
√
n

∣∣∣∣ e−2x
√
n

≤ e
− 2x√

n e
x

2
√

n

= e
− 3

2
x√
n

≤ e
3
2 .

We return to Equation 11 and see that the e−x2

term will dominate. Therefore
the integral is bounded independent of n in case (ii). Now, in case (iii), we have

0 ≤
(
1 +

x√
n

)2

= 1 +
2x√
n
+

x2

n

< 1 +
2x√
n
+ 1 +

x2

n

≤ e
2x√
n
+ x2

n .

Then

|sn(x)| ≤
(
1 +

∣∣∣∣ x

2
√
n

∣∣∣∣) e
(n−1)

(
2x√
n
+ x2

n

)
e−2x

√
n

≤ (1 + |x|) e2x
√
n+x2− 2x√

n
− x2

n e−2x
√
n

≤ (1 + |x|) ex
2−2x.

Then the integrand in Equation 11 is

x2eπ
√

2
3x−x2

(
|sn(x)|+ e−x2

)
≤ x2eπ

√
2
3x−x2

(
(1 + |x|) ex

2−2x + e−x2
)

≤ x2eπ
√

2
3x−2x + |x|3eπ

√
2
3x−2x + x2eπ

√
2
3x−2x2

.

Since π
√

2
3 − 2 > 0 and x < 0 for case (iii), the integral is bounded because of

exponential decay.

We now use these bounds. From Equation 10,

qn =

(
1 +O

(
1

n

))
eπ
√

2n
3 −π2

12

π
3
2 2n

∫ ∞

−∞
2xsn(x)e

π
√

2
3x−x2

dx

=

(
1 +O

(
1

n

))(
1 +O

(
n− 1

8

)) eπ
√

2n
3 −π2

12

π
3
2 2n

∫ ∞

−∞
2xeπ

√
2
3x−x2

dx

=
(
1 +O

(
n− 1

8

)) eπ
√

2n
3 −π2

12

π
3
2n

∫ ∞

−∞
xeπ

√
2
3x−x2

dx.
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We calculate the integral:∫ ∞

−∞
xeπ

√
2
3x−x2

dx =

∫ ∞

−∞
−1

4

d

dx

(
eπ
√

2
3x−2x2

)
+

π

4

√
2

3
eπ
√

2
3x−2x2

dx

= −1

4
eπ
√

2
3x−2x2

∣∣∣∣∞
−∞

+
π

4

√
2

3

∫ ∞

−∞
eπ
√

2
3x−2x2

dx

=
π
√
2

4
√
3

∫ ∞

−∞
eπ
√

2
3x−2x2

dx.

This, by Lemma 9, is

π

4

√
2

3

√
π

2
e

π2

12 .

We put this together:

qn =
(
1 +O

(
n− 1

8

)) eπ
√

2n
3 −π2

12

π
3
2n

π

4

√
π

3
e

π2

12

=
eπ
√

2n
3

4n
√
3

(
1 +O

(
n− 1

8

))
.

Then, since −1− 1
8 > − 5

4 ,

pn = qn +O
(
n− 5

4 eπ
√

2
3

)
=

eπ
√

2n
3

4n
√
3

(
1 +O

(
n− 1

8

))
+O

(
n− 5

4 eπ
√

2
3

)
=

eπ
√

2n
3

4n
√
3

(
1 +O

(
n− 1

8

))
,

which is exactly what we wanted.

2 Epilogue

We have just witnessed a long, but simplified version of the proof of the asymp-
totic approximation of the partition function. Our bounds are not as tight, but
we still have the asymptotic formula. The Circle Method is not limited to this
problem; it has been used in other problems. The specifics are from [Dru20].

2.1 Waring’s Problem

Waring’s Problem was posed in 1770. It asks, for fixed k, the smallest s so
every integer n can be written in the form xk

1 + · · ·+xk
s . The circle method can

solve this problem asymptotically. Hardy and Littlewood defined G(k) to be
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the smallest s such that the previous condition does not hold for finitely many
n. The first bound found by Hardy and Littlewood was

G(k) ≤ (k − 2)2k−1 + 5.

This was improved over the years and has been constricted to

G(k) ≤ k(log k + log log k +O(1)).

2.2 Goldbach’s Conjectures

In 1742, Goldbach posed his famous conjectures. The weak conjecture states
that every odd number greater than or equal to 5 can be written as the sum of
three primes. Vinogradov proved this for large integers using the circle method.
However, when a bound on these large integers was acquired, it was too big to
be computed. Vinogradov’s student, Borozdkin, found a bound with 4 million
digits.

In 1989, J.-R. Chen and T. Wang lowered this bound to 3.33 ·1043000. M.-C.
Liu and T. Wang improved it to 2·101436 in 2002. This number is still very large.
In a preprint in 2012, though, Helfgott lowered the bound to 1027. This paper
is accepted by most of the mathematical community and has been accepted for
publication by a journal but has yet to be published. Helfgott used the circle
method and a sieve method to prove this. The proof is in [Hel15].

2.3 Final Words

While the Circle Method is very powerful, it is also very hard to use. Many
problems are very hard, if not impossible, to solve with just the circle method.
Because of the nature of poles, the behavior of arcs have to be very tightly
bounded. It thus must be used with caution, but may help us with further
problems soon.
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