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Abstract. This paper examines two main properties: irrationality and transcendence.
The paper first goes into a brief overview of some history as well as derivations and com-
putations of our two main numbers: e and π. Then, it details a proof of e’s irrationality
as an introduction to irrationality proofs, and proves the irrationality of er and implements
that notion towards π’s irrationality. After establishing these proofs, the paper examines
how transcendence can be established through a variety of means, and how establishing the
irrationality and eventual transcendence of e and π can help prove the transcendence of
other numbers, as well as how in other cases, approaching the establishment of transcen-
dence directly can be used to imply irrationality. Some examples of generalized theorems
explored in this paper include Baker’s and Lindemann-Weierstrass Theorems. Then, the
paper explores some problems the field is currently working on, such as e + π and ee, and
how Schanuel’s Conjecture could prove pivotal to proving such ideas. The paper also exam-
ines some applications, such as the study of transcendental functions as well as details the
potential future of the field through an introduction to the notion of hypertranscendental
functions and numbers.

1. Introduction

All of us are familiar with or have at least heard of the number π before. But what exactly
is it? Some individuals may describe it as the ratio of a circle’s diameter to its circumfer-
ence, or describe it as a number that never ends, without repeating. Others describe it to
be transcendental. But what exactly do any of these mean? Are there more numbers like
this? This paper will focus on answering questions like these, as well as providing insight
into why these statements are true through a variety of proofs, as well as exploring unsolved
problems and applications of this field of mathematics.

When I was in middle school, calculating the area of circles, I was taught that π was equal to
22
7
. To the school’s credit, it was sufficient at that time, but when my friend told me about

how π is this absurd number that repeats infinitely without any patterns, I was fascinated
by just imagining it. Pi was indeed what we call irrational, or a number that cannot be
represented as a ratio of integers. Similar to π is e, another commonly known irrational
number, that can be found everywhere in mathematics. Often described as Euler’s number,
the number derived from infinitely compounding, or the number that’s unaffected by dif-
ferentiation or integration, e, similar to π, is also transcendental. Everything from Euler’s
Identity to the Gaussian Integral includes these numbers somehow, and this phenomenon is
no coincidence.

eiπ = −1,
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∫ ∞

−∞
e−x2

dx =
√
π.

So what is it that makes these numbers so special you may ask? The answer is transcendence:
these numbers cannot be ”solved” or ”obtained” as a solution to a polynomial function of
finite terms, i.e., they literally transcend algebra. Transcendental numbers must be irrational,
but not all irrational numbers are transcendental (

√
2 is irrational but not transcendental).

This is what sets these numbers apart from a square root of a non-perfect square, for example,
because those numbers can be obtained as solutions to polynomials while numbers such as
e and π simply cannot be obtained through algebraic means.

2. History

Our fascination with numbers began as early as 500 BCE, during the time of Pythagoras.
During this time it was widely believed that all numbers could be represented as a ratio of
integers: i.e. all numbers are rational. Humans stumbling upon irrational numbers, how-
ever, changed everything. Legend says that mathematician Hippasus was so shocked after
discovering irrationality around

√
2 that he kept it a secret so it wouldn’t contradict the

mathematics of his time. Over the years, mathematicians learned more and more about
irrational numbers, and Euclid even went on to prove that the number

√
2 was irrational.

Eventually, mathematicians was starting to encounter as well as ponder about numbers like
π and e. Some famous names, like Newton and Leibniz, formulated ways to approximate π,
through binomial theorems and infinite series, but there was still no solid proof regarding its
irrationality. Johann Lambert was the first mathematician to prove π’s irrationality, which
he did using continued fractions. Later, mathematician Joseph Fourier developed the famous
Fourier series, which is extremely prominent in mathematics, and established the notion that
irrational numbers are prevalent in trigonometry and calculus, setting into perspective how
important the study of these numbers really is.

The 19th and 20th centuries were when we started exploring the idea of transcendent num-
bers, which is a subset of irrational numbers. Joseph Liouville was the first to explore this
idea and lay out proofs regarding this concept. The first transcendence proof, however, was
regarding e and was done by mathematician Charles Hermite, which then also implied that
e was irrational. Pi was quick to follow, and its transcendence was proven by Ferdinand von
Lindemann in 1882. Over the years, people have experimented extensively with these num-
bers and developed different and more concise proofs, as well as exploring the transcendence
of a combination of these numbers (like e + π or eπ). This is still ongoing today and is an
active field of mathematical study.

This paper will start with the proofs of e’s irrationality, as a sort of introduction to ir-
rationality proofs, and then explore er as well as π’s irrationality. Then, we will go into
transcendence, as well as more implications regarding numbers of this sort. It is important
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to note that this paper’s irrationality proofs flow similarly to those of Timothy Y. Chow’s
paper [4], which is inspired by mathematician Ivan Niven’s [7] proof of π’s irrationality.

3. e and π as numbers

The first thing one might wonder when encountering numbers such as e and π, is how
they are computed or derived. This section will work to briefly address those questions by
exemplifying some standard ways of approximating these numbers, which is pivotal in the
scope of irrationality and transcendence.

e ≈ 2.7182818284 . . .

π ≈ 3.1415926535 . . .

Starting with e, perhaps the most common way of representing e is through the following
limit:

lim
n→∞

(1 +
1

n
)n.

In addition to this, however, mathematicians have also used things like Maclaurin series ex-
pansions (gone over later in this paper), integrals, derivatives, as well as probability functions
to define e. ∫

ex = ex + C

d

dx
[ex] = ex

∫ e

1

dx

x
= 1.

Pi however, can be more simple or complex (depending on how you interpret it). As ev-
erybody knows, π can be defined through a circle’s area or circumference, as exemplified
below. ∫ 1

−1

dx√
1− x2

= π.

This, however, requires one to inscribe an infinite-sided polygon in the circle and trying
to compute its perimeter to obtain an expression to approximate π. This process is quite
tedious and over the years mathematicians have found other ways to represent this num-
ber. Nevertheless, there are a multidude more alternative ways to approximate π, such as
Newton’s use of Pascal’s triangle. Similarly, another one of many solutions to this prob-
lem was outlined by Srinivasa Ramanujan [3], who proposed the following summation which
converges rapidly, helping approximate more digits of π.

2
√
2

9801

∞∑
k=0

(4k)!(1103 + 26390k)

(k!)4(396)4k
=

1

π
.

These are just some of the many ways mathematicians represent these numbers, and it’s no
exaggeration that they appear everywhere in math since it’s evident by the fact that there
are so many ways these numbers can be represented and computed. Now that we have been
introduced to where these numbers come from, we can now prove their properties and look
into their potential implications.
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4. The Irrationality of e

Firstly, we will be dealing with the number e, and discussing its irrationality. The way
we do this is by setting up a proof by contradiction and assuming the exact opposite of
what we desire, in other words, assuming that e is a rational number. Rational numbers, by
definition, can be represented as the quotient of two integers, which gives us e = p/q when
p and q are positive integers. This method of proving e’s irrationality goes by the name of
Fourier’s proof [4].

Now, we need to find a contradiction or some kind of manipulation of this relationship
that creates problems, which would lead to the conclusion that e cannot possibly be ratio-
nal, and must therefore be irrational. To get there, we will start by representing e and its
Maclaurin series expansion, which approximates it using a polynomial of infinite terms with
coefficients that correspond to the derivatives of ex.

ex =
∞∑
n=0

xn

n!
.

Using the Maclaurin expansion of ex, where x = 1, we can express our number e differently.

(4.1) e =
p

q
= 1 +

1

1!
+

1

2!
+

1

3!
+ . . .

1

n!
.

Now that we have a new way of representing e, we can manipulate this equation until a
contradiction is reached. We will start this process by first scaling both sides of the equation
by a factor of q!.

q!p

q
= q! +

q!

1!
+

q!

2!
+

q!

3!
+ . . .

q!

n!
.

The lefthand side of the equation must be an integer because it is a product of integer
numbers. The righthand side, however, can be fundamentally split into two parts: a sum of
integers, and a sum that equals some number Sn.

(4.2)
q!p

q︸︷︷︸
∈Z

= q! +
q!

1!
+

q!

2!
+ . . .+

q!

q!︸ ︷︷ ︸
∈Z

+
q!

(q + 1)!
+

q!

(q + 2)!
+ . . .︸ ︷︷ ︸

Sn

q!p

q
= q! +

q!

1!
+

q!

2!
+ . . .+ 1 +

1

(q + 1)
+

1

(q + 2)(q + 1)
+ . . .

Upon observing the terms on the right-hand side, one may observe that until the q’th term,
the expansion represents an integer: the only operations done between these numbers are
products and finite sums of integers, so the result must also be an integer, similar to the
left-hand side of the equation. The remaining terms, the sum of which is labeled Sn, can
be represented through an upper and lower bound. These bounds are created through two
main ideas:

(1) Sn must be positive because p and q are positive

(2) an infinite geometric series expansion Gn can represent an upper bound of Sn
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The lower bound for this is quite straightforward: since Sn is always positive, it is greater
than zero. For the upper bound, however, we will compare it to the geometrically modeled
equation Gn, and have it serve as an upper bound because it is always larger than Sn.

(4.3) Sn =
1

(q + 1)
+

1

(q + 2)(q + 1)
+ . . . < Gn =

1

q + 1
+

1

(q + 1)2
+ . . .

One advantage of comparing to a geometric model is the fact that the sum of an infinite
number of terms can be computed easily, so long as it’s common factor |r| < 1, which our
equation satisfies: r = 1

q+1
< 1 because q is a positive integer. Given this fact, the infinite

sum of Gn can be computed using the formula:

Gn =
a1

1− r
.

Knowing that a1 = 1
q+1

and r = 1
q+1

, plunging into the equation above yields the following

upper bound:

Gn =

1
q+1

1− 1
q+1

=

1
q+1
q

q+1

=
1

q + 1
· q + 1

q
=

1

q
.

Recall that q is a positive integer, so the maximum value that 1/q can take on is 1, which
will serve as an upper bound. This results in the inequality:

(4.4) 0 < Sn < 1.

Now, an issue has emerged: since our expression only involves the sum and product of
integers, Sn must also be an integer. This, however, is not true because there are no integers
between 0 and 1. Although this seems like common sense, the more formal definition of
this phenomenon also exists and is described by the fundamental theorem of transcendental
number theory. This contradicts our proof that e is a rational number, meaning it must be
irrational. This proof is a rather simple example, and serves as a great example to outline the
main strategy mathematicians use in irrationality proofs. In the next section, we will expand
on the same fundamental ideas, and apply them to a much more complicated problem: the
irrationality of er, and eventually to π.

5. Expanding to Powers of e

Before exploring the irrationality of π, it is important to consider the powers of e. Not
only is the proof for er extremely identical to that of π (which aids us in the future), but
it also shows us a significant mathematical fact about the irrationality of the powers of e
that’s vastly applicable in mathematics. In our original expression, consisting of ex, what if
x ̸= 1? In this case, our upper bound for Sn using a geometric series Gn fails because the
expansion of Sn is not converging for |r| > 1. The Maclaurin series expansion is no longer
sufficient for this proof, and we need a new expression involving er which provides a bound
for us to make a contradiction even when r ̸= 1. This is where Legendre polynomials come
in.

For the sake of this proof, we will not be exploring the deeper mathematical connections
to Legendre polynomials, but it is still important to know that Legendre polynomials are a
system of orthogonal polynomials, as illustrated below. Additionally, they greatly simplify
the coefficients of calculation, which is extremely useful in our proof, which uses terms from
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the series. In other words, since we need to manipulate functions with respect to coefficients,
Legendre polynomials help keep our job straightforward.

⟨f, g⟩ :=
∫ 1

−1

f(x)g(x)dx.

It is useful to note that we have picked Legendre Polynomials out of all the other orthogonal
polynomials because of simplicity: w(x), or the weight function, is just = 1 for Legendre
Polynomials, simplifying the result to just two functions inside the integral, which is really
all we need for this proof. ∫ b

a

f(x)g(x)w(x)dx = 0.

We will utilize this integral, with g(x) = ex and w(x) = 1 and to construct an optimal
equation for f(x) to help obtain our contradiction. For now, we will let f(x) be some
polynomial with integer coefficients and some degree k. Additionally, since our area of
interest is [0, r], we can alter the bounds of the integral to fit that interval.

(5.1)

∫ r

0

f(x)exdx.

Now, we need an equation, so let’s start by integrating the above integral. We will assume
f(x) is just some polynomial (which we will choose later) and integrate by parts. Also, since
k is a finite number, we don’t need to worry about a divergence. After integrating one time
we are left with the following:

(5.2)

∫ r

0

f(x)exdx = [f(x)ex]r0 −
∫ r

0

f ′(x)exdx.

Continuing, the second integration leaves us with:∫ r

0

f(x)exdx = [f(x)ex]r0 − [f ′(x)ex]r0 +

∫ r

0

f ′′(x)exdx,

∫ r

0

f(x)exdx = [ex(f(x)− f ′(x))]r0 +

∫ r

0

f ′′(x)exdx.

We can now determine a pattern and represent this integral’s solution as a sum, recalling
that it isn’t infinite because our polynomial f(x) has a fixed degree. Still, we’d have to keep
going to reach a solution. Recall that if we take the n’th order (or higher) derivative of a
polynomial of degree (n−1), then its derivative is zero. As we keep integrating, the orders of
the derivatives in the integral eventually equals zero, so the integral on the right-hand side
of the equation is just zero. Now we just need to evaluate the remaining terms over [0, r]. If
we define:

F (x) = f(x)− f ′(x) + f ′′(x)− . . .

which alternates signs because of integration by parts, then the integral evaluates to:

(5.3)

∫ r

0

f(x)exdx = F (r)er − F (0).

Now, we have an equation revolving er, but we still need to manipulate it to get a contradic-
tion. For this proof, we will assume er = p/q. By substituting this and multiplying by q on
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both sides and dividing by some n! for a sufficiently large n (the reason for this is examined
closely in the steps to follow), we obtain:

(5.4)
q

n!

∫ r

0

f(x)exdx =
F (r)p

n!
− F (0)q

n!
.

The next step is to use a similar contradiction as the proof for when r = 1 in er: we need
to get the same setup to utilize the fundamental theorem of transcendental number theory.
To achieve this goal, we will need to convince ourselves that the two terms on the righthand

side of the equation, F (r)p
n!

and F (0)q
n!

, are integers. The way we do this involves the definition
we set for F (x). Since it involves taking the derivative repeatedly, the coefficient term must
be factorial-like, assuming f(x) started with integer coefficients, which we can assure when
picking the equation. The exact equation for f(x) to get a solution is something we will
optimize later, but for now, we can assume that f(x) has integer coefficients to go forward
with our proof.

Lemma 5.1. The coefficients of f (n)(x)/n! are integers (n > 0) if f(x) has integer coeffi-
cients.

Proof. Consider f(x) = xa. Then, fn(x) = (a)(a − 1) . . . ((a − n) + 1)xa−n. If we were to
simplify this, we obtain:

f (n)(x) =
a!

(a− n)!
xa−m.

Now dividing by n!, we have

f (n)(x)

n!
=

a!

(a− n)!n!
xa−m,

leaving our coefficient to be
(
a
n

)
. Both a and n are integers (these are values picked by us),

so our coefficient
(
a
n

)
is therefore also an integer. ■

We can now use this idea and apply it to our two areas of interest, F (r)p
n!

and F (0)q
n!

. Before
we do this, however, we need to consider the degree of our polynomial f(x). Let’s define the
degree of this polynomial to be some integer k. From our definition: F (x) = f(x)− f ′(x) +
f ′′(x) − . . . + f (k)(x) (the sign before fk(x) can be positive or negative depending on the
degree, but the main idea here is that it alternates signs). Now our proof applies if k ≥ n
since our equation becomes:

f (k)(x)

n!
=

(
k

n

)
xk−n.

If k < n however, we have a problem. To help against these lower degree k values, we will
manipulate f(x) so that Lemma 5.1 still applies.

Now to do this, we will set polynomial f(x) as some function that vanishes at n’th or-
der at our points of interest, which in this case are our bounds of integration, x = 0 and
x = r. One such option is the polynomial f(x) = xn(r − x)n. It is important to understand
that we do this because f(x) is a polynomial that vanishes to order n at both of these points.
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Definition 5.2 (Order of Vanishing). A polynomial f(x) is said to vanish at x = a if
f(a) = 0 when a ∈ R, and its order n1 (The n from the definition is not to be confused
with the n from our equation so we will denote it as n1) is defined as the smallest possible
integer so that fn1(a) ̸= 0. The degree to which it vanishes at x = a is determined using
the following limit when n1 is the order of vanishing so long as the limit takes on a non-zero
finite value.

lim
x→a

f(x)

xn1
̸= 0,

lim
x→a

f(x)

xn1
̸= ±∞.

In our case, our equation is xn(r−x)n. If we were to examine our equation near our bounds
x = 0 and x = r, we can see the following:

lim
x→0

xn(r − x)n

xn1
.

For x = 0, it is only possible for the limit to be a non-zero finite if n1 = n, meaning that our
order of vanishing at x = 0 is n.

lim
x→r

xn(r − x)n

xn1
.

Similarly, at x = r, the only possible way to keep the equation as a non-zero finite is to have
n1 = n which means f(x) vanishes at order n to both of our bounds of integration.

From this, we know n1 = n since the smallest order derivative where f(x) = xn(r − x)n

does not equal zero is n. Additionally, this implies that for any number k, when k < n,
fk(x) = 0 because n, by definition, is the smallest possible integer so that f (n)(x) ̸= 0, and

anything smaller has a 0 derivative. We now can use this fact to prove that both F (r)p
n!

and
F (0)q
n!

are integers.

Corollary 5.3. If f(x) = xn(r − x)n, when r and n are integers (n ≥ 0), and F (x) =

f(x)− f ′(x) + f ′′(x)− . . ., then F (r)p
n!

and F (0)q
n!

are integers.

Proof. There are 2 cases to this, k ≥ n and k < n

(1) if k ≥ n, then by Lemma 5.1, F (r)p
n!

and F (0)q
n!

are both integers.

(2) if k < n then f (k)(0) = f (k)(r) = 0 using Definition 5.2, so F (x) would just be 0,

which is an integer, showing that F (r)p
n!

and F (0)q
n!

are both integers.

This shows that F (r)p
n!

and F (0)q
n!

are both either 0 or some combination of integers, both of
which tell us that our 2 terms are integers. ■
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Now taking a look back at our original integral:

q

n!

∫ r

0

f(x)exdx︸ ︷︷ ︸
∈[0,1]

=
F (r)p

n!
− F (0)q

n!︸ ︷︷ ︸
∈Z

.

We know that the right-hand side of the equation is a difference of integers, but we also
know that the left-hand side of the equation is non-zero because r > 0. We also know that
the left-hand side of the equation will be less than one for any sufficiently large n because
n! grows much faster than any other function. A combination of these facts tells us that the
left-hand side is between 0 and 1, and the right-hand side is an integer: we have reached
the same contradiction as we did when x = 1 in ex, and using the fundamental theorem
of transcendental number theory, we can contradict this method and prove that er for any
power r > 0 is irrational. But wait! We can also say that er is irrational when r < 0 because
any negative powers just result in 1

er
which still cannot be represented as a ratio of integers,

making er irrational for any r ̸= 0.

6. The Irrationality of π

Now that we have made it to the irrationality of π, we will need to tweak our methods
slightly. To fit our purpose, we will first change ex to sinx due to its close relationship with
π. But sinx itself is what we call a transcendental function: its very definition is based on
numbers like π because there is no algebraic way to represent it. Nevertheless, sin x can be
defined through a Maclaurin Series expansion.

sinx =
∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
.

Using this definition we get an approximation for sinx as a polynomial, and we can use this to
define π to be the smallest positive solution to sinx = 0. In this way, sinx is closely correlated
with π and is the reason we will be substituting it in place of ex. Additionally, we will be
replacing the bounds of integration from [0, r] to [0, π] and assuming the contradiction that
π = a/b when a and b are integers. Doing all of this to our integral results in the following:

(6.1)

∫ π

0

f(x) sin (x)dx.

Now, we will need to again define F (x) which we get as a result of integration by parts.
Also, we can substitute in π = a/b.∫ a/b

0

f(x) sin (x)dx = [−f(x) cos (x)]
a/b
0 +

∫ a/b

0

f ′(x) cos (x)dx.

With repeated integration by parts, we are left with:∫ a/b

0

f(x) sin (x)dx = [−f(x) cos (x)+f ′(x) sin (x)+f ′′(x) cos(x)]
a/b
0 −

∫ a/b

0

f (3)(x) cos (x)dx.

You may notice that in this case, we cannot factor, like we did with ex. We can, however,
simplify to a large extent due to the bounds. Every term has either a sinx or a cosx attached
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to it, and in x = 0 and x = π, these functions are either 0, or ±1. In our case, all the even-
order derivatives stay, since sin (0) and sin (π) both evaluate to zero. Using this fact, we can
define a new F (x).

F (x) = f(x)− f ′′(x) + f (4)(x)− f (6)(x) + . . .

Using this definition, our integral can be represented in terms of F (x).

(6.2)

∫ a/b

0

f(x) sin (x)dx = F (π) + F (0).

Next, we will scale up this integral by a factor of bn

n!
on both sides and then prove bnF (a/b)

n!

and bnF (0)
n!

are integers.

(6.3)
bn

n!

∫ a/b

0

f(x) sin (x)dx =
bnF (a/b)

n!
+

bnF (0)

n!
.

We now need to modify our f(x), which we will change to be equal to f(x) = xn(a− bx)n.
The reason for this is seen shortly, but using this, we can get to our contradiction. This
equation vanishes to order n at x = 0 and x = a/b, and we can get this solution using our
Definition 4.2’s limit.

Corollary 6.1. If f(x) = xn(a− bx)n, when r, a, and b are integers (for b ̸= 0 and n ≥ 0),

and F (x) = f(x)− f ′′(x) + f (4)(x)− f (6)(x) + . . ., then bnF (a/b)
n!

and bnF (0)
n!

are integers.

Proof. Again, there are two cases to this, k ≥ n and k < n.

(1) if k ≥ n, then by Lemma 5.1, bnF (a/b)
n!

and bnF (0)
n!

are integers (remember bn is an
integer so scaling by it does not affect the results)

(2) if k < n then f (k)(0) = f (k)(a/b) = 0 using Definition 5.2, so F (x) would just be

0, which is an integer, showing that bnF (a/b)
n!

and bnF (0)
n!

are both integers. Here bn

scaling does not change anything either.

■

It is important to note that the scaling by bn is not required to prove these, since dif-

ferentiation tells us that the term F (a/b)
n!

is an integer, but we have the scaling there if one
decides to prove using the reasoning that evaluating a polynomial with integer coefficients
at x = a/b and then scaling results in an integer. This is a different way to do it but has
the same result, and the proof has this included to be flexible to some extent. That aside,
we have now gotten the same contradiction that we had used the Fundamental Theorem of
transcendental number theory on for er.

(6.4)
bn

n!

∫ a/b

0

f(x) sin (x)dx︸ ︷︷ ︸
∈[0,1]

=
bnF (a/b)

n!
+

bnF (0)

n!︸ ︷︷ ︸
∈Z

.

Similar to er, since the equation on the right-hand side is an integer and the left-hand side
is between 0 (a/b > 0) and 1 (n! grows fastest), we can say the equation is contradicted by
the fundamental theorem of transcendental number theory and therefore conclude that π is
also irrational.
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7. Establishing Transcendence

So far in the paper we have examined the irrationality of e, er, and π and the proofs that
result in their irrationality. Irrationality is extremely important to establish, especially in
the scope of transcendence, because all transcendental numbers by definition are irrational.
In addition to not being able to be represented as a ratio, these numbers also cannot be
obtained as a solution to an algebraic polynomial of finite terms: they are transcendental.
Irrationality, as shown later in this paper, is a property that is extremely important for
establishing transcendence. Additionally, if the irrationality of a function cannot be proven,
approaching the transcendence proof could benefit us due to all transcendental numbers be-
ing irrational. The proof of transcendence is similar to that of irrationality and involves the
assumption that e or π can be obtained as a solution to a polynomial to get a contradiction.
However, these proofs are extremely tedious and not the focus of this paper, and it will
explore more applicable forms of proving transcendence through generalized theorems that
help us establish the transcendence of a large set of numbers at once.

Before going into the theorems of this section, it is important to note that there are a
few mathematical facts we use here that were not presented in this paper. This includes
the fact that πr when r ∈ Z provided that r ̸= 0 is irrational, and the fact that e and π
are transcendental. Although these proofs are not showcased, they can be done using a se-
ries of polynomial equations, setting these numbers as the solution, and then manipulating
them until a contradiction is reached, or using a more technical approach using repeated
products. When multiple of these numbers are combined though, through multiplication
addition, exponentials, etc., we need some more generalized guidelines to categorize these
types of numbers (going through these intensive proofs is simply not practical), which is the
primary focus of this section.

Remark 7.1. Although the proof of π and e’s transcendence is not showcased specifically,
they can be confirmed to be transcendental through the theorems to follow.

7.1. Gelfond–Schneider Theorem. This theorem, developed by Aleksandr Gelfond and
Theodor Schneider, directly relates irrationality and transcendence and is used to categorize
a large number of numbers in the form of ab [10].

Theorem 7.2. If both a and b are algebraic numbers, a ̸∈ {0, 1} and b is non-rational
number, then any number in the form ab is transcendental.

This helps us establish the transcendence of a very large scope of numbers, and we will
be examining some of the examples below. It is very important to note that most of the
theorems in this section rely on the idea of irrationality which we already proved: this is a
basis to apply many of these theorems and knowing which numbers are irrational vs. those
that are transcendental is a necessity.

(1) 2
√
2 (Gelfond–Schneider Constant)

Proof. a = 2 is algebraic and ̸= 0 or 1, b =
√
2 is irrational, so 2

√
2 is transcendental.

■

(2) eπ (Gelfond’s Constant)
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Proof. Rewriting, we have eπ = (eiπ)−i and eiπ = −1 by Euler’s identity, so a in this
case is a not zero or one and b = i is non-rational (it doesn’t have to be irrational,
just not rational, which i satisfies because imaginary numbers are never rational), so
eπ is transcendental. ■

(3) ii

Proof. i =
√
eiπ = e

iπ
2 , so ii = (e

iπ
2 )i. This is just equal to e−π/2, which we know

is irrational through the previous proof of eπ (we just need to use Euler’s Identity
again). ■

7.2. Lindemann–Weierstrass Theorem. This theorem, also called the Hermite Linde-
mann Weierstrass theorem, was proposed by Ferdinand von Lindemann, Karl Weierstrass,
and Charles Hermite. This theorem uses number theory to classify a wide range of numbers,
as is based on linear independence [8]. Let’s consider the numbers a, b and c. Now consider
three different algebraic coefficients k1, k2, and k3. Their linear combination is:

k1a+ k2b+ k3c = 0

If there are no possible k1, k2 and k3 other than 0, then the numbers a, b and c are said to
be linearly independent over A (the algebraic numbers).

Theorem 7.3. If the numbers a1, a2, a3, . . . are distinct algebraic numbers, then the numbers
ea1 , ea2 , ea2 , . . . are linearly independent over A.

This theorem increases the scope of transcendental numbers that can be proven drastically,
and also helps us with outputs of a wide number of transcendental functions, like the trigono-
metric (sinx, cosx, tanx) and hyperbolic trigonometric functions (sinhx, coshx, tanhx), and
the natural logarithmic function (lnx = loge x). More complex transcendental functions will
be talked about later in the paper. That being said, this theorem has helped us establish
transcendence for numbers such as those categorized below.

(1) ea when a ∈ A and a ̸= 0.

Example. e
√
2, e3

3√2, etc.

(2) ekπ when k ∈ A and a ̸= 0

Example. e3π, eπ
√
d for positive integer d, etc.

(3) Evaluation of transcendental functions

Example. sin(1), cosh(67), ln(14), etc.

(4) Exponential Logarithms eln(d)

Example. eln(d) for any positive integer d, etc.

(5) Imaginary exponentials

Example. ei
√
2, etc.
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7.3. Baker’s theorem. This theorem, developed by Alan Baker, gives us a computable
bound for linear combinations involving logarithms [2]. The part of his theorem we will
focus on is a simplification, but still sufficient for the purpose of this paper.

Theorem 7.4. If α1, α2, . . . αn are non-zero algebraic numbers, and λ1, λ2, . . . λn are al-
gebraic (all of them cannot equal zero), then λ1 ln (α1) + λ2 ln (α2) + . . . λ2 ln (α2) is 0 or
transcendental, but if any λ is not rational, the form is transcendental.

Example. Let α1 = 2, α2 = 3 and λ1 = 1 and λ2 = −1, then we have:

ln (2)− ln (3)

Since we know this equation ̸= 0, then ln (2) − ln (3) must be transcendental by Baker’s
Theorem.

This theorem explores combinations of logarithms, and has a wide variety of applications in
addition to transcendence as well, and usually deals with the transcendence of combinations
of logarithmic function outputs. It also connects with the notion of proving irrationality
first to a considerable extent, because the fact that a number was irrational can be used
alongside Baker’s Theorem to confirm it’s transcendence. Some of these applications are
detailed below.

(1) Transcendence of combinations of logarithms and equations involving logarithms

(2) Diophantine Equations which involve variables in the exponent (such as ax− by = c),
which logarithms can help simplify.

(3) Linear Combinations involving logarithms and their potential results and implications

8. Unsolved Problems and Current Areas of Study

Using either, or a combination of any of the theorems presented in this paper gives us a
great way to classify a large range of numbers and categories of these numbers in combina-
tion. There is, however, a great deal we do not know about transcendental and irrational
numbers, including proofs of certain combinations of irrational numbers. Amongst these
are e + π, ee, eπ, and many more. Nevertheless, one interesting yet potentially significant
mathematical conjecture to consider is Schanuel’s.

This conjecture is extremely important to consider in the subject of transcendence because
of how it guarantees the transcendence of certain numbers, such as e + π which we do not
know at the moment. In fact, we do not even know if e+π is irrational, and its transcendence
could imply its irrationality.

What we do know at this time, is that at least one, if not both of e + π and eπ must
be irrational. If we construct a polynomial with irrational roots e and π, then it this implies
that at least one of the coefficients must be irrational. As illustrated below, we can see that
the coefficients are 1, e+ π and eπ. Since we know 1 is rational, at least one of e+ π and eπ
must be irrational.

(x− e)(x− π) = 0,



14 ASHVATH RAJESH

(1)x2 − (e+ π)x+ eπ.

If Schanuel’s Conjecture were verified to be true, we would be able to prove e + π’s tran-
scendence and confirm its irrationality.

8.1. Schanuel’s Conjecture. This conjecture proposed by Stephen Schanuel in the 1960s
has not been able to be proven or disproven to this day but uses elements of Gelfond–Schneider
and Lindemann–theorems to make a hypothesis that, if proven, could help prove the tran-
scendence of a myriad of numbers [9].

Conjecture 8.1. If we consider z1, z2, . . . zn, which are complex numbers linearly indepen-
dent on Q, and their exponentials, ez1 , ez2 , . . . ezn then, there are at least n algebraically
independent numbers in:

z1, z2, . . . zn, e
z1 , ez2 , . . . ezn .

In other words, the field extension Q(z1, z2, . . . zn, e
z1 , ez2 , . . . ezn), which has 2n terms, has

transcendence degree at least n on Q, provided that z1, z2, . . . zn has n terms that are complex
and linearly independent.

Definition 8.2 (Algebreic Independence). If a and b are algebraically independent, there is
no polynomial equation (with rational coefficients ̸= 0) that will vanish when evaluated at
these two numbers. In other words, algebraic independence is established when P (a, b) ̸= 0,
when P (x, y) is the polynomial equation unless all the coefficients are zero.

Conjecture 8.3. e+ π is irrational assuming Schanuel’s Conjecture is true.

Proof. Let z1 = 1 and z2 = iπ, and consider the set of these complex numbers and their ex-
ponentials: {1, iπ, eiπ, e1}. Simplifying using Euler’s Identity, we are left with {1, iπ,−1, e}.
By Schanuel’s Conjecture, at least 2 of the 4 elements must be algebraically independent.
Now let’s assume the contradiction that e+ π is algebraic. This implies that it is a solution
to a polynomial equation, when a0, a1, . . . an are rational coefficients.

an(e+ π)n + an−1(e+ π)n−1 + . . . a1(e+ π) + a0 = 0.

Now expanding the terms with b0, b1, . . . bn being the coefficients that we get from expanding,
we are left with:

(8.1) bn(π)
n + bn−1(e)

n + . . . b2(π) + b1(e) + b0 = 0.

This equation shows a polynomial that links e and π algebraically, showing that they are
not algebraically independent over Q. Now, examining the degree of transcendence, which
is the maximum number of terms in a set that are algebraically independent, we have:

(1) -1 and 1 do not contribute to the degree because they can be linked through a poly-
nomial equation (x2 − 1 = 0, for example)

(2) e and iπ do not contribute to the degree because of equation 8.1, which shows e and
π are linked through a polynomial.

This conclusion violates Schanuel’s Conjecture and shows that e and π must be algebraically
independent, to make the transcendence degree 2 (which is necessitated by the conjecture),
implying that e+ π is transcendental and in turn irrational. ■
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Remark 8.4. This also proves the algebraic independence of e and π, which has been an open
problem for decades. In other words, whether there exists a P (x, y) so that P (e, π) = 0 has
been speculated by mathematicians to not be possible, but it has never been proven.

This is just one example of the many ways conjectures such as that of Schanuel’s if proven,
could prove to be significant advances in the field of transcendental number theory and
address a wide range of unsolved problems.

9. Applications and Hypertranscendental Functions

Transcendental numbers have a multitude of applications; other than not being able to
make it a page in a mathematical paper without encountering one of these numbers, they also
play an essential role in real-world applications, which this section will address. The main
way of studying and representing these numbers is through transcendental functions. As
introduced earlier in the paper, some situations simply cannot be modeled by polynomials:
you’d either need irrational coefficients or an infinite number of terms, both of which are a
(usually) very large inconvenience and not a very reliable means of approximating a relation-
ship. It is for this reason mathematicians literally created these transcendental functions:
to be able to model these relationships with ease. We have already looked at a few, like
exponentials, trigonometric functions, and logarithms. Other important examples are those
of the error function, erf (x), and the Gamma function, Γ(x). These, however, are even more
unique, than regular transcendental functions, and are classified as Hypertranscendental [6]
or transcendentally transcendental functions, which go a step further in complexity.

Definition 9.1 (Hypertranscendental Functions). These equations are not solutions to any
algebraic differential equation with coefficients ∈ Z and initial conditions ∈ A.

The error function, denoted erf(x), represents a scaled version of the Gaussian Integral
and the curve of a Normal or Gaussian distribution. This curve is used in the context of
probability and statistics and is scaled up so that the area under the ”bell curve” from −∞
to ∞ is 1 (to represent 100% probability).

erf x =
2√
π

∫ x

0

e−x2

dx,

2√
π

∫ ∞

−∞
e−x2

dx ≈ 1.

This function is fundamental to the study of statistics and is used on an everyday basis to
calculate a variety of daily-life likelihoods, which goes to show the relevance of transcendental
numbers in the world. Outputs of these functions are still yet to be proved on their tran-
scendence, and mathematicians are working on proving a relation between equation outputs
of this type which could potentially increase our accuracy of probabilistic models [1].

Another non-mundane example of a transcendental function is that of the gamma function,
which is used to extend the definition of a factorial to complex numbers.

Γ(x) =

∫ ∞

0

tx−1e−xdx.
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This function also has extremely significant uses, such as being able to calculate factorials
of imaginary and non-whole numbers for higher-order mathematics and related fields such
as physics, but also to make probabilistic models in statistics.

Exploring these functions and their outputs gives us insight into some of the many things
we do not know about transcendental number theory, and also raises the question about
hypertranscendental numbers. The general consensus at the moment is that they do exist,
although none have been found or proven at the moment. Finding a potential hypertran-
scendental number could provide invaluable insight into the field of transcendental number
theory as well as our understanding of these hypertranscendental functions.

The multitude of questions that arise from this goes to show the importance of Schanuel’s
Conjecture once again because we can potentially use it (if verified) to prove that any al-
gebraic input a would yield a transcendental output for erf (a) or Γ(a) (provided a is not a
positive rational). This could provide insight into numbers such as Γ(1

5
), which is yet to be

proven transcendental. These functions could even be the gateway to our first mathemat-
ically proven hypertranscendental number, which could have drastic indications to mathe-
maticians as a whole. All in all, we still know very little about this field of study in a broader
sense, and it will be up to time, as well as our exploration of these fascinating problems and
functions, that will tell what the future holds.
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