Hausdorff Dimension [and Fractal](#page-31-0) Geometry

Aryaman Chandra

Hausdorff Dimension and Fractal Geometry

Aryaman Chandra

July 11, 2024

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Preliminaries: Fractal Dimension

Hausdorff Dimension [and Fractal](#page-0-0) Geometry

> Aryaman Chandra

Suppose the measured length of a coastline changes with the length of the measuring stick used

KORK EXTERNE PROVIDE

Preliminaries: Fractal Dimension

Hausdorff Dimension [and Fractal](#page-0-0) Geometry

Aryaman Chandra

Suppose the measured length of a coastline changes with the length of the measuring stick used

The fractal dimension of a coastline quantifies how the number of scaled measuring sticks required to measure the coastline changes with the scale applied to the stick

KORKARYKERKER OQO

Preliminaries: Fractal Dimension

Hausdorff Dimension [and Fractal](#page-0-0) Geometry

Aryaman

A fractal dimension is an index for characterizing fractal patterns or sets by quantifying their complexity as a ratio of the change in detail to the change in scale.

KORK ERKER ADAM ADA

Self Similarity

Hausdorff Dimension [and Fractal](#page-0-0) Geometry

Aryaman

Figure: Cantor Set

A self-similar object is exactly or approximately similar to a part of itself, where the whole has the same shape as one or more of its parts. Many objects in the real world, such as coastlines, exhibit statistical self-similarity, where parts of them show the same statistical properties at many scales.

Cantor Set

Hausdorff Dimension [and Fractal](#page-0-0) **Geometry**

Aryaman Chandra

The Cantor Set is an example of a self-similar object with immense importance in set theory and analysis.

- Start with the closed interval $[0, 1]$ on the real line.
- Divide it into three equal open subintervals.
- Remove the central open interval $I_1=\big(\frac{1}{3}\big)$ $\frac{1}{3}, \frac{2}{3}$ $\frac{2}{3}$:

$$
[0,1]-\mathbf{1}_1=\left[0,\frac{1}{3}\right]\cup\left[\frac{2}{3},1\right].
$$

Repeat this process indefinitely, removing the central **The State** thirds of each remaining interval.

Definition (Cantor Set)

The Cantor set C is the intersection of all these intervals:

$$
C=\bigcap_{k=0}^{\infty} C_k.
$$

Scaling

Hausdorff Dimension [and Fractal](#page-0-0) Geometry

> Aryaman Chandra

Definition (Scaling Rule)

Scaling in fractal geometry describes how measurements change relative to a scaling factor ε . For a structure occupying N units at scale ε , the relationship is:

$$
N=\varepsilon^{-D},
$$

KORKARYKERKER POLO

where D represents the fractal dimension.

Definitions

Hausdorff Dimension [and Fractal](#page-0-0) Geometry

Chandra

Metric Spaces Exterior Measure

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Metric Space

Hausdorff Dimension [and Fractal](#page-0-0) **Geometry**

Aryaman

Definition (Metric Space)

A metric space is an ordered pair (M, d) where M is a set and d is a metric on M , i.e., a function:

```
d: M \times M \rightarrow \mathbb{R}
```
satisfying the following properties:

Non-negativity: $d(x, y) \ge 0$ for all $x, y \in M$,

I Identity of indiscernibles: $d(x, y) = 0$ if and only if $x = y$,

KORK EXTERNE PROVIDE

- Symmetry: $d(x, y) = d(y, x)$ for all $x, y \in M$,
- Triangle inequality: $d(x, z) \le d(x, y) + d(y, z)$ for all $x, y, z \in M$.

Exterior Measure

Hausdorff Dimension [and Fractal](#page-0-0) Geometry

Aryaman

Definition (Exterior Measure)

If E is any subset of \mathbb{R}^d , the exterior measure $m^*(E)$ is defined as $\sqrt{ }$ \checkmark

$$
m^*(E)=\inf\left\{\sum_{j=1}^\infty|Q_j|\mid E\subseteq\bigcup_{j=1}^\infty Q_j\right\},\,
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

where the infimum is taken over all countable coverings $\{Q_j\}_{j=1}^\infty$ of E by closed cubes $Q_j\subseteq \mathbb{R}^d$.

Minkowski-Bouligand Dimension

Hausdorff Dimension [and Fractal](#page-0-0) Geometry

Aryaman Chandra

> The box-counting dimension is a way of determining the fractal dimension of a set S in a Euclidean space \mathbb{R}^n , or more generally in a metric space (X, d) .

> > **KORKARYKERKER POLO**

Hausdorff Dimension [and Fractal](#page-0-0) Geometry

Chandra

Imagine that the British coastline is placed on an evenly spaced grid.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Hausdorff Dimension [and Fractal](#page-0-0) Geometry

Chandra

Count the number of boxes that are required to cover the set.

メロトメ 御 トメ 君 トメ 君 トー 君

 2990

Hausdorff Dimension [and Fractal](#page-0-0) Geometry

Aryaman Chandra

The box-counting dimension is calculated by seeing how this number changes as we make the grid finer by applying the box-counting algorithm.

Hausdorff Dimension [and Fractal](#page-0-0) Geometry

Aryaman Chandra

Definition (Minkowski Dimension)

Suppose that $N(\epsilon)$ is the number of boxes of side length ϵ required to cover the set S. Then the box-counting dimension is defined as:

$$
\dim_{\text{\rm box}}(S):=\lim_{\epsilon\to 0}\frac{\log{\mathsf N}(\epsilon)}{\log\left(\frac{1}{\epsilon}\right)}
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Box Dimension of Sierpinski Triangle

Hausdorff Dimension [and Fractal](#page-0-0) **Geometry**

Aryaman

Figure: Sierpinski Triangle

- Start with a solid closed equilateral triangle S_0 with unit sides.
- In each iteration, remove the central open triangle from each remaining triangle.
- Repeat this process indefinitely to obtain a sequence of sets S_k .

Box Dimension of the Sierpinski Triangle

Hausdorff Dimension [and Fractal](#page-0-0) Geometry

Aryaman Chandra

 \blacksquare The box dimension d is given by the formula:

$$
d = \lim_{k \to \infty} \frac{\log N_k}{\log \left(\frac{1}{\epsilon_k}\right)}
$$

where
$$
N_k = 3^k
$$
 and $\epsilon_k = \left(\frac{1}{2}\right)^k$.

■ Substituting N_k and ϵ_k into the formula:

$$
d = \lim_{k \to \infty} \frac{\log 3^k}{\log (2^k)} = \frac{\log 3}{\log 2}
$$

 \blacksquare Thus, the box dimension of the Sierpinski triangle is:

$$
d=\frac{\log 3}{\log 2}\approx 1.58496
$$

KORKARYKERKER POLO

Hausdorff Dimension

Hausdorff Dimension [and Fractal](#page-0-0) **Geometry**

Aryaman

The Hausdorff Dimension is a way of determining the fractal dimension which is similar to the Box-counting dimension. However, it is more widely regarded because of its ability to calculate the roughness of more complex and less "well-behaved" sets.

KORK ERKER ADAM ADA

Hausdorff Dimension

Hausdorff Dimension [and Fractal](#page-0-0) Geometry

Aryaman Chandra

The Hausdorff dimension is calculated by covering the fractal S with open balls. It is calculated as follows.

KORKARYKERKER POLO

Hausdorff Measure

Hausdorff Dimension [and Fractal](#page-0-0) Geometry

Aryaman

Definition (Hausdorff Measure)

Let (X, ρ) be a metric space. For any subset $S \subseteq X$, the Hausdorff measure $\mathcal{H}^{\delta}_d(\mathcal{S})$ is defined as:

$$
\mathcal{H}_d^{\delta}(S) = \inf \left\{ \sum_{i=1}^{\infty} (\text{diam } U_i)^d : \bigcup_{i=1}^{\infty} U_i \supseteq S, \text{diam } U_i < \delta \right\},\
$$

where diam U denotes the diameter of the set U :

$$
\text{diam } U := \sup \{ \rho(x, y) : x, y \in U \},
$$

KORKARYKERKER POLO

with diam $\emptyset := 0$.

Lebesgue Outer Measure and Measurability

Hausdorff Dimension [and Fractal](#page-0-0) Geometry

Aryaman Chandra

Definition

For any interval $I = [a, b]$ or $I = (a, b)$ in \mathbb{R} , let $\ell(I) = b - a$ denote its length. For any subset $E \subseteq \mathbb{R}$, the Lebesgue outer measure $\lambda^*(E)$ is defined as:

$$
\lambda^*(E)=\inf\left\{\sum_{k=1}^\infty \ell(I_k): (I_k)_{k\in\mathbb{N}}\text{ is a sequence of open intervals with }E\subset \bigcup_{k=1}^\infty I_k\right\}
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Hausdorff d-Dimensional Measure

Hausdorff Dimension [and Fractal](#page-0-0) Geometry

Aryaman Chandra

First, an outer measure is constructed: Let X be a metric space. If $S \subset X$ and $d \in [0, \infty)$,

$$
H_{\delta}^d(S) = \inf \left\{ \sum_{i=1}^{\infty} (\text{diam } U_i)^d : \bigcup_{i=1}^{\infty} U_i \supseteq S, \text{diam } U_i < \delta \right\},
$$

where the infimum is taken over all countable covers U of S.

KORK STRAIN A STRAIN A COLLEGE

Hausdorff d-Dimensional Measure

Hausdorff Dimension [and Fractal](#page-0-0) Geometry

Aryaman

First, an outer measure is constructed: Let X be a metric space. If $S \subset X$ and $d \in [0, \infty)$,

$$
H^d_{\delta}(S) = \inf \left\{ \sum_{i=1}^{\infty} (\text{diam } U_i)^d : \bigcup_{i=1}^{\infty} U_i \supseteq S, \text{diam } U_i < \delta \right\},\
$$

where the infimum is taken over all countable covers U of S.

Definition (Hausdorff Dimension)

The Hausdorff d-dimensional outer measure is then defined as

$$
\mathcal{H}^d(S) = \lim_{\delta \to 0} H^d_{\delta}(S),
$$

KORK ERKER ADAM ADA

and the restriction of this mapping to measurable sets justifies it as a measure, called the d-dimensional Hausdorff Measure.

Menger Sponge Construction

Hausdorff Dimension [and Fractal](#page-0-0) **Geometry**

Aryaman

The Menger sponge M is constructed by iteratively removing smaller cubes from a larger cube, following a recursive self-similar pattern. Each face of the cube is divided into 9 smaller squares, with the central square and smaller squares removed at each iteration.

Figure: Menger Sponge

KORKARYKERKER POLO

Hausdorff Dimension of the Menger Sponge

Hausdorff Dimension [and Fractal](#page-0-0) Geometry

Aryaman

To calculate the Hausdorff dimension D_H of the Menger sponge, we use the concept of Hausdorff measure. First Iteration:

At the first iteration, after removing central and smaller cubes:

$$
\mathcal{H}^s(M_1)=\left(\frac{8}{27}\right)^s\mathcal{H}^s([0,1]^3),
$$

where $\mathcal{H}^{s}([0,1]^{3})$ is the Lebesgue measure of the unit cube in \mathbb{R}^3 .

Recursive Definition:

For subsequent iterations, the Hausdorff measure $\mathcal{H}^{s}(M_k)$ is recursively defined by:

$$
\mathcal{H}^{s}(M_{k}) = \left(\frac{8}{27}\right)^{s} \mathcal{H}^{s}(M_{k-1}).
$$

Hausdorff Dimension

Hausdorff Dimension [and Fractal](#page-0-0) Geometry

Aryaman Chandra

Hausdorff Dimension: The Hausdorff dimension D_H of the Menger sponge is the unique value s for which $H^s(M) > 0$ and $\mathcal{H}^{\mathcal{S}}(M)<\infty$:

$$
D_H = \lim_{k \to \infty} \frac{\log \left(\frac{8}{27}\right)^k \mathcal{H}^s([0,1]^3)}{\log \left(\frac{1}{3}\right)^k}.
$$

Simplifying,

$$
D_H = \frac{\log 20}{\log 3}.
$$

Therefore, the Hausdorff dimension D_H of the Menger sponge is $\frac{\log 20}{\log 3}$.

KORKARYKERKER POLO

Brownian Motion

Hausdorff Dimension [and Fractal](#page-0-0) Geometry

Chandra

Stochastic Process

Random Variables

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Brownian Motion

Hausdorff Dimension [and Fractal](#page-0-0) **Geometry**

Aryaman

Definition (Stochastic Process)

A stochastic process $\{X(t), t \in T\}$ is a collection of random variables indexed by a parameter set T , often representing time. Each $X(t)$ is a random variable defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

KORKARYKERKER POLO

Brownian Motion

Hausdorff Dimension [and Fractal](#page-0-0) Geometry

Aryaman

Definition (Random Variables)

A random variable X is a measurable function from a probability space (Ω, \mathcal{F}, P) to the real numbers $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, where Ω is the sample space, $\mathcal F$ is a σ -algebra of events, and P is a probability measure. Specifically, for Brownian motion $B(t)$, each $B(t)$ for $t \geq 0$ is a random variable.

KORKAR KERKER SAGA

Hausdorff Dimension of Brownian Motion

Hausdorff Dimension [and Fractal](#page-0-0) Geometry

Aryaman Chandra

Definition (One-dimensional Brownian Motion)

A one-dimensional Brownian motion $B(t)$ is a stochastic process defined on $[0, \infty)$ such that:

$$
B(0)=0,
$$

and for any $t > 0$, $B(t)$ has:

- \blacksquare Independent increments,
- **Normally distributed increments with mean 0 and variance** t,

KORKARYKERKER POLO

■ Continuous paths.

Hausdorff Dimension of Brownian Motion

Hausdorff Dimension [and Fractal](#page-0-0) Geometry

> Aryaman Chandra

Let μ_B denote the measure defined by $\mu_B(A) = m(B^{-1}(A)) \cap [0,1]$, or equivalently,

$$
\int_{\mathbb{R}^n} f(x) d\mu_B(x) = \int_0^1 f(B(t)) dt
$$

for all bounded measurable functions f . Our goal is to show that for any $0 < \alpha < 2$,

$$
E[I_{\alpha}(\mu_B)] = E\left[\int\int \frac{1}{|x-y|^{\alpha}} d\mu_B(x) d\mu_B(y)\right] < \infty.
$$

KORK EXTERNE PROVIDE

Hausdorff Dimension of Brownian Motion

Hausdorff Dimension [and Fractal](#page-0-0) Geometry

> Aryaman Chandra

Evaluating the expectation of increments yields:

$$
E[|B(t)-B(s)|^{-\alpha}] = |t-s|^{-\alpha/2} \int_{\mathbb{R}^n} c_n |z|^n e^{-|z|^2/2} dz,
$$

where c_n is a constant dependent on *n*. Simplifying,

$$
E[l_{\alpha}(\mu_B)] \leq 2k \int_0^1 u^{-\alpha/2} du < \infty.
$$

Thus, $I_{\alpha}(\mu_B) < \infty$ almost surely. By the energy method, we infer that dim Range $>\alpha$ almost surely. Letting $\alpha \rightarrow 2$ provides the lower bound on the range. Since the graph can be projected onto the range by a Lipschitz map, the graph dimension is at least the range dimension. Therefore, if $n \geq 2$, then almost surely dim Graph ≥ 2 .