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Preliminaries: Fractal Dimension

Suppose the measured length
of a coastline changes with the
length of the measuring stick

used

The fractal dimension of a
coastline quantifies how the
number of scaled measuring
sticks required to measure the
coastline changes with the scale

applied to the stick
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Preliminaries: Fractal Dimension

A fractal dimension is an index for characterizing fractal
patterns or sets by quantifying their complexity as a ratio of
the change in detail to the change in scale.
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Self Similarity

Figure: Cantor Set

A self-similar object is exactly or approximately similar to a part
of itself, where the whole has the same shape as one or more of
its parts. Many objects in the real world, such as coastlines,
exhibit statistical self-similarity, where parts of them show the
same statistical properties at many scales.
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Cantor Set

The Cantor Set is an example of a self-similar object with
immense importance in set theory and analysis.

Start with the closed interval [0, 1] on the real line.
Divide it into three equal open subintervals.
Remove the central open interval I1 =

(
1
3 ,

2
3

)
:

[0, 1]− I1 =

[
0,

1

3

]
∪
[
2

3
, 1

]
.

Repeat this process indefinitely, removing the central
thirds of each remaining interval.

Definition (Cantor Set)

The Cantor set C is the intersection of all these intervals:

C =
∞⋂
k=0

Ck .
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Scaling

Definition (Scaling Rule)

Scaling in fractal geometry describes how measurements
change relative to a scaling factor ε. For a structure occupying
N units at scale ε, the relationship is:

N = ε−D ,

where D represents the fractal dimension.
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Definitions

Metric Spaces

Exterior Measure
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Metric Space

Definition (Metric Space)

A metric space is an ordered pair (M, d) where M is a set and
d is a metric on M, i.e., a function:

d : M ×M → R

satisfying the following properties:

Non-negativity: d(x , y) ≥ 0 for all x , y ∈ M,

Identity of indiscernibles: d(x , y) = 0 if and only if x = y ,

Symmetry: d(x , y) = d(y , x) for all x , y ∈ M,

Triangle inequality: d(x , z) ≤ d(x , y) + d(y , z) for all
x , y , z ∈ M.
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Exterior Measure

Definition (Exterior Measure)

If E is any subset of Rd , the exterior measure m∗(E ) is defined
as

m∗(E ) = inf


∞∑
j=1

|Qj | | E ⊆
∞⋃
j=1

Qj

 ,

where the infimum is taken over all countable coverings
{Qj}∞j=1 of E by closed cubes Qj ⊆ Rd .
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Minkowski-Bouligand Dimension

The box-counting dimension is a way of determining the fractal
dimension of a set S in a Euclidean space Rn, or more generally
in a metric space (X , d).
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Box-Counting Dimension

Imagine that the British coastline is placed on an evenly spaced
grid.
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Box-Counting Dimension

Count the number of boxes that are required to cover the set.
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Box-Counting Dimension

The box-counting dimension is calculated by seeing how this
number changes as we make the grid finer by applying the

box-counting algorithm.
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Box-Counting Dimension

Definition (Minkowski Dimension)

Suppose that N(ϵ) is the number of boxes of side length ϵ
required to cover the set S . Then the box-counting dimension
is defined as:

dimbox(S) := lim
ϵ→0

logN(ϵ)

log
(
1
ϵ

)
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Box Dimension of Sierpinski Triangle

Figure: Sierpinski Triangle

Start with a solid closed equilateral triangle S0 with unit
sides.

In each iteration, remove the central open triangle from
each remaining triangle.

Repeat this process indefinitely to obtain a sequence of
sets Sk .
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Box Dimension of the Sierpinski Triangle

The box dimension d is given by the formula:

d = lim
k→∞

logNk

log
(

1
ϵk

)
where Nk = 3k and ϵk =

(
1
2

)k
.

Substituting Nk and ϵk into the formula:

d = lim
k→∞

log 3k

log (2k)
=

log 3

log 2

Thus, the box dimension of the Sierpinski triangle is:

d =
log 3

log 2
≈ 1.58496
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Hausdorff Dimension

The Hausdorff Dimension is a way of determining the fractal
dimension which is similar to the Box-counting dimension.
However, it is more widely regarded because of its ability to
calculate the roughness of more complex and less
“well-behaved” sets.
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Hausdorff Dimension

The Hausdorff dimension is calculated by covering the fractal S
with open balls. It is calculated as follows.
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Hausdorff Measure

Definition (Hausdorff Measure)

Let (X , ρ) be a metric space. For any subset S ⊆ X , the Hausdorff
measure Hδ

d(S) is defined as:

Hδ
d(S) = inf

{ ∞∑
i=1

(diamUi )
d :

∞⋃
i=1

Ui ⊇ S , diamUi < δ

}
,

where diamU denotes the diameter of the set U:

diamU := sup{ρ(x , y) : x , y ∈ U},

with diam ∅ := 0.
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Lebesgue Outer Measure and Measurability

Definition

For any interval I = [a, b] or I = (a, b) in R, let ℓ(I ) = b − a denote its
length. For any subset E ⊆ R, the Lebesgue outer measure λ∗(E) is
defined as:

λ∗(E) = inf

{
∞∑
k=1

ℓ(Ik) : (Ik)k∈N is a sequence of open intervals with E ⊂
∞⋃
k=1

Ik

}
.
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Hausdorff d-Dimensional Measure

First, an outer measure is constructed: Let X be a metric space. If S ⊂ X
and d ∈ [0,∞),

Hd
δ (S) = inf

{
∞∑
i=1

(diamUi )
d :

∞⋃
i=1

Ui ⊇ S , diamUi < δ

}
,

where the infimum is taken over all countable covers U of S .

Definition (Hausdorff Dimension)

The Hausdorff d-dimensional outer measure is then defined as

Hd(S) = lim
δ→0

Hd
δ (S),

and the restriction of this mapping to measurable sets justifies it as a
measure, called the d-dimensional Hausdorff Measure.
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Menger Sponge Construction

The Menger sponge M is constructed by iteratively removing
smaller cubes from a larger cube, following a recursive
self-similar pattern. Each face of the cube is divided into 9
smaller squares, with the central square and smaller squares
removed at each iteration.

Figure: Menger Sponge
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Hausdorff Dimension of the Menger Sponge

To calculate the Hausdorff dimension DH of the Menger
sponge, we use the concept of Hausdorff measure.
First Iteration:
At the first iteration, after removing central and smaller cubes:

Hs(M1) =

(
8

27

)s

Hs([0, 1]3),

where Hs([0, 1]3) is the Lebesgue measure of the unit cube in
R3.
Recursive Definition:
For subsequent iterations, the Hausdorff measure Hs(Mk) is
recursively defined by:

Hs(Mk) =

(
8

27

)s

Hs(Mk−1).
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Hausdorff Dimension

Hausdorff Dimension: The Hausdorff dimension DH of the
Menger sponge is the unique value s for which Hs(M) > 0 and
Hs(M) < ∞:

DH = lim
k→∞

log
(

8
27

)k Hs([0, 1]3)

log
(
1
3

)k .

Simplifying,

DH =
log 20

log 3
.

Therefore, the Hausdorff dimension DH of the Menger sponge
is log 20

log 3 .
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Brownian Motion

Stochastic Process

Random Variables
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Brownian Motion

Definition (Stochastic Process)

A stochastic process {X (t), t ∈ T} is a collection of random
variables indexed by a parameter set T , often representing
time. Each X (t) is a random variable defined on a probability
space (Ω,F ,P).
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Brownian Motion

Definition (Random Variables)

A random variable X is a measurable function from a
probability space (Ω,F ,P) to the real numbers (R,B(R)),
where Ω is the sample space, F is a σ-algebra of events, and P
is a probability measure. Specifically, for Brownian motion
B(t), each B(t) for t ≥ 0 is a random variable.
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Hausdorff Dimension of Brownian Motion

Definition (One-dimensional Brownian Motion)

A one-dimensional Brownian motion B(t) is a stochastic
process defined on [0,∞) such that:

B(0) = 0,

and for any t > 0, B(t) has:

Independent increments,

Normally distributed increments with mean 0 and variance
t,

Continuous paths.
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Hausdorff Dimension of Brownian Motion

Let µB denote the measure defined by
µB(A) = m(B−1(A)) ∩ [0, 1], or equivalently,∫

Rn

f (x) dµB(x) =

∫ 1

0
f (B(t)) dt

for all bounded measurable functions f . Our goal is to show
that for any 0 < α < 2,

E [Iα(µB)] = E

[∫ ∫
1

|x − y |α
dµB(x) dµB(y)

]
< ∞.
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Hausdorff Dimension of Brownian Motion

Evaluating the expectation of increments yields:

E [|B(t)− B(s)|−α] = |t − s|−α/2

∫
Rn

cn|z |ne−|z|2/2 dz ,

where cn is a constant dependent on n. Simplifying,

E [Iα(µB)] ≤ 2k

∫ 1

0
u−α/2 du < ∞.

Thus, Iα(µB) < ∞ almost surely. By the energy method, we
infer that dim Range > α almost surely. Letting α → 2
provides the lower bound on the range. Since the graph can be
projected onto the range by a Lipschitz map, the graph
dimension is at least the range dimension. Therefore, if n ≥ 2,
then almost surely dim Graph ≥ 2.


