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Abstract

“Clouds are not spheres, mountains are not cones, coastlines are not circles, and
bark is not smooth, nor does lightning travel in a straight line”[1] Fractals, with
their intricate self-similar structures, challenge traditional geometric concepts. This
paper delves into the power of the Hausdorff Dimension, a tool that unveils the
unique dimensional fingerprint of a fractal. By examining the complex nature of
these irregular forms, we reveal hidden dimensions that defy conventional geometry.
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1 Introduction

Fractal geometry is a rebellion against classical calculus. While classical calculus adeptly
handles smooth curves and well-behaved functions, the discovery of fractals introduces
complex shapes that defy these traditional tools. Fractals are self-similar shapes with
intricate details at every scale, characterized by fractional dimensions rather than integer
ones. This paper aims to quantify how to calculate the dimension of a fractal, known as
the fractal dimension. We first explore the concepts of self-similarity and scaling, funda-
mental to understanding fractals. Next, we discuss the Minkowski-Bouligand dimension
(box-counting dimension), which provides an intuitive method for calculating fractal di-
mensions by covering the fractal with a grid of boxes. We then move on to the Hausdorff
dimension, a more rigorous approach that uses Hausdorff measure to extend the idea of
length, area, and volume to non-integer dimensions.

2 Preliminaries

2.1 Metric Spaces

x y

z

d(x, z) d(y, z)

d(x, y)

Definition 2.1 (Metric Space). A metric space is an ordered pair (M,d) where M is
a set and d is a metric on M , satisfying:

• Non-negativity: d(x, y) ≥ 0 for all x, y ∈ M ,

• Identity of indiscernibles: d(x, y) = 0 if and only if x = y,

• Symmetry: d(x, y) = d(y, x) for all x, y ∈ M ,

• Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ M .

2.2 Limit of Sets

Definition 2.2 (Limit Supremum of Sets). The limit supremum or outer limit of a
sequence A1, A2, A3, . . . of subsets of a set X is defined as:

lim sup
n→∞

An =
∞⋂
n=1

∞⋃
m=n

Am =
∞⋂
n=1

(An ∪ An+1 ∪ · · · ).

It consists of all points x that are in infinitely many of these sets. That is, x ∈
lim supn→∞An if and only if there exists an infinite subsequence An1 , An2 , . . . (where
n1 < n2 < · · ·) of sets that all contain x; that is, such that

x ∈ An1 ∩ An2 ∩ · · · .

2



Definition 2.3 (Limit Infimum of Sets). The limit infimum or inner limit of a sequence
A1, A2, A3, . . . of subsets of a set X is defined as:

lim inf
n→∞

An =
∞⋃
n=1

∞⋂
m=n

Am =
∞⋃
n=1

(An ∩ An+1 ∩ · · · ).

It consists of all points that are in all but finitely many of these sets. That is, x ∈
lim infn→∞ An if and only if there exists an index N ∈ N such that AN , AN+1, . . . all
contain x; that is, such that

x ∈ AN ∩ AN+1 ∩ · · · .

Lemma 2.4. The inner limit is always a subset of the outer limit:

lim inf
n→∞

An ⊆ lim sup
n→∞

An.

Proposition 2.5. If the limit supremum and limit infimum of a sequence of sets are
equal, then the limit of the sequence exists and is equal to this common set.

Remark. The limit supremum and limit infimum provide important tools in measure the-
ory and probability, particularly in defining and understanding almost sure convergence.

Corollary 2.6. If An ⊆ An+1 for all n, then

lim
n→∞

An =
∞⋃
n=1

An.

2.3 σ-algebra and Borel subsets

Definition 2.7 (σ-algebra). Let X be some set. A subset Σ ⊆ P(X) is called a σ-algebra
if it satisfies the following three properties:

1. X ∈ Σ, and X is considered to be the universal set.

2. Σ is closed under complementation: If A ∈ Σ, then X \ A ∈ Σ.

3. Σ is closed under countable unions: If A1, A2, A3, . . . ∈ Σ, then
⋃∞

n=1An ∈ Σ.

Definition 2.8 (Borel Sets). The Borel sets on R are defined as follows:

1. Open Sets: Every open set in R is a Borel set.

2. Closed Sets: Every closed set in R is a Borel set.

3. Countable Unions: If {En}∞n=1 is a sequence of Borel sets, then
⋃∞

n=1 En is also
a Borel set.

4. Complements: If E is a Borel set, then R \ E is also a Borel set.

Lemma 2.9. Every open interval (a, b) ⊆ R is a Borel set.

Proof. Open intervals are open sets by definition, and by Property 1 of Borel sets, every
open set is a Borel set.

Proposition 2.10. The collection of Borel sets forms a σ-algebra on R.
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Proof. To show that the Borel sets form a σ-algebra, we need to verify that they satisfy
the properties of a σ-algebra:

1. The whole space R and the empty set ∅ are Borel sets (trivially true from the
definitions).

2. Borel sets are closed under countable unions (Property 3).

3. Borel sets are closed under complements (Property 4).

Therefore, the Borel sets indeed form a σ-algebra on R.

Corollary 2.11. Every closed interval [a, b] ⊆ R is a Borel set.

Proof. Closed intervals are closed sets, and by Property 2 of Borel sets, every closed set
is a Borel set.

Remark. The construction of Borel sets and their σ-algebraic properties provide a foun-
dational structure in measure theory and analysis, essential for defining measurable func-
tions and constructing Lebesgue measure.

2.4 Open, Closed, and Compact Sets

Definition 2.12 (Open Balls). The open ball in Rd centered at x and of radius r is
defined by

Br(x) = {y ∈ Rd | |y − x| < r}.

A subset E ⊆ Rd is open if for every x ∈ E, there exists r > 0 such that Br(x) ⊆ E.
A set E ⊆ Rd is closed if its complement is open.
A set E ⊆ Rd is bounded if it is contained in some ball of finite radius. A bounded

set is compact if it is also closed.

2.5 Rectangles and Cubes

Definition 2.13 (Rectangle). A (closed) rectangle R in Rd is given by the product of
d one-dimensional closed and bounded intervals

R = [a1, b1, ]× [a2, b2]× · · · × [ad, bd],

where aj ≥ bj are real numbers, j = 1, 2, . . . , d. In other words, we have

R = {(x1, . . . , xd) ∈ Rd : aj ≤ xj ≤ bjfor allj = 1, 2, . . . , d}.

Remark. In the given definition, a rectangle is closed and has sides parallel to the coor-
dinate axis. In R, the rectangles are precisely the closed and bounded intervals, while in
R2 they are the usual four-sided rectangles. In R3 they are closed parallelepipeds.

Here, the lengths of the sides of the rectangle R are b1 − a1, . . . , bd − ad.

Notation 1. The volume of the rectangle R is denoted by |R|.

Definition 2.14 (Volume of Rectangle).

|R| = (b1 − a1) . . . (bd − ad).
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Lemma 2.15. When d = 1 the “volume” equals length, and when d = 2 it equals area.

Definition 2.16 (Open Rectangle). An open rectangle in Rd is the Cartesian product
of open intervals:

R = (a1, b1)× (a2, b2)× · · · × (ad, bd),

where ai < bi for each i.

Notation 2. The interior of an open rectangle R is denoted as:

int(R) = (a1, b1)× (a2, b2)× · · · × (ad, bd).

Definition 2.17 (Cube). A cube in Rd is a rectangle Q for which the lengths of its sides
are equal, i.e., bi − ai = ℓ for all i, where ℓ is the side length.

Notation 3. The volume of Q is denoted as |Q|.

Definition 2.18 (Volume of a Cube). If Q ⊂ Rd is a cube with side length ℓ is:

|Q| = ℓd.

Definition 2.19 (Almost Disjoint Union of Rectangles). A union of rectanglesR1, R2, . . . , Rn

in Rd is said to be almost disjoint if the interiors of these rectangles are pairwise disjoint.

2.6 Exterior Measure

A

B

m∗(A)

ϵ

Definition 2.20 (Exterior Measure). For any subset E ⊆ Rd, the exterior measure
m∗(E) is defined as

m∗(E) = inf

{
∞∑
j=1

|Qj| | E ⊆
∞⋃
j=1

Qj

}
,

where the infimum is taken over all countable coverings {Qj}∞j=1 of E by closed cubes
Qj ⊆ Rd.

Example 2.21. The exterior measure of a point is zero. This becomes evidently clear
when we observe that a point is actually a cube with no volume, and which covers itself.
Hence, the exterior measure of the empty set is also zero.

Example 2.22. The exterior measure of Rd is infinite. This follows from the fact that
any covering of Rd is also a covering of any cube Q ⊂ Rd, hence |Q| ≤ m∗(Rd). Since Q
can have arbitrary large volume, we must have m∗(Rd) = ∞.

Observation 2.1 (Monotonicity). If E1 ⊂ E2, then m∗(E1) ≤ m∗(E2).
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This follows once we observe that any covering of E2 by a countable collection of
cubes is also a covering of E1. In particular, monotonicity implies that every bounded
subset of Rd has finite exterior measure.

Observation 2.2 (Countable sub-additivity). If E =
⋃∞

j=1Ej, thenm∗(E) ≤
∑∞

j=1m
∗(Ej).

Given E =
⋃∞

j=1Ej, where Ej are subsets of Rd, we want to show that m∗(E) ≤∑∞
j=1 m

∗(Ej).
By the definition of exterior measure m∗(E), for any ε > 0, there exists a countable

collection of cubes {Qj,k}∞k=1 covering E such that

∞∑
k=1

|Qj,k| ≤ m∗(Ej) +
ε

2j
for each j,

where |Qj,k| denotes the volume of cube Qj,k.
Since E ⊆

⋃∞
j=1 Ej, any covering of E by cubes is also a covering of Ej for each j.

Therefore, we have:

m∗(E) ≤
∞∑
j=1

∞∑
k=1

|Qj,k| ≤
∞∑
j=1

(
m∗(Ej) +

ε

2j

)
.

As ε > 0 was arbitrary, we can choose ε → 0, yielding:

m∗(E) ≤
∞∑
j=1

m∗(Ej).

Therefore, we have shown that m∗(E) ≤
∑∞

j=1 m
∗(Ej), which completes the proof.

Observation 2.3. If E ⊆ Rd, then m∗(E) = infm∗(O), where the infimum is taken over
all open sets O containing E.

By definition, m∗(E) is the exterior measure of E. For any open set O ⊇ E, we have
E ⊆ O, and therefore m∗(E) ≤ m∗(O). This implies that m∗(E) is a lower bound for
m∗(O) over all such open sets O.

By definition, m∗(E) is the exterior measure of E. For any open set O ⊇ E, we have
E ⊆ O, and therefore m∗(E) ≤ m∗(O). This implies that m∗(E) is a lower bound for
m∗(O) over all such open sets O.

To show that m∗(E) is the greatest lower bound, suppose m∗(E) = α. Then for any
ϵ > 0, there exists a covering of E by open cubes {Qj} such that

∑
|Qj| ≤ α + ϵ. Since

each cube Qj can be approximated from the inside by an open set Oj with

(m∗(Oj) ≤ |Qj|+ ϵ

Observation 2.4. If E = E1 ∪ E2 and d(E1, E2) > 0, then m∗(E) = m∗(E1) +m∗(E2).

Since E1 and E2 are disjoint sets (d(E1, E2) > 0), any covering of E by open sets
must consist of coverings of E1 and E2 separately. Therefore, the exterior measure of E
is equal to the sum of the exterior measures of E1 and E2:

m∗(E) = infm∗(O) where O covers E.
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Since E = E1 ∪E2, any such covering O can be decomposed into coverings of E1 and E2:

m∗(O) ≥ m∗(E1) +m∗(E2).

Therefore, taking the infimum over all such coverings O gives us:

m∗(E) ≥ m∗(E1) +m∗(E2).

Conversely, E1 ∪ E2 itself is an open covering of E, hence:

m∗(E) ≤ m∗(E1) +m∗(E2).

Combining both inequalities, we conclude:

m∗(E) = m∗(E1) +m∗(E2).

Observation 2.5. If E =
⋃∞

j=1Qj, where Qj are almost disjoint cubes, then

m∗(E) =
∞∑
j=1

|Qj|.

Since Qj are almost disjoint cubes, the exterior measure of E is the sum of the volumes
of these cubes:

m∗(E) = infm∗(O) where O covers E.

Any open cover O of E must cover each Qj separately. Therefore,

m∗(O) ≥
∞∑
j=1

|Qj|.

Taking the infimum over all such coverings O gives us:

m∗(E) ≥
∞∑
j=1

|Qj|.

Conversely, {Qj} itself is an open covering of E, hence:

m∗(E) ≤
∞∑
j=1

|Qj|.

Combining both inequalities, we conclude:

m∗(E) =
∞∑
j=1

|Qj|.
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2.7 Lebesgue Measure

Definition 2.23 (Lebesgue Measure). A subset E ⊆ Rd is Lebesgue measurable if for
any ϵ > 0, there exists an open set O with E ⊆ O and m∗(O − E) ≤ ϵ. The Lebesgue
measure m(E) of a measurable set E is defined by m(E) = m∗(E).

Definition 2.24 (Lebesgue Outer Measure). For any subset E ⊆ Rd, the Lebesgue
outer measure λ∗(E) is defined as

λ∗(E) = inf

{
∞∑
k=1

ℓ(Ik) : (Ik)k∈N is a sequence of open intervals with E ⊆
∞⋃
k=1

Ik

}
,

where ℓ(Ik) denotes the length of interval Ik in R.

Property 2.1. Every open set in Rdismeasurable.

Property 2.2. If m∗(E) = 0, then E is measurable. In particular, if F is a subset of a
set of exterior measure 0, then F is measurable.

Proof. We saw, in Observation 3 of the exterior measure, for every ϵ > 0 there exists
an open set O with E ⊂ O and m∗(O) ≤ ϵ. Since (O − E) ⊂ O, monotonicity implies
m∗(O − E) ≤ ϵ, as we had originally desired.

Property 2.3. A countable union of measurable sets is measurable

Proof. Let {En}∞n=1 be a sequence of measurable sets. This means that each set En is
measurable.

To show that
⋃∞

n=1En is measurable, consider any subset A ⊆ R. We want to show
that

⋃∞
n=1En ∩ A is measurable.

Since each En is measurable, for each n, the set En ∩ A is also measurable because
the intersection of a measurable set with any subset of R is measurable.

Now,
⋃∞

n=1 En ∩ A =
⋃∞

n=1(En ∩ A). This is a countable union of measurable sets
(since each En ∩ A is measurable), and hence

⋃∞
n=1 En ∩ A is measurable.

Since A ⊆ R was arbitrary, we conclude that
⋃∞

n=1En is measurable.

Property 2.4. Closed sets are measurable.

Proof. Let F ⊆ R be a closed set. We want to show that F is measurable.
Recall that a set is measurable if and only if for every subset A ⊆ R, the intersection

F ∩ A is measurable.
Consider any subsetA ⊆ R. Since F is closed, its complement R\F is open. Therefore,

F ∩ A = A \ (R \ F ).
Now, A\(R\F ) is the difference of a set A and an open set R\F , which is measurable

because the difference of a set and an open set is measurable.
Thus, F ∩ A is measurable for any subset A ⊆ R.
Therefore, by definition, F is measurable.

Property 2.5. The complement of a measurable set is measurable.

8



Proof. Let E ⊆ R be a measurable set. We want to show that its complement, R \E, is
measurable.

Recall that a set is measurable if and only if for every subset A ⊆ R, the intersection
E ∩ A is measurable.

Consider any subset A ⊆ R. We analyze the intersection of R \ E with A:

(R \ E) ∩ A = A \ (E ∩ A).

Since E is measurable, E∩A is also measurable. Therefore, A\ (E∩A) is measurable
because it is the difference of the set A and the measurable set E ∩ A.

Thus, (R \ E) ∩ A is measurable for any subset A ⊆ R.
Therefore, by definition, R \ E is measurable.

Property 2.6. A countable intersection of measurable sets is measurable.

Proof. Let {En}∞n=1 be a sequence of measurable sets. We want to show that
⋂∞

n=1En is
measurable.

Recall that a set E is measurable if and only if for every subset A ⊆ R, the intersection
E ∩ A is measurable.

Consider any subset A ⊆ R. We analyze the intersection of
⋂∞

n=1 En with A:(
∞⋂
n=1

En

)
∩ A =

∞⋂
n=1

(En ∩ A).

Since each En is measurable, by the lemma on measurability and set operations,
En ∩ A is measurable for each n. Therefore,

⋂∞
n=1(En ∩ A) is also measurable as a

countable intersection of measurable sets.
Thus, (

⋂∞
n=1En) ∩ A is measurable for any subset A ⊆ R.

Therefore, by definition,
⋂∞

n=1En is measurable.

2.8 Brownian Motion

Definition 2.25 (Stochastic Process). A stochastic process {X(t), t ∈ T} is a collection
of random variables indexed by a parameter set T , often representing time. Each X(t) is
a random variable defined on a probability space (Ω,F ,P).

Definition 2.26 (Random Variables). A random variable X is a measurable function
from a probability space (Ω,F , P ) to the real numbers (R,B(R)), where Ω is the sample
space, F is a σ-algebra of events, and P is a probability measure. Specifically, for
Brownian motion B(t), each B(t) for t ≥ 0 is a random variable satisfying the following
properties:

• Initial Condition: B(0) = 0 almost surely.

• Independent Increments: For any 0 ≤ t1 < t2 < · · · < tn, the increments
B(t2)−B(t1), B(t3)−B(t2), . . . , B(tn)−B(tn−1) are independent random variables.

• Normally Distributed Increments: For any 0 ≤ s < t, the increment B(t) −
B(s) is normally distributed with mean 0 and variance t − s, i.e., B(t) − B(s) ∼
N (0, t− s).

• Continuous Paths: The function t 7→ B(t) is almost surely continuous.
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3 Fractal Dimension

A fractal dimension is an index for characterizing fractal patterns or sets by quantifying
their complexity as a ratio of the change in detail to the change in scale.

3.1 Self-similar Shapes

A self-similar object is exactly or approximately similar to a part of itself, where the
whole has the same shape as one or more of its parts. Many objects in the real world,
such as coastlines, exhibit statistical self-similarity, where parts of them show the same
statistical properties at many scales.

3.1.1 Cantor Set

Figure 1: Cantor Set [2]

The Cantor set is of paramount importance in set theory and analysis. It can be de-
fined and constructed in a plethora of ways. While Cantor’s original definition was purely
abstract, the most intuitive approach is the “middle-thirds” or ternary construction:

• Start with the closed interval [0, 1] on the real line.

• Divide it into three equal open subintervals.

• Remove the central open interval I1 =
(
1
3
, 2
3

)
:

[0, 1]− I1 =

[
0,

1

3

]
∪
[
2

3
, 1

]
.

• Repeat this process indefinitely, removing the central thirds of each remaining in-
terval.

Definition 3.1 (Cantor Set). The Cantor set C is the intersection of all these intervals:

C =
∞⋂
k=0

Ck.

Remark. A Cantor set C is measurable and has exterior measure 0.
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Figure 2: Sierpinski Triangle [3]

3.1.2 Sierpinski Triangle

The Sierpinski triangle is another example of a self-similar structure. It is constructed
iteratively as follows:

• Start with a solid closed equilateral triangle S0 with unit sides.

• In each iteration, remove the central open triangle from each remaining triangle.

• Repeat this process indefinitely to obtain a sequence of sets Sk.

Definition 3.2 (Sierpinski Triangle). The Sierpinski triangle S is the limit of this itera-
tive process:

S =
∞⋂
k=0

Sk.

3.1.3 Formal Definition of Self-Similarity

Definition 3.3 (Self-Similarity). A compact topological space X is self-similar if there
exists a finite set S indexing a set of non-surjective homeomorphisms {fs : s ∈ S} such
that

X =
⋃
s∈S

fs(X).

This structure L = (X,S, {fs : s ∈ S}) defines X as self-similar within some larger
space Y .

3.2 Scaling

Fractals exhibit scaling properties that differ from traditional geometric shapes, revealing
complexity at all scales.

Definition 3.4 (Scaling Rule). Scaling in fractal geometry describes how measurements
change relative to a scaling factor ε. For a structure occupying N units at scale ε, the
relationship is:

N = ε−D,

where D represents the fractal dimension.
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Proposition 3.5 (Fractal Scaling Rule). The fractal scaling rule illustrates how the
number of measurement units needed to cover a fractal structure changes with the scaling
factor ε. This relationship often leads to non-intuitive outcomes due to the intricate self-
similarity of fractals.

Remark. For example, when measuring a fractal line initially with a stick scaled by 1
3
, it

may unexpectedly require more sticks than expected due to the fractal’s ability to reveal
complexity across all scales.

4 Minkowski-Boulingand Dimension

The Minkowski–Bouligand or (Box-counting) dimension is one of the most intuitive
methods of determining the fractal dimension of a set S in a Eulclidean space Rn, or
more generally in a metric space (X, d).

• Take a fractal S, for example, the Von Koch Curve.

• Divide the region containing the fractal into a grid of evenly spaced boxes of varying
sizes, denoted by ϵ.

• For each box size ϵ, count the number of boxes that intersect with the fractal
pattern. Denote this count as N(ϵ).

Lemma 4.1 (Box-Counting Method). The relationship between the box size ϵ and the
number of boxes N(ϵ) that intersect with the fractal pattern is approximated by:

N(ϵ) ∼ ϵ−D,

where D is the fractal dimension of the pattern.

This relationship is crucial in estimating the fractal dimension D using the Box-
counting algorithm. Plotting logN(ϵ) against log ϵ provides a practical method to esti-
mate D from empirical data.

Definition 4.2 (Minkowski-Bouligand Dimension). For a fractal S lying on a grid, sup-
pose that N(ε) is the number of boxes of side length ε required to cover the set. Then
the box counting dimension is defined as :

dimbox(S) := lim
ϵ→0

logN(ε)

log(1/ε)

Proposition 4.3 (Alternative Definition). An alternative definition for the Minkowski
dimension is as follows: Consider the covering numberNcovering(ϵ) as the minimum number
of open balls of radius ϵ required to cover the fractal, such that their union contains the
fractal S. Additionally, define the intrinsic covering number N ′

covering(ϵ) similarly, but
with the requirement that the centers of the open balls lie within the set S.

More formally:

• Ncovering(ϵ) is the minimum number of open balls of radius ϵ needed to cover S.

• N ′
covering(ϵ) is the minimum number of open balls of radius ϵ needed to cover S, with

the additional condition that their centers lie within S.
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Figure 3: Cantor Set

4.1 Examples

Example 4.4 (Cantor Set). The Cantor set C is constructed by repeatedly removing
the middle third from each interval of the previous iteration, starting with the interval
[0, 1]. I have already shown the construction of a Cantor Set C from [0, 1] while talking
about self-similarity. We know, for a general iteration we define the Cantor Set C as:

C =
∞⋂
k=1

Ck.

• First Iteration:

N(ε) = 2, where ε =
1

3
.

• Second Iteration:

N(ε) = 22 = 4, where ε =

(
1

3

)2

.

• General Case: For each iteration k,

N(ε) = 2k, where ε =

(
1

3

)k

.

To calculate the box dimension of the Cantor set C, we use the formula:

DB = lim
ε→0

logN(ε)

log 1
ε

,

where N(ε) is the minimum number of ε-balls needed to cover C.

Taking the limit as ε → 0:

DB = lim
ε→0

logN(ε)

log 1
ε

= lim
k→∞

log 2k

log 3k
=

log 2

log 3
.

Therefore, the box dimension DB of the Cantor set is log 2
log 3

.

Example 4.5 (Sierpinski Triangle). In the previous section on self-similirity, I have
already shown the iterative construction of a Sierpinski triangle. We start with an equi-
lateral triangle and removing the inner triangle in each iteration leads to the formation
of the Sierpinski triangle S.

• First Iteration:

N(ε) = 3, where ε =
1

2
.
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Figure 4: Sierpinski Triangle

• Second Iteration:

N(ε) = 32 = 9, where ε =

(
1

2

)2

.

• General Case: For each iteration k,

N(ε) = 3k, where ε =

(
1

2

)k

.

Taking the limit as ε → 0:

DB = lim
ε→0

logN(ε)

log 1
ε

= lim
k→∞

log 3k

log 2k
=

log 3

log 2
.

Therefore, the box dimension DB of the Sierpinski triangle is log 3
log 2

.

Example 4.6 (Von Koch Curve). The von Koch curve K is constructed by starting
with an equilateral triangle and replacing the middle third of each line segment with two
segments that form an equilateral triangle. The process is iteratively applied to each
segment.

• First Iteration:

N(ε) = 4, where ε =
1

3
.

• Second Iteration:

N(ε) = 4 · 4 = 16, where ε =

(
1

3

)2

.

• General Case: For each iteration k,

N(ε) = 4k, where ε =

(
1

3

)k

.

Taking the limit as ε → 0:

DB = lim
ε→0

logN(ε)

log 1
ε

= lim
k→∞

log 4k

log 3k
=

log 4

log 3
.

Therefore, the box dimension DB of the von Koch curve is log 4
log 3

.
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5 Hausdorff Dimension

In this paper, we began with understanding Fractal Dimensions. We took a look at
self-similar shapes, and the role of scaling for the same. Then, we saw the Minkowski-
Bouligand dimension, which is widely regarded as one of the most intuitive methods
to calculate a fractal dimension. However, calculating fractal dimension of a structure
becomes extremely complicated when the shapes are not well-behaved. Hence, we use
use the Hausdorff Dimension.

The formal definition of the Hausdorff dimension is arrived at by defining first the d-
dimensional Hausdorff measure, a fractional-dimension analogue of the Lebesgue measure.

5.1 Hausdorff Measure

Definition 5.1 (Hausdorff Measure). Let (X, ρ) be a metric space. For any subset
U ⊂ X, let diamU denote its diameter:

diamU := sup{ρ(x, y) : x, y ∈ U}, diam ∅ := 0

For any subset S ⊂ X and δ > 0, define:

Hd
δ (S) = inf

{
∞∑
i=1

(diamUi)
d :

∞⋃
i=1

Ui ⊇ S, diamUi < δ

}

The Hausdorff d-dimensional measure is then defined as:

Hd(S) = lim
δ→0

Hd
δ (S)

Property 5.1 (Monotonicity). If E1 ⊂ E2, then m∗
α(E1) ≤ m∗

α(E2).

Proof. The Hausdorff measure is monotonic. This means that if A and B are subsets of
a metric space with A ⊆ B, then

Hd(A) ≤ Hd(B).

In other words, the measure of a subset cannot exceed the measure of the set containing
it.

Property 5.2 (Sub-additivity).

m∗
α

(
∞⋃
j=1

Ej

)
≤

∞∑
j=1

m∗
α(Ej)

for any countable family {Ej} of sets in Rd.

Proof. The Hausdorff measure is also sub-additive. This property states that for any
countable collection of subsets {Ej},

m∗
α

(
∞⋃
j=1

Ej

)
≤

∞∑
j=1

m∗
α(Ej).
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Fix δ > 0, and choose for each j a cover {Fj,k}∞k=1 of Ej by sets of diameter less than
δ such that ∑

k

(diam Fj,k)
α ≤ Hδ

α(Ej) +
ϵ

2j
.

Since
⋃

j,k Fj,k is a cover of E by sets of diameter less than δ, we must have

Hδ
α(E) ≤

∞∑
j=1

Hδ
α(Ej) + ϵ.

This implies

Hδ
α(E) ≤

∞∑
j=1

m∗
α(Ej) + ϵ.

Since ϵ is arbitrary, the inequality Hδ
α(E) ≤

∑∞
j=1m

∗
α(Ej) holds, and we let δ tend to 0

to prove the countable sub-additivity of m∗
α.

Property 5.3 (Additivity for Disjoint Sets). If d(E1, E2) > 0, then m∗
α(E1 ∪ E2) =

m∗
α(E1) +m∗

α(E2).

Proof. If the distance between E1 and E2 is positive, the Hausdorff measure is additive
over the union of these two sets. Specifically, if d(E1, E2) > 0, then

m∗
α(E1 ∪ E2) = m∗

α(E1) +m∗
α(E2).

This property indicates that when E1 and E2 are disjoint in the sense that they are
positively separated, their measures add up directly.

Property 5.4 (Invariance and Scaling). The Hausdorff measure is invariant under trans-
lations and rotations, and scales as follows:

mα(E + h) = mα(E) for all h ∈ Rd,

mα(rE) = mα(E) where r is a rotation in Rd.

Moreover, it scales as:

mα(λE) = λαmα(E) for all λ > 0.

These properties mean that the Hausdorff measure remains unchanged when the set
is translated or rotated, and it scales with a power of the scaling factor when the set is
dilated.

Property 5.5. The quantity m0(E) counts the number of points in E, while m1(E) =
m(E) for all Borel sets E ⊂ R. (Here m denotes the Lebesgue measure on R).

Remark. In one dimension, every set of diameter δ is contained in an interval of length δ
(and for an interval, its length equals its Lebesgue measure).

In general, d-dimensional Hausdorff measure in Rd is, up to a constant factor, equal
to Lebesgue measure.
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Proof. Let E ⊂ R be a Borel set.
Since m0(E) counts the number of points in E, it represents the cardinality of E.
m1(E), the first-dimensional Hausdorff measure of E, is equivalent to the Lebesgue

measure m(E) for Borel sets in R.
Therefore, Property 6 holds: m0(E) counts the number of points in E, while m1(E) =

m(E) for all Borel sets E ⊂ R.

Property 5.6. If E is a Borel subset of Rd, then there exists a constant cd depending
only on the dimension d such that Hd(E) = cd ·m(E).

Proof. Let E ⊂ Rd be a Borel set.
By definition, Hd(E) denotes the d-dimensional Hausdorff measure of E, which mea-

sures the ”size” of E in Rd.
m(E) denotes the Lebesgue measure of E, which measures the ”volume” or ”size” of

E according to the Lebesgue measure in Rd.
Since Hd(E) and m(E) both measure the size of E in Rd, there exists a constant cd

depending only on the dimension d such that

Hd(E) = cd ·m(E).

Therefore, Property 7 holds for any Borel subset E ⊂ Rd.

Property 5.7 (Property 7’). If E is a Borel subset of Rd and m(E) is its Lebesgue
measure, then there exists a constant cd > 0 such that

cd · Hd(E) ≤ m(E) ≤ 2d · cd · Hd(E).

Proof. Let E ⊂ Rd be a Borel set and m(E) its Lebesgue measure.
By definition, Hd(E) denotes the d-dimensional Hausdorff measure of E, which mea-

sures the ”size” of E in Rd.
Since Hd(E) and m(E) both measure the size of E in Rd, there exists a constant

cd > 0 such that
m(E) ≤ 2d · cd · Hd(E).

This inequality holds because Hd(E) represents a kind of upper bound on the ”size” of
E, and m(E) cannot exceed 2d times this measure.

Similarly, there exists a constant cd > 0 such that

m(E) ≥ cd · Hd(E).

This inequality holds because Hd(E) provides a lower bound on the ”size” of E, and
m(E) must be at least cd times this measure.

Therefore, Property 7’ holds for any Borel subset E ⊂ Rd.

Property 5.8 (Property 8). If m∗
α(E) < ∞ and β > α, then m∗

β(E) = 0. Also, if
m∗

α(E) > 0 and β < α, then m∗
β(E) = ∞.

Proof. Let E ⊂ Rd be a set with m∗
α(E) < ∞.

• Case 1: β > α: Since β > α, Hβ(E) = 0 because β-dimensional Hausdorff measure
is more restrictive than α-dimensional. Therefore, m∗

β(E) = 0.

• Case 2: β < α: Since β < α, Hβ(E) = ∞ because β-dimensional Hausdorff
measure is less restrictive than α-dimensional. Therefore, m∗

β(E) = ∞.

Thus, Property 8 holds for sets E ⊂ Rd.
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5.2 Hausdorff d-Dimensional Measure

Now that we have understood the Hausdorff Measure, and previously, the Lebesgue Mea-
sure, we can define the Hausdorff Dimension.

First, an outer measure is constructed: Let X be a metric space. If S ⊂ X and
d ∈ [0,∞),

Hd
δ (S) = inf

{
∞∑
i=1

(diamUi)
d :

∞⋃
i=1

Ui ⊇ S, diamUi < δ

}
,

where the infimum is taken over all countable covers {Ui} of S. The Hausdorff d-
dimensional outer measure is then defined as

Hd(S) = lim
δ→0

Hd
δ (S),

and the restriction of this mapping to measurable sets justifies it as a measure, called the
d-dimensional Hausdorff Measure.

Definition 5.2 (Hausdorff Dimension). The Hausdorff dimension dimH(X) of X is de-
fined by

dimH(X) := inf
{
d ≥ 0 : Hd(X) = 0

}
.

This is the same as the supremum of the set of d ∈ [0,∞) such that the d-dimensional
Hausdorff measure of X is infinite (except that when this latter set of numbers d is empty,
the Hausdorff dimension is zero).

Definition 5.3 (Alternative Definition). Given a Borel subset E of Rd, the Hausdorff
dimension Hd is defined as:

Hd(E) = α

where α is the unique value such that:

mβ(E) =

{
∞ if β < α,

0 if α < β.

In other words, α is given by:

α = sup{β : mβ(E) = ∞} = inf{β : mβ(E) = 0}.

This definition reflects the critical dimension at which the Hausdorff measure mβ(E)
transitions from being infinite to zero as β varies. [4]

5.3 Examples

Example 5.4 (Menger Sponge). The Menger sponge M is constructed by iteratively
removing smaller cubes from a larger cube, following a recursive self-similar pattern.
Each face of the cube is divided into 9 smaller squares, with the central square and
smaller squares removed at each iteration.

To calculate the Hausdorff dimension DH of the Menger sponge, we use the concept
of Hausdorff measure.
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Figure 5: Menger Sponge

1. First Iteration:

At the first iteration, after removing central and smaller cubes:

Hs(M1) =

(
8

9

)s

Hs([0, 1]3),

where Hs([0, 1]3) is the Lebesgue measure of the unit cube in R3.

2. Recursive Definition:

For subsequent iterations, the Hausdorff measure Hs(Mk) is recursively defined by:

Hs(Mk) =

(
8

9

)s

Hs(Mk−1).

3. Hausdorff Dimension:

The Hausdorff dimension DH of the Menger sponge is the unique value s for which
Hs(M) > 0 and Hs(M) < ∞:

DH = lim
k→∞

log
(
8
9

)k Hs([0, 1]3)

log
(
1
3

)k .

Simplifying,

DH =
log 20

log 3
.

Therefore, the Hausdorff dimension DH of the Menger sponge is log 20
log 3

.

Example 5.5 (Brownian Motion). Brownian motion is a fundamental concept in prob-
ability theory and stochastic processes. It was first discovered by Robert Brown in 1827
while observing the erratic motion of pollen grains suspended in water. Later, Albert
Einstein provided a theoretical explanation in 1905, describing it as the result of random
molecular collisions.

Definition 5.6 (One-dimensional Brownian Motion). A one-dimensional Brownian mo-
tion B(t) is a stochastic process defined on [0,∞) such that:

B(0) = 0,

and for any t > 0, B(t) has:

• Independent increments,
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• Normally distributed increments with mean 0 and variance t,

• Continuous paths.

Brownian motion, denoted by W (t), is characterized by several key properties:

Property 5.9 (Independent Increments). For any sequence of times 0 ≤ t1 < t2 < · · · <
tn, the increments W (t2)−W (t1),W (t3)−W (t2), . . . ,W (tn)−W (tn−1) are independent
random variables.

Property 5.10 (Normal Distribution). Normal Distribution: The increments W (t +
∆t)−W (t) are normally distributed with mean 0 and variance ∆t, where ∆t is the time
interval.

Property 5.11 (Continuous Paths). Brownian motion has paths that are continuous in
t with probability 1.

Theorem 5.7 (Dimensionality of Brownian Motion). Let {B(t) : t ≥ 0} be an n-
dimensional Brownian motion. If n ≥ 2, then almost surely:

dim Range = dim Graph = 2.

Proof. By Theorem 5.6, it suffices to establish the necessary upper bounds. Let µB denote
the measure defined by µB(A) = m(B−1(A)) ∩ [0, 1], or equivalently,∫

Rn

f(x) dµB(x) =

∫ 1

0

f(B(t)) dt

for all bounded measurable functions f . Our goal is to show that for any 0 < α < 2,

E[Iα(µB)] = E

[∫ ∫
1

|x− y|α
dµB(x) dµB(y)

]
< ∞.

Evaluating the expectation of increments yields:

E[|B(t)−B(s)|−α] = |t− s|−α/2

∫
Rn

cn|z|ne−|z|2/2 dz,

where cn is a constant dependent on n. Simplifying,

E[Iα(µB)] ≤ 2k

∫ 1

0

u−α/2 du < ∞.

Thus, Iα(µB) < ∞ almost surely. By the energy method, we infer that dim Range > α
almost surely. Letting α → 2 provides the lower bound on the range. Since the graph
can be projected onto the range by a Lipschitz map, the graph dimension is at least the
range dimension. Therefore, if n ≥ 2, then almost surely dim Graph ≥ 2. Combining
with Theorem 5.6 completes the proof. [5]

Remark. The assertion that planar Brownian motion is ”almost” space filling is justified.
In terms of measure, Brownian motion path behaves like a two-dimensional object. Thus,
Brownian motion maximizes its spatial coverage while maintaining zero two-dimensional
area.
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