Pattern Avoidance in Words

Anshul Mantri

Euler Circle

July 14, 2024

Anshul Mantri (Euler Circle) **[Pattern Avoidance in Words](#page-30-0)** July 14, 2024 1/10

 \Rightarrow э

 \mathcal{A}

4 0 8

●▶

Anshul Mantri (Euler Circle) **[Pattern Avoidance in Words](#page-0-0)** July 14, 2024 2/10

K ロ ト K 伊 ト K

重

An *alphabet* is a finite set of symbols, and is denoted by A. The elements of A are called letters.

4 0 8

An *alphabet* is a finite set of symbols, and is denoted by A. The elements of A are called letters.

Definition

A word is a sequence of letters from an alphabet A.

€⊡

An *alphabet* is a finite set of symbols, and is denoted by A. The elements of A are called letters.

Definition

A word is a sequence of letters from an alphabet A.

Definition

A factor or subword of a word w is a contiguous subsequence of w of any length.

Anshul Mantri (Euler Circle) **[Pattern Avoidance in Words](#page-0-0)** July 14, 2024 3/10

イロト イ部 トイヨ トイヨト

重

The *free monoid* of an alpabet A , denoted as A^* , is the set of all words of any length that can be made with the letters of A.

This set is a monoid because it is closed under the associative operation of concatenation, and it has the empty word ε as the identity element.

The *free monoid* of an alpabet A , denoted as A^* , is the set of all words of any length that can be made with the letters of A.

This set is a monoid because it is closed under the associative operation of concatenation, and it has the empty word ε as the identity element.

Definition

A *morphism h* from A^* and B^* is a function that maps each element of A^* to an element of B^* , such that for all $m, n \in A^*$, we have $h(m)h(n) = h(mn)$.

Patterns

イロメ イ部メ イヨメ イヨメー

Ε

A pattern is a word where the letters are variables.

Each variable represents a nonempty word in A^* .

4 D F

Þ

A pattern is a word where the letters are variables.

Each variable represents a nonempty word in A^* .

Definition

A word w encounters a pattern p if it contains a factor that can be made by substituting each variable in p with a word in A^* . On the other hand, if a w does not encounter a pattern, w avoids the pattern.

A pattern is a word where the letters are variables.

Each variable represents a nonempty word in A^* .

Definition

A word w encounters a pattern p if it contains a factor that can be made by substituting each variable in p with a word in A^* . On the other hand, if a w does not encounter a pattern, w avoids the pattern.

Definition

If there exists an infinite word on an alphabet with k letters that avoids a pattern p , then p is k -avoidable. Otherwise, p is k -unavoidable.

4 0 F

Thue-Morse Morphism

Let $A = \{a, b\}$. Define the morphism $\mu : A^* \to A^*$, where

$$
\mu(a) = ab
$$

$$
\mu(b) = ba
$$

4 D F → ● → D-B э

Thue-Morse Morphism

Let $A = \{a, b\}$. Define the morphism $\mu : A^* \to A^*$, where $\mu(a) = ab$ $\mu(b) = ba$

We can generate the infinite word t by repeatedly applying μ to the starting letter a.

$$
t_0 = a
$$

\n
$$
t_1 = \mu(t_0) = ab
$$

\n
$$
t_2 = \mu(t_1) = abba
$$

\n
$$
t_3 = \mu(t_2) = abbabaab
$$

\n
$$
\vdots
$$

 $t = \mu(t) = abbabaabbaaababa...$

э

Proposition

The Thue-Morse word avoids the following patterns:

4 0 8

Proposition

The Thue-Morse word avoids the following patterns:

 \bullet xxx

4 0 8

 QQ

4 0 8

Þ

Proposition

The Thue-Morse word avoids the following patterns:

 \bullet xyxyx

Proof (outline).

FTSOC, assume t encounters the pattern, so there is a factor of t with minimal length that encounters the pattern. Then use the fact that μ maps t to itself to show that there is a factor following the pattern that is half the length, which is a contradiction.

Definition

The *sesquipowers*, also called the *Zimin words*, are defined as follows. Let $Z_0 = \varepsilon$, and for every $\sigma \in |\Sigma|$, let σ_n be a new symbol in an alphabet Σ . Then, $Z_{n+1} = Z_n \sigma_n Z_n$.

Definition

The *sesquipowers*, also called the *Zimin words*, are defined as follows. Let $Z_0 = \varepsilon$, and for every $\sigma \in |\Sigma|$, let σ_n be a new symbol in an alphabet Σ . Then, $Z_{n+1} = Z_n \sigma_n Z_n$.

Example

 $\Sigma = \{a, b, c, d\}$

 \leftarrow \Box

Definition

The sesquipowers, also called the Zimin words, are defined as follows. Let $Z_0 = \varepsilon$, and for every $\sigma \in |\Sigma|$, let σ_n be a new symbol in an alphabet Σ . Then, $Z_{n+1} = Z_n \sigma_n Z_n$.

Example

$$
\Sigma = \{a, b, c, d\}
$$

$$
Z_0 = \varepsilon
$$

4 0 8

Definition

The sesquipowers, also called the Zimin words, are defined as follows. Let $Z_0 = \varepsilon$, and for every $\sigma \in |\Sigma|$, let σ_n be a new symbol in an alphabet Σ . Then, $Z_{n+1} = Z_n \sigma_n Z_n$.

Example

$$
\Sigma = \{a, b, c, d\}
$$

$$
Z_0 = \varepsilon
$$

$$
Z_1 = a
$$

4 0 8

Definition

The sesquipowers, also called the Zimin words, are defined as follows. Let $Z_0 = \varepsilon$, and for every $\sigma \in |\Sigma|$, let σ_n be a new symbol in an alphabet Σ . Then, $Z_{n+1} = Z_n \sigma_n Z_n$.

Example

$$
\Sigma = \{a, b, c, d\}
$$

\n
$$
Z_0 = \varepsilon
$$

\n
$$
Z_1 = a
$$

\n
$$
Z_2 = aba
$$

 \leftarrow \Box

Definition

The *sesquipowers*, also called the *Zimin words*, are defined as follows. Let $Z_0 = \varepsilon$, and for every $\sigma \in |\Sigma|$, let σ_n be a new symbol in an alphabet Σ . Then, $Z_{n+1} = Z_n \sigma_n Z_n$.

Example

$$
\Sigma = \{a, b, c, d\}
$$

\n
$$
Z_0 = \varepsilon
$$

\n
$$
Z_1 = a
$$

\n
$$
Z_2 = aba
$$

\n
$$
Z_3 = abacaba
$$

4 0 8

Definition

The sesquipowers, also called the Zimin words, are defined as follows. Let $Z_0 = \varepsilon$, and for every $\sigma \in |\Sigma|$, let σ_n be a new symbol in an alphabet Σ . Then, $Z_{n+1} = Z_n \sigma_n Z_n$.

Example

 $\Sigma = \{a, b, c, d\}$ $Z_0 = \varepsilon$ $Z_1 = a$ $Z_2 = aba$ $Z_3 = abacaba$ $Z_4 = abacabadabacaba$

医心室 医

э

 \leftarrow \Box

Definition

The sesquipowers, also called the Zimin words, are defined as follows. Let $Z_0 = \varepsilon$, and for every $\sigma \in \Sigma$, let σ_n be a new symbol in an alphabet Σ . Then, $Z_{n+1} = Z_n \sigma_n Z_n$.

Example

 $\Sigma = \{a, b, c, d\}$ $Z_0 = \varepsilon$ $Z_1 = a$ $Z_2 = aba$ $Z_3 = abacaba$ $Z_4 = abacabadabacaba$

We are interested in the Zimin patterns, which are sesquipowers made of variables instead of letters. Since there can be arbitrarily many variables in a pattern, there are infinitely many Zimin patter[ns](#page-24-0). 298

Anshul Mantri (Euler Circle) **[Pattern Avoidance in Words](#page-0-0)** July 14, 2024 7/10

Proposition

Every Zimin pattern is unavoidable on all alphabets.

4 D F

э

Proposition

Every Zimin pattern is unavoidable on all alphabets.

The proof is by induction. The base case is trivial.

Lemma

Let p be a pattern that is unavoidable on an alphabet A. If x is a variable that does not appear in p, then the pattern pxp is also unavoidable on A.

Proposition

Every Zimin pattern is unavoidable on all alphabets.

The proof is by induction. The base case is trivial.

Lemma

Let p be a pattern that is unavoidable on an alphabet A. If x is a variable that does not appear in p, then the pattern pxp is also unavoidable on A.

Proof.

There must exist some finite length *I* such that all words of length *I* encounter p. If we have sufficiently many blocks of ℓ letters, separated by one letter, then some word of length *l* is repeated. Then x is the word between the two occurence of p , and we have the pattern pxp .

Theorem (Zimin, 1984)

A pattern is unavoidable on all alphabets if and only if it is a factor of a Zimin pattern.

To prove this, Zimin showed that a pattern is unavoidable if and only if it is reducible using the Zimin algorithm.

Thanks for listening! If you found this interesting, please check out my paper for more.

4 D F

Þ

 298