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Abstract. Solving multivariable nonlinear equations is frequently very
computationally complex to do so, of which Gröbner bases simplifies this
computation significantly, along with its applications in other important
fields. This paper will explore the necessary preliminaries to Gröbner bases,
Buchberger’s Algorithm, and envelopes as well as further directions inter-
ested readers can take.

1. Background

The usual technique for solving multivariable linear equations is row-reduction
(also known as Gaussian elimination), using matrices to solve the linear equa-
tions as in the below example:

2x+ y + 2z = 0
x+ 3y + z = 0
2x+ y + z = 1

=

2 1 2 0
1 3 1 0
2 1 1 1



=

1 0 0 1
0 1 0 0
0 0 1 −1


= (1, 0,−1)

However in the case of which one wants to solve multivariable nonlinear
equations, such as {x3 + 3y2 + z = 4, x5 + x3 + 6y3 = 2, x4 + y4 + z4 = 16}
in a strict method for as many variables, this cannot be solved through Row-
Reduction, and can be through the means of Gröbner bases. Gröbner bases
allows for a strict conversion of a multivariable nonlinear system of equations
into a sequence of single variable equations, which makes it a lot more eas-
ier to solve. This is similar to how Row Reduction works, where a system
of multivariable linear equations is converted into a matrix for the solution.
Additionally, dealing with nonlinear equations leads to extremely large com-
putation times, as well as being very tricky to solve by hand, especially with
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large values and/or amount of variables. Computing generating sets in ideals,
as discussed further in the Preliminaries section is additionally very complex,
even by hand, which can be simplified with an algorithm. A standardized and
quick computation method is needed when current methods are faulty.

Introduced in 1965 by Bruno Buchberger in his thesis along with Gröbner
bases for an algorithmic method of solving polynomial equations, now known
as Buchberger’s Algorithm. Gröbner bases have now become a significant
method in solving both linear and nonlinear equations. With the ability to
additionally find the intersection of ideals, find the envelope of specific curves,
and find degenerate solutions of geometric proofs, it can also be applied in
fields ranging from graph theory to robotics and coding theory. This paper
will investigate from Gröbner bases, to Buchberger’s Algorithm, and to finally
its usage in solving envelopes, and following from David Cox’s Ideals, Varieties,
and Algorithms.

2. Preliminaries

2.1. Rings. The ring R is a set that is an abelian group under addition (mean-
ing that it is associative, commutative, contains the additive identity and ad-
ditive inverses of its elements), associative under multiplication, contains its
multiplicative identity, and has its multiplication distributive over addition.

For example, the ring of integers is a ring because for any a, b, c ∈ Z :

• Abelian: (a + b) + c = a + (b + c), a + b = b + a, 0 is the additive
identity, and Z contains the additive inverses, which are the opposites
of the numbers.

• Associative under multiplication: (a× b)× c = a× (b× c)
• 1 is the multiplicative identity
• Multiplication follows both left and right distributivity because both
a× (b+ c) = (a× b) + (a× c) and (a+ b)× c = (a× c) + (b× c) is true

Additionally, the polynomial ring, denoted as R[x] and is composed entirely
of polynomials, is also a ring because it also follows the same sets of rules, as
described above. It is simple to replace a, b, c ∈ Z to a, b, c ∈ Z[x] or C[x] and
to think of it as also as a ring.

2.2. Ideals. An ideal is a subring of a ring, but with a stronger condition
such that for an ideal I and a ring R, it follows that for all r ∈ R and m ∈ I,
mr ∈ I.

Example 2.1. For the ring of integers, a possible ideal containing n will also
contain its multiples of n, such that the set of multiples of n in the ring of
integers forms an ideal. All ideals of Z are in the form of the multiples of n
for some n. In the case of the polynomial ring, all multiples of the form ’the
multiples of f ’ for some f additionally form an ideal.

https://link.springer.com/book/10.1007/978-3-319-16721-3
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Definition 2.2. To generate an ideal means that every value of fn ∈ I can
be expressed in terms of

fn = h1f1 + h2f2 + ...+ hmfm

where h ∈ R and f ∈ I. In this case, if every ideal in the ring is generated by
a single element, then it can be called the principal ideal domain.

Definition 2.3. A principal ideal domain is where every ideal is principal, or
is generated by one element.

In the case earlier where all of the multiples of n will form an ideal in Z, this
means that n generates the ideal and therefore is Z a principal ideal domain.
In the case of polynomial rings, if there is one polynomial that generates the
ideal, then Z[x] will additionally be called the principal ideal domain. Then,
because Z[x1, x2, ..., xn] contains and is going to be generated by more than
one element, it will not be a principal ideal domain.

This fact shows us why ideals in Z[x1, . . . xn] are hard to understand, com-
pared with Z or Z[x], as Grobner bases are meant to be a tool for handling
ideals in this case. Note that many of the rings studied later in this paper
will be not be principal ideal domains, which Gröbner bases can be used to
validate this.

2.2.1. Euclidean’s Algorithm. As Euclidean’s Algorithm is used to find the
greatest common divisors of two integers, as the goal of an ideal essentially
finds the generators in a polynomial ring. This can be used to find if two ideals
are the same or for polynomial long division by comparing the generating sets.

2.3. Noetheriananity and the Ascending Chain Condition.

Definition 2.4. A ring satisfies the Ascending Chain Condition if an initial
ideal can be broken into smaller ideals, of which will be expressed as

I1 ⊆ I2 ⊆ I3 ⊆ ...,

which will be finite, or where for such N in

IN = IN+1 = IN+2 = ...

will be true.

Definition 2.5. A Noetherian ring is a ring that satisfies the Ascending Chain
Condition.

Examples of a Noetherian ring is the ring of integers, as in the example
of where the ideal can contain the multiples of 8, which can be contained in
the multiples of 4, which can ultimately be contained in the ideal containing
multiples of 2, as below:

{multiples of 8} ⊆ {multiples of 4} ⊆ {multiples of 2} ⊆ Z,
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or otherwise written as

(8) ⊆ (4) ⊆ (2) ⊆ Z.

Because there is no larger ideal the ring itself, the maximal ideal in Z are the
ideals generated by the prime numbers (p).

Definition 2.6. The Ascending Chain Condition is additionally true for multi-
variable polynomials because of Hilbert’s Basis Theorem, which states that if
R is a Noetherian ring, then the R[x] and R[x1, x2, ..., xn] will additionally be
Noetherian rings.

From this, since Z is a Noetherian ring, then this would mean the rings we
will be studying, Z[x] and Z[x1, x2, ..., xn] will additionally be Noetherian, such
that the Ascending Chain Condition can follow through our later calculations.
Additionally, there is a further point about Noetherian Rings such that:

Definition 2.7. Every ideal in a Noetherian Ring is finitely generated.

Example 2.8. An example of a non-Noetherian ring is the ring Z[x1, . . . ],
because the ideal (x1) will be contained in an infinite ordering of ideals, as
below

(x1) ⊆ (x1, x2) ⊆ (x1, x2, x3) ⊆ . . . .

On the contrary, Z[x1, . . . xn] is a Noetherian ring as the below is true:

(x1) ⊆ (x1, x2) ⊆ (x1, x2, x3) ⊆ · · · ⊆ (x1, . . . xn).

2.4. Admissible Ordering. An admissible order, or otherwise called a mono-
mial order, orders the terms in the polynomial. This is central in Gröbner bases
as it is used in the calculation of the polynomials in the Gröbner basis and
that the monomial order is relative to the Gröbner basis.

In the case of a single variable ordering, the degrees are often compared to
find the greater polynomial, such as how when n < m, xn < xm.

However in the cases of compare multivariable polynomials, such comparison
by degree becomes confusing. There are many types of orderings that are
involved with Gröbner bases, but a majority of the examples discussed in this
paper will revolve around lexicographic ordering.

Lexicographic ordering on monomials can be defined as if x > y and n <
n′ then xnym < xn′

ym
′
, essentially ignoring the other variable y with the

focused variable being x because x will be greater than y. It’s very similar to
arranging terms by ordering single variable polynomials but the other variables
in multiplication will be ignored if they are less than the greatest variable.
However in the case that n = n′ and m < m′, then xnym < xn′

ym
′
, where if

the exponents of x are equal, then the next greatest variable is then taken into
consideration.
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Example 2.9. In the example that we have x > y > z, and we wish to order
the polynomials in the set {x4, x3, x3y3, x3z3, y3z3}, we will achieve that

x4 > x3y3 > x3z3 > x3 > y3z3.

The leading monomial is the largest monomial found from the ordering. In
the previous example, the leading monomial would then be x4. The leading
monomial of a function f is denoted as LM(f). The leading monomial term
will be the highest term of the leading monomial.

3. Gröbner Bases

Definition 3.1. A Gröbner basis can be defined as a set of polynomials when
for all gi ∈ G and all fj ∈ I, G denoting the Gröbner basis and I denoting the
ideal,

LM(gi)|LM(fj).

It could additionally be phrased that the leading monomials generate the ideal.
Alternatively, a generating set will be called a Gröbner basis if all of the

highest power product (leading power product or the leading monomial term)
in the polynomials of the linear combinations are a multiple of at least one of
the highest power products.

The second definition essentially checks that the leading power product,
found by linear combinations, will be a multiple of the power products in
the ideal. It follows that if the ideal is generated by the Gröbner basis then
the polynomials will be linear combinations of the one or more of the highest
power products, meaning that both definitions are two perspectives that are
essentially the same. Comparing the highest power product of the polynomials
from linear combinations will also be generating the ideal as a whole.

Definition 3.2. A Gröbner basis is called reduced if all of the elements are
not multiples of the other elements, or if the elements are irreducible by the
elements of the basis, and if the leading coefficient is 1.

It is important to note that a reduced Gröbner basis is typically used as a la-
beling term, which the later discussed Buchberger’s Algorithm will sometimes
output reduced Gröbner bases, but there is no current algorithm to find the
reduced Gröbner bases. Next, we will show that the reduced Gröbner basis
is unique if I ̸= 0, and two ideals are equal if and only if they have the same
reduced Gröbner basis.

Theorem 3.3. Every ideal has a unique reduced Gröbner basis.

Proof. We will prove by contradiction and begin by assuming that G and H
are both the same reduced Gröbner bases. From this, for all gi ∈ G and
hi ∈ H,

LM(gi) = LM(hi)
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after properly arranging each of the polynomials in the Gröbner bases. Since
the Gröbner bases generate the ideal and ideals are closed under addition, then
gi − hi ∈ I.

Additionally, for some values gk ∈ R and fj ∈ I, LM(gk)|LM(fk) as per
the definition of a Gröbner basis. Then if gi − hi = fj, this can be rewritten
to be that

LM(gk)|LM(gi − hi).

Because we had initially stated that G and H were the same reduced
Gröbner basis, and we had initally found that LM(gi) = LM(hi), this would
mean that the terms would cancel each other out because then LM(gi−hi) = 0.
We had found that for some gk ∈ G then LM(gk)|LM(gi − hi) but since
LM(gi − hi) has been reduced, then it would not be possible since G and H
are both reduced. Therefore this contradiction proves that gi must equal hi

when both of the Gröbner bases are reduced, so then Gmust additionally equal
H, meaning that every ideal will have exactly one reduced Gröbner basis.

The calculation of Gröbner bases, and that is repeated used in Buchberger’s
Algorithm, is based on finding the S-polynomial of two polynomials f, g ∈ R
at a time, as below:

S(f, g) = f · LCM(LM(f),LM(g))

LT(f)
− g · LCM(LM(f),LM(g))

LT(g)
,

where LT denotes the leading term and LM denotes the leading monomial.
The calculation of the S-Polynomial follows that if f, g ∈ I, then S(f, g) ∈ I.

Theorem 3.4. Buchberger’s Criterion: If for all fi and fj in the set f has
that f |S(fi, fj), then f will be a Gröbner Basis for all pairs in the set.

Proof. We begin by letting f be a nonzero polynomial in I, and can be ex-
pressed as

f =
k∑

i=1

aigi

where ai ∈ Z[x1, x2 . . . , xn] and gi ∈ G with k polynomials. Now because gi
is the Gröbner basis polynomials, it follows that the multidegree of f will be
at most the maximum possible multidegree of aigi as a result of monomial
ordering and it thus being at a greater degree.

This leads to two possible cases: where the multidegrees are equivalent and
when the mutlidegree of f is less than the maximum mutlidegree of aigi. In the
case that these multidegrees are equivalent, then this means that the leading
term of f will thus be divisible by the leading term of gi, or will be generated
by the leading term of gi. As such, then this can get that

LT(f) ∈ ⟨LT(g1), . . .LT(gk)⟩.
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However in the case that the multidegree of f is less than aigi, then we can use
a different value for g in G such that for gj, aigj will have a greater multidegree,
which also gets the same result as in the previous case.

If we then denote

γ = max(multideg(aigi)) when minimal,

we can further express this as

γ =
∑

multideg(aigi)=γ

aigi +
∑

multideg(aigi)<γ

aigi

=
∑

multideg(aigi)=γ

LT(ai)gi +
∑

multideg(aigi)=γ

(hi − LT(ai))gi +
∑

multideg(aigi)<γ

aigi,

when γ is reduced from the calculations of finding the S-Polynomial. The
second and third terms have a multidegree less than γ as the second term
subtracts this case and the third term states it.

The first term,
∑

multideg(aigi)=γ LT(ai)gi, can be set such that LT(ai)gi = ki.

From this, it will be a linear combination of S(pi, pj) can be expressed in terms
of S(gi, gj) where

S(pi, pj) =
LT(gi, gj)S(gi, gj)

lcm(LM(gi)),LM(gj))
.

Furthermore, because each of the polynomials in the Gröbner basis can
be expressed in terms of the values in the original ring, as we donate b ∈
R[x1, . . . , xn], we get that

S(gi, gj) =
k∑

p=1

bpgp,

to get that the multidegree of bpgp would be at most the multidegree of
S(gi, gj). We now aim to obtain this in terms of the earlier term such that∑

multideg(aigi)=γ LT(ai)gi.

As such, we find that if dp =
LT(gi,gj)

lcm(LM(gi)),LM(gj))
bp, then our ealier expression

of
LT(gi,gj)S(gi,gj)

lcm(LM(gi)),LM(gj))
can then be rewritten to

LT(gi, gj)S(gi, gj)

lcm(LM(gi)),LM(gj))
=

k∑
p=1

dpgp.

This means that the multidegree of dpgp would be then at most the multidegree

of
LT(gi,gj)S(gi,gj)

lcm(LM(gi)),LM(gj))
, which will still be less than γ because the leading term of

S(gi, gj) is less than lcm(LM(gi)),LM(gj)).
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Becauuse we had initially stated that γ was minimal, this contradicts this
fact as

∑
multideg(aigi)=γ

LT(ai)gi =
k∑

p=1

dpgp,

and shows that the remainder will thus be zero.

3.1. Buchberger’s Algorithm. Buchberger’s Algorithm follows that:
Input: I = (f1, . . . , fs)
Output: G = (g1, . . . , gt) for I, with G ⊆ I
Repeat: G := I
G′ := G
For every unique pair {f1, f2} ∈ G′

g := S(f1, f2)
If g ̸= 0, then G := G ∪ {g}
Until G = G’;
Return G;

The algorithm begins by taking a finite set of polynomials, or by taking a
generating set for the ideal, and initializes the Gröbner basis G to the ideal
I, so that G contains all of the polynomials in I. The repeat function allows
the Gröbner basis G to stabilize such that no more polynomials are added.
From this, the current G is copied into a new Gröbner basis G′ to make
changes to this basis by repeated calculating for the S-polynomial. Each of
the polynomial pairs in G′ was used to calculate an S-polynomial and then was
altered dependent on the following two results from the next two lines. If the
S-polynomial found from this calculation is not zero, then it would be added
in the Gröbner basis G. Finally when all the calculations are completed, it
will repeat until G does not change, essentially until G becomes the Gröbner
basis. From this, it will return the Gröbner basis G for the given ideal.

Example 3.5. We can begin with the input ideal such that

I = ⟨x2 − y2, xy2 − z3⟩,

and we expect an output Gröbner basis. First, the Gröbner basis initializes I
and creates a Gröbner basis include the polynomials of the ideal. From this,
repeated S-Polynomial calculations with pairs in the ideal until there are no
further polynomials that can be abstracted. This calculation is shown below:
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S(f1, f2) = LCM(LT (x2 − y2), LT (xy2 − z3))(
x2 − y2

x2
− xy2 − z3

z3
) = xz3 − y4 = f3

S(f1, f3) = LCM(LT (x2 − y2), LT (xz3 − y4))(
x2 − y2

x2
− xz3 − y4

xz3
) = y2(xy2 − z3)

S(f2, f3) = LCM(LT (xy2 − z3), LT (xz3 − y4))(
xy2 − z3

xy2
− xz3 − y4

xz3
) = y6 − z6 .

If there are any polynomials that can be written in terms of the other poly-
nomials, it will not be added into the Gröbner basis such that the remainder
will be 0. As such, the output will be the Gröbner basis

G = {x2 − y2, xy2 − z3, xz3 − y4, y6 − z6}

Proof. To begin this proof, we can begin with the fact that the Gröbner basis
will be a subset of the ideal, otherwise shown as G ⊆ I. Polynomials in G can
be also found by calculating the S-polynomial of two polynomials in I, which
can be expressed in terms of two random polynomials in I, f1 and f2. The
remainder, or the S-polynomial where S(f1, f2) ∈ I, would additionally be in
the ideal. This new Gröbner basis including S(f1, f2) can then be written as
G′.

Buchberger’s Algorithm will not add additional polynomials into the Gröbner
basis when there are repetitions of the polynomials. This is can be proven by
that the leading terms of G′ would then be a subset of the leading terms of
G because G′ itself is a subset of G. However, G′ must be equal to G. By the
Ascending Chain Condition, where I1 ⊆ I2 ⊆ I3 ⊆ ..., then IN = IN+1 =
IN+2 = ... for some n, meaning that our current chain will stabilize such that
the leading term set of G′ and G will equate after a finite set of steps meaning
that Buchberger’s algorithm will not output any values in the Gröbner basis
where there are repetitions of the polynomials.

3.2. Elimination and Extension Theorems. To solve actual equations,
we use some technical facts about Gröbner bases, called the Elimination and
Extension Theorems.

Definition 3.6. Elimination Theorem: If I ⊆ R[x1, ..., xn], then the Gröbner
basis of the k-th elimination ideal Ik is

Gk = G ⊆ R[xk+1, ..., xn].

The elimination ideal reduces the variables in the ring such that the if the
given ideal could be expressed as I = ⟨f1, . . . fn⟩ = R[x1, . . . , xn], the kth
elimination ideal will then become

Ik = I ∩R[xk+1, . . . , xn] ⊆ R[xk+1, . . . , xn].
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This is then similarly seen with the Gröbner bases, as it is a subset of the
ideal.

We can begin with the fact that the Gröbner basis G is a subset of the ideal
I, meaning that for a k-th elimination ideal, Gk ⊆ Ik. Additionally, if this is
true, because the leading terms in the ideal are a subset of the leading terms
in the Gröbner basis, then

⟨LT (Ik)⟩ ⊆ ⟨LT (Gk)⟩
will additionally be true.

We then assume that there are some f ∈ Ik and g ∈ Gk. Since LT (g)|LT (f),
then LT (g) will only be consisting of xk+1, ..., xn, which otherwise can be
expressed as

LT (g) ∈ R[xk+1, . . . , xn].

As such, then g ∈ R[xk+1, . . . , xn]. As such, then
Since we are in lexicographic order, LT (g) ∈ m[xk+1, ...xn] so g ∈ m[xk+1, ...xn],

so g ∈ Gk. From this, it then becomes apparent that Gk would then be equal
to when G is a subset of the eliminated ring.

Definition 3.7. Extension Theorem: If I = ⟨f1, ..., fn⟩ ⊆ C[x1, ..., xn], each
f can be expressed as fi = ci(x2, ..., xn)x

Ni
1 such that ci ∈ Cx1, ..., xn] and I1

is the first elimination ideal of I. If we have the partial solution (a2, ..., an) ∈
V(I1) but (a2, ..., an) /∈ V(c1, ..., cn), then there exists such a1 ∈ R where
(a1, ..., an) ∈ V(I).
Additionally, if extended to the k-th elimination ideal, the definition can

then be written as:

Definition 3.8. Extension Theorem (with the k-th elimination ideal):
If I = ⟨f1, ..., fn⟩ ⊆ C[x1, ..., xn], each f can be expressed as fi = ci(xk+1, ..., xn)x

Ni
1

such that ci ∈ C[x1, ..., xn] and I1 is the first elimination ideal of I. If we have
the partial solution (ak+1, ..., an) ∈ V(Ik) but (ak+1, ..., an) /∈ V(c1, ..., cn), then
there exists such ak ∈ R where (a1, ..., an) ∈ V(I).
Simply phrased, the Extension Theorem allows for a solution, such as the

solution (a2, . . . , an) ∈ V(I1), to be extended into the larger ideal (or some-
times the original equations), which the previous example solution would then
become (a1, a2, . . . , an) ∈ V(I).
It should additionally be stated that the extension theorem only works for

C because it reaches solutions that are not possible to be solved under the field
of R, and would thus be false.

Proof. We begin this proof by noting that ci must be nonzero because all of
the coefficients of the polynomials are nonzero. From this, since ci ̸= 0, then
this means that

V(c1, . . . , cn) = 0
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because it is a vanishing solution, meaning that all such values must equate
to zero.

However, because the cis are the leading coefficients, this would mean that
(a2, ..., an) /∈ V(c1, ..., cn). If the leading coefficients do disappear, then the
Extension Theorem would fail when calculating with equations. However,
because (a2, ..., an) /∈ V(c1, ..., cn), then the Extension Theorem will not fail.

3.3. Examples.

3.3.1. Multivariable Linear Equation. We begin by finding the solutions for a
multivariable linear equations using Gröbner bases. We have the equations

2x+ y + 2z = 0

x+ 3y + z = 0

2x+ y + z = 1,

which then can be used to form the ideal

I = ⟨2x+ y + 2z, x+ 3y + z, 2x+ y + z − 1⟩.
From this ideal, we then calculate the Gröbner basis of each of the pairs, as
below:

S(f1, f2) = (2x+ y + 2z) · 2x
2x

− (x+ 3y + z) · 2x
x

= −5y

S(f1, f3) = (2x+ y + 2z) · 2x
2x

− (2x+ y + z − 1) · 2x
2x

= z + 1

S(f2, f3) = (x+ 3y + z) · 2x
x

− (2x+ y + z − 1) · 2x
2x

= 5y + z + 1

Notice that the x variable has been removed from the Gröbner bases as a
result of the Elimination Theorem, making the final Gröbner basis as:

⟨−5y, z + 1, 5y + z + 1⟩.
We can check for further for extra polynomials to be added in the Gröbner
basis, but this equation can be easily solved. We solve the zeros of the Gröbner
basis as below (note that S3 was removed from the calculations because they
would get for the same values),

−5y = 0

z + 1 = 0

meaning that y = 0 and z = −1. This is allowed because of the Extension
Theorem where the solutions found in the Gröbner basis will also be solutions
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of the ideal and the original equations. Going back to our original equations, it
can easily be solved that x = 1, meaning that we get the point (1, 0,−1) as the
final answer. Our earlier example at the beginning through solving through
Row Reduction also produces a similar result, and when graphing, we produce
the same result.

Figure 1. The purple point is the point of intersection.

3.3.2. Multivariable Nonlinear Equation. We now present an example for solv-
ing nonlinear multivariable equations. We have the system of equations with
the following equations: x2 + y − z = 1, x + zy = 5, and xyz = 3. From this,
the ideal will become

I = ⟨x2 + y − z − 1, x+ zy − 5, xyz − 3⟩

and the Gröbner bases of this will then be:

g1 = z4 − 17z3 − 14z2 + 75z + 3

g2 = 104y + 25z3 − 420z2 − 434z + 1809

g3 = 104x− 5z3 + 84z2 + 66z − 445.
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From this, g1 can be factored to the following values: −2.3471,−0.0397, 1.8332,
and 17.5536. These values can then be substituted into g2 and g3 to get the fol-
lowing points: (0.6972,−1.8332,−2.3471), (4.3028,−17.5536,−0.0397), (0.6972, 2.3471, 1.833),
and (4.3028, 0.0397, 17.5536).

Figure 2. The purple points shown are the points of connection
from all three curves.

3.3.3. Multivariable Nonlinear Equation with More Variables. To find the Gröbner
Basis of the ideal I = ⟨x2 − y, x3 − z⟩ with lexicographic order x > y > z
through the Buchberger Algorithm, we can begin by computing for the S-
polynomial

S(x2 − y, x3 − z) = LCM(x2 − y, x3 − z)(
x2 − y

x2
− x3 − z

x3
) = −xy + z .

Our Gröbner basis will then contain −xy + z because it cannot be reduced
further with x2 − y and x3 − z. This can be labeled as the value for S(f1, f2),
and then be continued to find the values of S(f1, f3) and S(f2, f3) to find more
Gröbner bases. Furthermore, if any more polynomials are found and added
to the Gröbner basis, this can then be further used to calculate the values of
S(f1, f4), S(f2, f4), and further as shown below:
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S(f1, f3) = LCM(LT (x2 − y), LT (−xy + z))(
x2 − y

x2
− −xy + z

−xy
) = xz − y2

S(f2, f3) = LCM(LT (x3 − z), LT (−xy + z))(
x3 − z

x3
− −xy + z

−xy
) = z(x2 − y)

S(f1, f4) = LCM(LT (x2 − y), LT (xz − y2))(
x2 − y

x2
− xz − y2

xz
) = y(−xy + z)

S(f2, f4) = LCM(LT (x3 − z), LT (xz − y2))(
x3 − z

x3
− xz − y2

xz
) = (xy + z)(−xy + z)

S(f3, f4) = LCM(LT (−xy + z), LT (xz − y2))(
−xy + z

−xy
− xz − y2

xz
) = y3 − z3

Checking with f5 = y3 − z3, we will find that there will be no more poly-
nomials that can be added to the basis. This situation appears when there
are no values of x left to create pairs with in the Gröbner basis, and as such
this calculation can terminate. The Gröbner basis will then contain the set
{x2 − y, x3 − z,−xy + z, xz − y2, y3 − z3}.

To know that we have finished the calculations, we can compute further
with f5 to test if there any more polynomials that can be added to the basis.

S(f1, f5) = LCM(LT (x2 − y), LT (y3 − z3))(
x2 − y

x2
− y3 − z3

y3
)

S(f2, f5) = LCM(LT (x3 − z), LT (y3 − z3))(
x2 − y

x2
− y3 − z3

y3
)

S(f3, f5) = LCM(LT (−xy + z), LT (y3 − z3))(
x2 − y

x2
− y3 − z3

y3
)

S(f4, f5) = LCM(LT (xz − y2), LT (y3 − z3))(
x2 − y

x2
− y3 − z3

y3
)

It then becomes unnecessary to continue because there are no further poly-
nomials that can be added to the Gröbner basis as they can all be expressed
in terms of the other polynomials in the Gröbner basis.

We find that because f5 does not contain any values of x, the LCM of the
leading terms become undefined, as such, it means that there will be no further
solutions to be added to the Gröbner basis. Finally, the final Gröbner basis is

G = ⟨x2 − y, x3 − z,−xy + z, xz − y2, y3 − z3⟩.

If we find the solution set, by solving with the original equations. Note that
the Gröbner basis can be useful in more complex situations. The solution set
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can then be expressed as

x = ±√
y = 3

√
z,

or as (x, x2, x3). Graphing, we find that the final solution set matches along
the curve of intersection, as shown below in the graph.

Figure 3. Curve of intersection labeled in red with the original equations.

3.3.4. Equivalent Ideals. As we had shown before, every ideal has a unique
reduced Gröbner basis. If there exists two reduced Gröbner bases such that
G1 = G2, then the ideals must be equal. Otherwise, I1 ̸= I2.

4. Envelopes

If we have a family of curves, Gröbner bases can be used to formulate an
equation that would depict the enveloping curve. However to begin, it is
important to show how finding tangential lines from a single point can be
found without using calculus.

Example 4.1. To begin, we can start with the fact that the tangent line will
contain the point it will touch the original equation. Meaning that for some
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x and y in the equation of the tangent containing point (p, q), the following
equations can be derived:

x = p+ am

y = q + bm

We can then use these equations to solve for the tangential line on a curve.
If we are looking for the tangent line on the parabola y = x3 at the point
(1, 1), we would additionally express this as

1 + bm = (1 + am)3,

which then can become

1 + bm = 1 + 3at+ 3(at)2 + (at)3,

which will finally be simplified into

b = 3a+ 3a2m+ a3m2.

The multiplicative zeros from this equation will thus be where the tangential
line intersects y = x3. To determine the multiplicity, it is found by the degree
of the lowest non-zero term, which will thus be the term a3m2.

Since the term has m2, it means that it that the multiplicity at the point
(1, 1) will be two, which will then mean that it is tangent to the curve since
the multiplicity is greater than one.

To find the tangent line, we find the derivative of y = x3 in respect to x and
substitute (1, 1) now we know that a tangent line exists at that point. The
derivative will thus be

dy

dx
= 3x2,

which can then be substituted to have the final tangent line of y = 3x− 2.
Doing these steps is important for the cases that there does not exist a

tangent line to a curve, through checking the multiplicity at the intersection.
Such curve is shown in Figure 4.

4.1. Envelopes Example with a Family of Circles. For envelopes, we can
begin with an example polynomial that describes a family of circles:

(x− t)2 + y2 = t,

meaning that each circle has center of (t, 0) and radii of
√
t.

Lemma 4.2. To find the equation for the envelope of the curves can be found
when both the polynomial and the partial derivative in respect to t must be
both equal to zero.
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Figure 4. Original equation (y = x3) and the tangent line
(y = 3x− 2) at point (1, 1).

From this,

f(x) = (x− t)2 + y2 − t = 0

∂f(x)

∂t
= −2(x− t)− 1 = 0

This can then form the ideal

{(x− t)2 + y2 − t,−2(x− t)− 1},

which can then be turned into the Gröbner basis

{4y2 − 4x− 1,−2x− 1.}

It can then be found from this that the equation 4y2 − 4x − 1 = 0 is the
envelope for the family of circles of when (x−t)2+y2 = t, as graphed in Figure
5.

4.2. Envelopes Example with a Family of Spheres. This additional ap-
plication can be furthered with spheres. If we have the family of spheres that
follows such rule that the equation to model this is

(x− t)2 + y2 + z2 − t = 0,
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Figure 5. As shown, the parabola 4y2 − 4x − 1 = 0 is the
envelope for the family of circles.

we can again follow the earlier steps in finding the envelope for this case. Note
that in the 3rd dimension does not all necessarily have an envelope.

We then can find the partial derivative in respect to t and find the Gröbner
basis of these two equations, as follows:

f(x) = (x− t)2 + y2 + z2 − t = 0

∂f(x)

∂t
= −2(x− t)− 1 = 0.

The ideal with these equations becomes the following:

I = ⟨(x− t)2 + y2 + z2 − t,−2(x− t)− 1.

Solving for the Gröbner basis leads to the following:

G = {−t+ y2 + z2 + 0.25,−t+ x+ 0.5.}

If we want to form an equation that will model the values of the Gröbner basis,
it can thus be expressed by substituting the values of t, becoming x + 0.5 =
y2 + z2, or

x− y2 − z2 + 0.5 = 0

as our solution for the parabola that models it. Graphing this shows that this
parabola is therefore the envelope of the family of curves.
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Figure 6. As shown, the parabola x− y2 − z2 + 0.5 = 0 is the
envelope for the family of spheres in purple.

5. Conclusion

Overall, this paper explores the background of Gröbner bases and its appli-
cation in solving multivariable nonlinear equations as well as finding envelopes
for a family of curves. The Buchberger Algorithm relies heavily on the Buch-
berger Criterion such that the S-Polynomial can be used in calculated the
Gröbner basis. To use Gröbner bases in solving equations, it is important to
additionally understand the Elimination and Extension Theorems, of which
allow for such computation and the usage of Gröbner bases in calculations,
furthered even more through finding the envelopes of families of curves.

There are many further directions that an interested reader could explore.
For example, the more intricate Hilbert Driven Buchberger Algorithm, having
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homogeneous polynomials in it’s ideal and Gröbner basis, has a faster run time
than the Buchberger Algorithm, provided you start with extra information
about the original ideal. Additionally, faster algorithms like the F4 Algorithm
directly uses Row Reduction for finding the remainders of the S-polynomials
for the remainders and has termination.

Gröbner bases can also be used in geometric proofs, directly solving complex
multivariable equations in coordinate geometry and even further in the plane
P2(R), such as Pappus’s Theorem. Gröbner bases can also find the dimension
of the algebraic variety and additionally find the images of these varieties under
projections. Gröbner bases can also additionally be applied in graph theory,
robotics (via the joint mechanics), and software engineering.
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