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1. Introduction

Discrete topology and topology have vast implications in both mathematics, as well as
the real world. Let’s first understand these two concepts. Discrete topology is an exten-
sion of the principles of classical topology to discrete structures. It forms the backbone to
analyzing complex systems through combinatorial techniques. The standard topology deals
with continuous spaces while the discrete topology, on the other hand, deals with spaces
that are defined by discrete sets which are endowed with what we call the discrete topology.
This approach enables mathematicians to investigate connectivity, dimensionality and many
other topological properties in situations where graphs and networks hold sway as predom-
inating discrete structures. Topology serves as a means for understanding how qualitative
spatial relations can be established between different geometric shapes or topological spaces
represented abstractly without requiring metric information about them.

Mathematics and the discrete topology unveil the beauty of structure analysis through
graphs and simplicial complexes— where simple yet discrete topological methods manage to
expose mind-boggling connectivity patterns, aiding us in computing those algebraic invari-
ants like Betti numbers, represented as Bk. These integers are as fundamental since they
count k-dimensional holes or voids in a space that our simplicial complex represents.
However, despite their apparent simplicity, Betti numbers offer an insight into shape (and
more importantly) connectivity which allows us to distinguish one topological entity from
another. Discrete topology relies on simplicial complexes as basic structures, taking graphs
to another level by higher dimensions. The composition of a simplicial complex is simplices
which are vertices, edges, triangles and higher dimensional analogs arranged in the sense that
each face (subset) of a simplex is included. This approach by numbers allows topological
spaces to be represented and studied without having to resort to continuous concepts.

Simplicial complexes find significant use in topological data analysis (TDA). It is an inno-
vative approach where complex datasets depicted as high-dimensional points are reimagined
into simplicial complexes: allowing for an unveiling of the topological features harbored
within. This technique provides a unique perspective, through TDA we are able to identify
patterns and structures which would otherwise slip past the nets of traditional statistical
methods; this places it as a valuable asset in fields like biology, economics, or even machine
learning.
Simplicial complexes play a crucial role in computer graphics and geometry processing. With-
out them, it would be impossible to model or work with geometric shapes. When it comes
to 3D modeling and animation, meshes are like the backbone— they consist of vertices,
edges, and faces which form a simplicial complex. These techniques are like magic wands—
they help in creating visually appealing images by enabling proper lighting effects through
rendering or ensuring that elements do not overlap in collision detection. That’s why un-
derstanding simplicial complexes is key: it allows for surface reconstruction that can lead
graphical representations closer towards reality while still serving their intended functions.

Discrete Morse theory extends classical Morse theory to discrete settings, especially sim-
plicial complexes. It provides a combinatorial approach to analyzing the topology of these
complexes by studying discrete gradient vector fields. The theory identifies key points, com-
putes homology groups including Betti numbers, and derives other topological invariants
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that are crucial for understanding the global structure of complex spaces.

Applications of discrete Morse theory include computer topology, which simplifies com-
plex structures without changing their topological properties. By constructing discrete Morse
functions, researchers can reduce the size of simple complex numbers, making them more
manageable for computation. This simplification process is crucial for real-world applications
such as image processing, sensor networks, and molecular biology, where large and complex
datasets are common.
In optimization and robotics, discrete Morse theory can be used to understand topological
configuration spaces, which is essential for effective path planning and resource optimization.
By decomposing these spaces into simpler components, discrete Morse theory supports the
development of algorithms for navigation, motion planning, and optimal resource allocation,
thereby improving the efficiency and performance of complex systems.
In summary, discrete topology, simplicial complexes, and discrete Morse theory represent fun-
damental concepts with profound implications for mathematics and applied science. They
provide a rigorous mathematical framework for analyzing complex systems and data, con-
tributing to advances in fields ranging from data science and computer graphics to robotics
and optimization. Their continued development promises to provide further insights into the
underlying structures that govern our increasingly complex world.

2. Simplicial Complexes

Simplicial complexes, in quite general terms, are relationships between points, edges, and
higher dimensional connections. Lets understand this with a simple analogy.

Abby and Ben have had dinner before, Ben and Claire have had dinner before, and Claire
and Abby have had dinner before. However, they have never all had dinner together at the
same time. This is represented in the simplicial complex as a triangle, with vertices A, B,
and C. Let’s say, however, that after much deliberation, Abby, Ben, and Claire decide to all
have dinner together. Now there is a relationship between all three of them, and so we can
represent this as a triangle, but filled in.

Extrapolating, if four people were to have the same situation, we can represent this as
a tetrahedron, assuming that all four have had dinner together. Therefore we can see how
simplical complexes vary across dimensions we cannot even visualize. Because of this, we
have a different way of representing simplicial complexes without images, and that is by
using set theory.

Definition 2.1. An abstract simplicial complex K is a collection of subsets, excluding {∅},
from the set [Vn] = {vo, v1, v3, ..., vn} where n is an integer ≥ 0 such that

(1) if σ ∈ K and τ ⊆ σ, then τ ∈ K
(2) vi ∈ K for every vi ∈ [vn].
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This tells us that the simplicial complex K is downwards closed, and every subset of K is
contained in K. If we go back to our dinner analogy, we can now represent those relation-
ships much more cleanly.

Abby and Ben having dinner together can be represented as {va, vb}, Ben and Claire as
{vb, vc}, and Claire and Abby as {va, vc}. The lack of set {va, vb, vc} alerts us that there
is no relationship between all three of these points (or people). This notation allows us to
represent relationships in higher dimensions that we cannot visualize.

Definition 2.2. A set σ of cardinality i+ 1 is called an i-dimensional simplex

Therefore, a point is a 0-dimensional simplex, and edge is a 1-dimensional simplex, and
so on.

We can represent all the dimensions of different simplices of K with a c-vector.

Definition 2.3. A c-vector is defined as (c0, c1, c2, ..., cdim(K)) where ci is the number of
simplices of dimension i, and dim(K) is the dimension of the highest dimensional simplex
of K.

Definition 2.4. (1) If in σ, τ ∈ K and τ ⊆ σ, then τ is called a face of σ, and
(2) σ is called the coface of τ .

This relationship is denoted as τ < σ; we say that τ is a face of σ.

Definition 2.5. Let σ be a simplex of simplicial complex K, with some dimension i. This
is denoted as σ(i). Therefore τ < σi is any face of σ denoted as τ with a dimension strictly
less than i.

If we were to take the dimension of both σ and τ and subtract them, the output of
dim(σ) − dim(τ) yields the co-dimension of τ with respect to σ. Basically, calculating
how many ’dimensions apart’ both faces are. In the same vein, a boundary of σ is all the
co-dimension-1 faces of σ.

Definition 2.6. The boundary of σ in K is shown as δK(σ) and it the union of all τ such
that {τ ∈ K for all dim(σ)− dim(τ)} = 1

Definition 2.7. A facet of K is a simplex of K that is not contained in any other simplex
of K.

Example 2.1. ∆(n) = P({Vn})− {emptyset}

Whereas Sn is defined as

Definition 2.8. Sn = δ(n+ 1)− [V(n+ 1)]

Observe the following examples. ∆1 as

While Sn is

∆2 as
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And S1 is
Notice that for Sn, we remove the highest dimensional simplex of ∆(n+ 1)

Euler Characteristic Recall the C-vector from definition 2.3. We will use the C-vector
to calculate the Euler Characteristic (χ(K)) of Simplical Complexes. To calculate the C-
Vector, we give ’weight’ to points, edges, and higher dimensional simplices.

(1) A point has a weight of +1
(2) A edges has a weight of −1
(3) A ’hole’ created by 3 edges (for example S1), still has a weight of −1 for each edge.
(4) A ’filled in hole’ has a weight of +1

Definition 2.9. Euler Characteristic χ(K) =
∑n

i=0(−1)ici(K)

Euler Characteristic χ(K) of Simpilical Complexes. To calculate the C-Vector, we give
’weight’ to points, edges, and higher dimensional simplices.

(1) A point has a weight of +1
(2) A edges has a weight of −1
(3) A ’hole’ created by 3 edges (for example S1), still has a weight of −1 for each edge.
(4) A ’filled in hole’ has a weight of +1

A B

C

C-vector= {3, 3, 1} χ(∆2) = 3− 2 + 1 = 2
The c-vector gives us all of these values, and so we can quickly calculate the Euler char-

acteristic of all simplicial complexes by doing an alternating sum on the C Vector. The use
for a C-vector will be known shortly.

3. Simple Homotopy

Simple homotopy aims to understand what makes two ’things’, in this case simplcial com-
plexes, the same. Elementary Collapase

In a simplical complex K, if there is a pair of simplices σ and τ such that τ is codimen-
sion 1 in respect to σ, and τ is a face of σ and τ has no other cofaces, we can ’remove’ τ and σ.
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τσ

An elementary expansion of K is the union of K and {τ, σ} where {τ (n− 1), σ(n)} where
τ is a face of σ and all other faces of σ is in K. We say that K ∼ L if there is a series of
elementary collapses and expansions from K to L. If K ∼ ∗, K has the simple homotopy
type of a point.
τ, σ is called free pair of K

Proposition 3.1. If K ∼ L. Then χ(K) = χ(L)

Proof. Suppose K ∼ L. Prove that χ(K) = χ(L). We can represent the elementary collapse
fromK to L as a series of elementary expansions and collapses, each with adding or removing
a free pair {τ, σ} such that σ and τ are codimension 1. Therefore, we know that that the
Euler characteristic of {τ, σ} must be 0, as −1 + 1 = 0. Therefore, regardless of what χ(K)
is, χ(K) = χ(L). ■

Some conclusions can be made from this proof. If two simplical complexes have different
Euler characteristic, there cannot be an elementary expansion between them. However, if
their Euler characteristics are the same, there may or may not be a series of collapses and
expansions from one simplicial complex to another. We will not know for sure until later in
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this paper.

4. Discrete Morse Theory

In the last section, we introduced the concept of a hole, even thought it is still unclear
what a hole is. Discrete Morse theory will be useful in defining what a hole is, and under-
stand how to ’label’ different (or the same) simplical complexes.

Definition 4.1. Like K be a simplical complex. A function f : K → R is weakly increasing
if f(σ) ≤ f(τ) when σ is a face of τ .

A basic discrete morse function is a weakly increasing function that is at most 2 to 1, and
when σ ⊆ τ or τ ⊆ σ, f(σ) = f(τ).

What this means is that at most, a number in a discrete morse function can only be
used twice (therefore 2-1), and face coface pairs must have the same number, or be weakly
increasing. Weakly increasing means that a higher dimensional simplex has a greater value
than a lower dimensional coface. Because the function is not strictly increasing, the two
values can be the same.

7

7

3

4

4

You may notice that 3 only shows up once in the basic discrete Morse function. In a basic
discrete Morse function, a value that only shows up once is a critcal value. Otherwise, it is
a regular value. The simplex that has the critical value is called the critical simplex.

Definition 4.2. A discrete Morse function fonK is a function f : K → R that for every
p-simplex on K

(1) |τ (p− 1) < σ : f(τ) ≥ f(σ| ≤ 1
(2) |τ (p+ 1) > σ : f(τ) ≤ f(σ| ≤ 1

This definition basically means that any higher-dimensional simplicies must have a higher
or equal value to lower dimensional simplicies. However, there is one exception allowed. This
exception occurs when a higher dimensional coface has a value that is less than or equal to
a lower dimensional face. This an occur once or none for a face-coface pair. Lets understand
this through a diagram.
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We can see a couple of exceptions in this discrete Morse function. For example, value of the
2-simplex with vertices 0 − 4 − 1 is 15, yet the coface of it (namely the edge with vertices
0− 1, has a value of 17. The edge is lower dimensional than the face, but still has a larger
value. Even so, the edge does not violate any other relations, as it has a larger value than
both vertices it is a coface of. Therefore, it ’uses’ its on exception, and is still a discrete
Morse function. A discrete Morse function has no requirements to be 2 − 1, unlike a basic
discrete Morse function. There are three simplcies with a value of 4 in this discrete Morse
function, but it doesn’t matter, as they satisfy the requirements of a discrete Morse function.

A discrete Morse function, similar to a basic discrete Morse function, wil still have critical
and regular values. A critcal value in a discrete Morse function is one that no exceptions,
and is represented as such.

Definition 4.3. A p-simplex σ of K is said to be critical in respect to a discrete Morse
function f : K if and only if

|τ [(p− 1)] < σ : f(τ) ≥ f(σ)| = 0
|τ [(p+ 1)] > σ : f(τ) ≤ f(σ)| = 0

As shown, critical simplicies are those simplicies which do not have any exceptions. Look-
ing back at our diagram, the critical simplices are the egde with a value of 7, the edge with
a value of 4, the edge with a value of 8, the edge with a value of 9, and so on. As with basic
discrete Morse functions, a simplex that is not critical is regular.

Lemma 4.4. Exclusion lemma: Let f : K → R be discrete Morse function and σ ∈ K is a
regular simplex.

This tells us that if a particular simplex has an exception, any face of that simplex has
also used up that exception. Discrete Morse Functions are used in persistant homology,
and seeing how simplicial complexes change - or don’t change - over time. However, in this
paper, we will only be going into simplicial homology, which will tell us characteristics about
simplicial complexes, in a general sense.

5. Simplicial Homology and the Betti Numbers

As mentioned with the Eular Characterisitc, we can determine when two simplicial com-
plexes K is not elementary collapsable to L, via different Euler Characteristics. However,
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when two simplicial complexes have the same Euler characteristics, we cannot be sure that
there is a elementary collapse mapping one to another. This is where simplicial homology
comes in.

Homology aims to count the number of holes in a simplicial complex - whether it is a
two-dimensional hole:

A B

C

Or a three-dimensional void:

A B

C

D

When the center of this simplicial complex is hollow. To calculate the homology of a
simplicial complex, we use the Betti numbers. In order to calculate the Betti numbers, we
use the rank and nullity of Simplicial Complexes by ordering them in a matrix. Let’s first
understand how to generate a vector space from our simplicial complexes.

a b

c d

We could represent the ’hole’ we have here as ab, bc, cd, ad but that would open up all the se-
quences of orderings of the above simplicial complexes. Inevitably, this will give us sequences
that repeat, or htose that are not even simplicial complexes. Instead, we would introduce the
vector space of the simplicial complex, represented as the sum ab+ bc+ cd+ ad, and apply
modulo 2 to our vector space. Therefore, the vector space for the above simplicial complex is:
0, ab, bc, cd, ad, ab+ bc, ad+ cd, ab+ ad, bc+ cd, bc+ ad, cd+ ad, ab+ bc+ cd, ab+ bc+ ad, ab+ cd+ ad, bc+ cd+ ad,+ab+ bc+ cd+ ad
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In order to actually put these values into a matrix, we first need to understand rank and
nullity.

Rank and Nullity

Definition 5.1. Let A : Kn− > Km be a linear transformation so that A can be viewed as
an mxn matrix. Then rank(A) + null(A) = n

The rank of a matrix A is the number of non-zero rows when A is in row echelon form.
This is relevant because as we will soon see, the nullity will count all the potential holes in
a given dimension, and will be calculated with the above theorem. In a given matrix, that
has been reduced with ’Row echelon form’ which means that

(1) All non-zero rows are above any row of zeros
(2) The leadering coeffcient of a non-zero row is always strictly to the right of the lead-

ering coefficient of the row above it.

The rank of a matrix A is the number of non-zero rows. It is important to point out that
when row operations are performed on a martix, it does not change the rank of A.

Let’s see the below example.
v0

v1 v2 v3 v4

v5 v6

Now, we can find the vector spaces for each dimension of this simplical complex. K
= v0, v1, v2, v3, v4, v5, v6, v0v3, v0v4, v0v6, v1v2, v3v4, v1v5, v2v5, v2v6, v3v6, v0v3v4 and we can can
represent all the dimensions of K like this. K0 = v0, v1, v2, v3, v4, v5, v6 K1 = v0v3, v0v4, v0v6, v1v2, v3v4, v1v5, v2v5, v2v6, v3v6
K2 =v0v3v4 and everything further on will be ∅ Now we are going to use a boundary opera-
tor, defined as such:

Definition 5.2. Let σ ∈ Km and write σ = σi0σi1 · · · σim . For m = 0, define ∂0 : kc0 → 0
by ∂0 = 0, the matrix of appropriate size consisting of all zeros. For m ≥ 1, define the
boundary operator ∂m : kcm → kcm−1 by

∂m(σ) :=
∑

0≤j≤m

(σ − {σij}) =
∑

0≤j≤m

σi0σi1 · · · σ̂ij · · ·σim

where σ̂ij excludes the value σij .

We had previously seen a boundary operator as all codimesion−1 faces of σ, and that
intuition is how we calcuate the boundary operator for this simplicial complex. This can be
represented in the below martix.
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As you can see, we
play 1 in the matrix when the lower dimensional simplex is a face of the higher dimensional
one. We can do this for 1− simplces and 2− simplicies as well

So, what can we do with this information? As we saw before, we can calculate the rank and
nullity of these matrices. If we were to row - reduce δ1, we would get the rank as 6, and to
calculate the nullity, we take the rank minus the number of columns, which in the cares of
δ!, is 10. Therefore the nullity is 10 − 6 = 4 Similarly, when we row reduce δ2, the rank is
=1, and therefore the nullity has to be 0. Now, we are able to calculate the Betti numbers.

Betti Numbers

Definition 5.3. The i-th Betti number of K is defined to be bi(K) = nullδi − rankδ(i+ 1)

Given this information, we can calculate the Betti number of our example simplical com-

plex, K

v0

v1 v2 v3 v4

v5 v6

H0 is therefore ℸ(7 − 6), which will be 1. Therefore, the 0-th Betti number, or b0 = 1
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Following the same logic, b1 == 3, and any larger Betti number will be zero. // But what
do all of these values mean? The 0-th Betti number is the number of connected components
of the simplicial complex K. Just looking at it, we know that it is going to be 1. The
second Betti number is the number of holes, and again looking at the diagram, we can see
that the number of ’holes’ is going to be 3. Any larger Betti numbers are holes in a higher
dimensional simplex. For example,

A B

C

D

When the inside is hollow, is a void. If we had the simplicial complex

v7

v8

v9

v0

v1 v2 v3 v4

v5 v6

Then the 3rd Betti Number would be 1, as there is one void present. As the dimensions get
higher and higher, we cannot visualise the ’holes’, but the Betti numbers can tell us about
datasets that we cannot visualize. Lets go through another example.
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v1 v12 v2

v13

v3 v34 v4

v24

v25

v45

v245
v5 v6 v7

v56
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Just by looking at it, we can already get some Betti numbers. K2 = v245 K1 =
v12, v13, v24, v34, v25, v45, v56 K0 = v1, v2, v3, v4, v5, v6, v7 and b0 = 2, because we have 2
components. b1 = 1, because of the one hole we have, and b2 = 0 and any i > 2 will be 0, as
we have no more higher dimensional holes.

and

If we where to go and reduce the matrices, δ1 would reduce to

δ1 =



1 0 0 −1 0 0 0
0 1 0 1 0 0 0
0 0 1 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


Ending with 5 non-zero rows, and our nullity being the columns minus the rows, we get
null(δ1) = 7 − 5 = 2. The rank of delta2 is 1, and so the nullity is 1 − 1 = 0, and the rank
of δ0 = 7, and the rank is 0. Therefore, we can conclude that:
H0(K) = k7−5 = k2

H1(K) = k2−1 = k1

H2(K) = k0 = 0
Which all check out with our original observation. This leads us to the below proposition and
corollary, which cannot be proved without linear algebra, and therefore will not be covered
in this paper.

Proposition 5.4. Let K be an n-dimensional simplical complex. Supposed K can be ele-
mentary collapse to K ′. Then bd(K) = bd(K

′) for all d = 0, 1, 2
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Corollary 5.5. Let K ∼ L. Then bi(K) = bi(L) for every integer i ≥ 0
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