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Introduction

Introduction

Fourier’s Claim: any function can be expanded in a series of sines and cosines
of multiples of the variable (needs additional corrections)

Periodic functions

f(x) = a0 +

∞∑
n=1

an cos(nx) +

∞∑
n=1

bn sin(nx) (1)

an, a0 and bn are called the Fourier Coefficients
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Introduction

Orthogonality of Functions

Just like vectors, functions can be orthogonal

Their inner product has to be 0

Definition

Inner Product of 2 functions f and g over an interval [a, b] is defined as:

(f, g) =

∫ b

a

f(x) g(x) dx

Then two functions f and g are orthogonal when

Condition for Orthogonality

(f, g) =

∫ b

a

f(x) g(x) dx = 0
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Introduction

Orthogonality of Trig. Functions

All sines and cosines are orthogonal to each other

Two cosine functions cos(nx) and cos(mx) are orthogonal to each other
except when n = m

Two sine functions sin(nx) and sin(mx) are orthogonal to each other except
when n = m
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Introduction

Computing Fourier Coefficients

To compute an, multiply both sides of Equation 1 by cos(kx), where k is
some integer

Integrate both sides from −π to π

Computing an

Since all the sine terms are orthogonal to cos(kx), and all cosine terms except
cos(kx) are orthogonal to cos(kx),∫ π

−π

f(x) cos(kx) dx = ak

∫ π

−π

(cos(kx))2 dx

= akπ

an =
1

π

∫ π

−π

f(x) cos(nx) dx

Using similar methods, we obtain bn; we can also compute a0, just a special
case of an,

bn =
1

π

∫ π

−π

f(x) sin(nx) dx a0 =
1

2π

∫ π

−π

f(x) dx
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Kernels and Partial Sums

Complex Form, Partial Sums

We can write the Fourier Series in complex form, using Euler’s formulas to
substitute complex terms in place of sines and cosines

Complex Form of the Fourier Series

f(x) =

∞∑
n=−∞

cn e
inx

cn =
an − ibn

2
=

1

2π

∫ π

−π

f(x) e−inx dx

(2)

We will need to work now with the partial sums of the Fourier Series

Definition

The N -th partial sum of the Fourier Series is defined as

SN (f, x) =

N∑
n=−N

cne
inx (3)
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Kernels and Partial Sums

Dirichlet Kernel

A Kernel is the set of elements that goes to 0 under a transformation

Definition

The N -th Dirichlet Kernel is a collection of 2π periodic functions is defined as,

DN (x) =

N∑
n=−N

einx =
sin((N + 1

2 )x)

sin(x2 )
(4)

Proof.

DN (X) = e−iNx(1 + . . .+ ei2Nx)

= e−iNx

(
1− (eix)2N+1

1− eix

)
=

e−iNx − ei(N+1)x

1− eix
× e−

ix
2

e−
ix
2

=
ei(N+ 1

2 )x − e−i(N+ 1
2 )x

e
ix
2 − e−

ix
2

=
sin((N + 1

2 )x)

sin(x2 )
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Kernels and Partial Sums

The Connection

What was the point of these definitions? It turns out we can do something
very nice with how we write our partial sums,

A new way to write SN (f, x)

Using Equations (2) and (3) we can write:

SN (f, x) =

N∑
n=−N

(
1

2π

∫ π

−π

f(k) e−ink dk

)
einx

=
1

2π

∫ π

−π

f(k)

(
N∑

n=−N

ein(x−k)

)
dk

=
1

2π

∫ π

−π

f(k)DN (x− k) dk
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Kernels and Partial Sums

The Connection contd.

This form may seem familiar to you - our partial sum is now in the form of an
operation called a convolution

For now, we can understand a convolution as an operation on two functions,
like multiplication or addition, that gives us a third function

Definition

The convolution of two functions f(x) and g(x) is defined as:

(f ∗ g)(x) =

∫ ∞

−∞
f(t) g(x− t) dt

Where ∗ is the convolution operator

Definition

We can redefine the partial sums of the Fourier Series as:

SN (f, x) = (f ∗DN )(x) (5)
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Kernels and Partial Sums

Cesàro Summation

Definition

The N -th Cesàro sum of a series is defined as the sequence of arithmetic means of
the first N partial sums of that series.

Mathematically,

σN = lim
N→∞

1

N + 1

N∑
n=0

SN (f, x)

We say the series is Cesàro summable if σN converges to L ∈ R as N → ∞.

Why do we talk about Cesàro sums? It turns out it’s better to work with
arithmetic means of partial sums than partial sums themselves.

Our Cesàro limit L is equal to the usual limit if it exists.

The Cesàro limit may exist even if the usual limit does not.
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Cesàro Summation

Definition
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Cesàro Summation

Definition
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Cesàro Summation

Definition
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Kernels and Partial Sums

Fejér Kernel

Definition

We define the N -th Fejér Kernel as the Cesàro sum of the Dirichlet Kernel,

KN (x) =

∑N
n=0 DN (x)

N + 1
=

sin2( (N+1)x
2 )

(N + 1)(sin2(x2 ))

Since the N -th Fejér Kernel is the arithmetic mean of the first N Dirichlet
Kernel...

...and the N -th Cesàro sum of the Fourier Series is the arithmetic mean of
the first N partial sums...

and recalling Equation 5,

Definition

We can redefine the Cesàro sum of the partial sums of the Fourier Series:

σN (f, x) = (f ∗KN )(x) (6)
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Kernel...

...and the N -th Cesàro sum of the Fourier Series is the arithmetic mean of
the first N partial sums...

and recalling Equation 5,

Definition

We can redefine the Cesàro sum of the partial sums of the Fourier Series:

σN (f, x) = (f ∗KN )(x) (6)
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Convergence and Divergence

Convergence and Divergence

Theorem

Let {KN}∞n=1 be a family of good kernels and let f be an integrable function on
the circle.

Then whenever f is continuous at x,

lim
N→∞

(f ∗ KN )(x) = f(x)

If f is continuous, then convergence is uniform on [−π, π].

However, notice that f only being continuous, or f only being integrable
does not guarantee convergence. Indeed,

Theorem

There is a function g which is 2π periodic and continuous for which:

lim sup
N→∞

SN (0) = ∞

Where SN (0) is the partial sum of the Fourier Series for g, evaluated at x = 0.
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Applications

Applications

Solving PDEs

Heat Equation
Waves and Vibrations

Signal Processing

Acoustics (Noise Removal, Filtering, etc)
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Conclusion

Thank you!
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