An Exposition to the Fourier Series

Amr Nazir Ahmad

July 15, 2024

メロメ メ御 トメ ミメ メ ミメー

重

Table of Contents

[Kernels and Partial Sums](#page-17-0)

[Convergence and Divergence](#page-43-0)

 299

メロメメ 御 メメ きょく ミメー

Introduction

Fourier's Claim: any function can be expanded in a series of sines and cosines of multiples of the variable (needs additional corrections)

 298

メロメメ 御 メメ きょくきょう

Introduction

- Fourier's Claim: any function can be expanded in a series of sines and cosines of multiples of the variable (needs additional corrections)
- **Periodic functions**

 298

メロメメ 御 メメ きょくきょう

Introduction

- Fourier's Claim: any function can be expanded in a series of sines and cosines of multiples of the variable (needs additional corrections)
- **Periodic functions**

$$
f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos(nx) + \sum_{n=1}^{\infty} b_n \sin(nx)
$$
 (1)

 \bullet a_n , a_0 and b_n are called the Fourier Coefficients

 QQ

メロメメ 御 メメ きょく ミメー

• Just like vectors, functions can be orthogonal

 299

K ロ > K 個 > K 경 > K 경 > 시 경

- **Just like vectors, functions can be orthogonal**
- Their inner product has to be 0

 299

メロメメ 御 メメ きょく ミメー

- **Just like vectors, functions can be orthogonal**
- Their inner product has to be 0

Definition

Inner Product of 2 functions f and g over an interval $[a, b]$ is defined as:

$$
(f,g) = \int_{a}^{b} f(x) g(x) dx
$$

つへへ

メロトメ 倒 トメ ヨ トメ ヨ トー

- **•** Just like vectors, functions can be orthogonal
- Their inner product has to be 0

Definition

Inner Product of 2 functions f and g over an interval $[a, b]$ is defined as:

$$
(f,g) = \int_{a}^{b} f(x) g(x) dx
$$

• Then two functions f and q are orthogonal when

Condition for Orthogonality

$$
(f, g) = \int_{a}^{b} f(x) g(x) dx = 0
$$

 $2Q$

メロトメ 伊 トメ ミトメ ミト

Orthogonality of Trig. Functions

• All sines and cosines are orthogonal to each other

 299

K ロ > K 個 > K 경 > K 경 > 시 경

Orthogonality of Trig. Functions

- All sines and cosines are orthogonal to each other
- Two cosine functions $\cos(nx)$ and $\cos(mx)$ are orthogonal to each other except when $n = m$

 QQ

メロメメ 御 メメ きょく ミメー

Orthogonality of Trig. Functions

- All sines and cosines are orthogonal to each other \bullet
- Two cosine functions $\cos(nx)$ and $\cos(mx)$ are orthogonal to each other \bullet except when $n = m$
- Two sine functions $sin(nx)$ and $sin(mx)$ are orthogonal to each other except when $n = m$

 QQ

≮ロト ⊀母 ▶ ≮ ヨ ▶ ⊀ ヨ ▶

• To compute a_n , multiply both sides of Equation [1](#page-2-1) by $cos(kx)$, where k is some integer

 299

K ロ > K 個 > K 경 > K 경 > 시 경

- To compute a_n , multiply both sides of Equation [1](#page-2-1) by $cos(kx)$, where k is some integer
- Integrate both sides from $-\pi$ to π

 298

K ロ > K 個 > K 경 > K 경 > 시 경

- To compute a_n , multiply both sides of Equation [1](#page-2-1) by $cos(kx)$, where k is some integer
- Integrate both sides from $-\pi$ to π

Computing a_n

Since all the sine terms are orthogonal to $cos(kx)$, and all cosine terms except $cos(kx)$ are orthogonal to $cos(kx)$,

 Ω

メロメメ 倒 メメ きょくきょう

- To compute a_n , multiply both sides of Equation [1](#page-2-1) by $cos(kx)$, where k is some integer
- Integrate both sides from $-\pi$ to π

Computing a_n

Since all the sine terms are orthogonal to $cos(kx)$, and all cosine terms except $cos(kx)$ are orthogonal to $cos(kx)$,

$$
\int_{-\pi}^{\pi} f(x) \cos(kx) dx = a_k \int_{-\pi}^{\pi} (\cos(kx))^2 dx
$$

$$
= a_k \pi
$$

$$
a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx
$$

Using similar methods, we obtain b_n ; we can also compute a_0 , just a special case of a_n .

 Ω

メロメメ 御 メメ きょく ミメー

- • To compute a_n , multiply both sides of Equation [1](#page-2-1) by $cos(kx)$, where k is some integer
- Integrate both sides from $-\pi$ to π

Computing a_n

Since all the sine terms are orthogonal to $cos(kx)$, and all cosine terms except $cos(kx)$ are orthogonal to $cos(kx)$,

$$
\int_{-\pi}^{\pi} f(x) \cos(kx) dx = a_k \int_{-\pi}^{\pi} (\cos(kx))^2 dx
$$

$$
= a_k \pi
$$

$$
a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx
$$

Using similar methods, we obtain b_n ; we can also compute a_0 , just a special case of a_n .

$$
b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx \qquad a_0 =
$$

$$
a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \, dx
$$

Amr Nazir Ahmad [Fourier Series](#page-0-0) July 15, 2024 6/15 (15) 15, 2024 6/15 (15) 15, 2024 6. The Series Series Series

We can write the Fourier Series in complex form, using Euler's formulas to substitute complex terms in place of sines and cosines

 298

メロメメ 御 メメ きょくきょう

We can write the Fourier Series in complex form, using Euler's formulas to substitute complex terms in place of sines and cosines

Complex Form of the Fourier Series

$$
f(x) = \sum_{n = -\infty}^{\infty} c_n e^{inx}
$$

$$
c_n = \frac{a_n - ib_n}{2} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx
$$

 Ω

メロトメ 倒 トメ ミトメ ミト

(2)

We can write the Fourier Series in complex form, using Euler's formulas to substitute complex terms in place of sines and cosines

Complex Form of the Fourier Series

$$
f(x) = \sum_{n = -\infty}^{\infty} c_n e^{inx}
$$

$$
c_n = \frac{a_n - ib_n}{2} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx
$$

We will need to work now with the partial sums of the Fourier Series

メロメ メタメメ ミメメ ヨメ

(2)

 Ω

We can write the Fourier Series in complex form, using Euler's formulas to substitute complex terms in place of sines and cosines

Complex Form of the Fourier Series

$$
f(x) = \sum_{n = -\infty}^{\infty} c_n e^{inx}
$$

$$
c_n = \frac{a_n - ib_n}{2} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx
$$

We will need to work now with the partial sums of the Fourier Series

Definition

The N -th partial sum of the Fourier Series is defined as

$$
S_N(f, x) = \sum_{n=-N}^{N} c_n e^{inx}
$$
 (3)

Amr Nazir Ahmad **[Fourier Series](#page-0-0) American Communication** July 15, 2024 7/15

(2)

A Kernel is the set of elements that goes to 0 under a transformation

 299

K ロ) K d) X (B) X (B) (B)

• A Kernel is the set of elements that goes to 0 under a transformation

Definition

The N-th Dirichlet Kernel is a collection of 2π periodic functions is defined as,

 298

• A Kernel is the set of elements that goes to 0 under a transformation

Definition

The N-th Dirichlet Kernel is a collection of 2π periodic functions is defined as,

$$
D_N(x) = \sum_{n=-N}^{N} e^{inx} = \frac{\sin((N + \frac{1}{2})x)}{\sin(\frac{x}{2})}
$$
(4)

 298

≮ロト ⊀個 ▶ ≮ ヨ ▶ ⊀ ヨ ▶

• A Kernel is the set of elements that goes to 0 under a transformation

Definition

The N-th Dirichlet Kernel is a collection of 2π periodic functions is defined as,

$$
D_N(x) = \sum_{n=-N}^{N} e^{inx} = \frac{\sin((N + \frac{1}{2})x)}{\sin(\frac{x}{2})}
$$
(4)

Proof.

$$
D_N(X) = e^{-iNx}(1 + \dots + e^{i2Nx})
$$

= $e^{-iNx} \left(\frac{1 - (e^{ix})^{2N+1}}{1 - e^{ix}} \right)$
= $\frac{e^{-iNx} - e^{i(N+1)x}}{1 - e^{ix}} \times \frac{e^{-\frac{ix}{2}}}{e^{-\frac{ix}{2}}}$

• A Kernel is the set of elements that goes to 0 under a transformation

Definition

The N-th Dirichlet Kernel is a collection of 2π periodic functions is defined as,

$$
D_N(x) = \sum_{n=-N}^{N} e^{inx} = \frac{\sin((N + \frac{1}{2})x)}{\sin(\frac{x}{2})}
$$
(4)

Proof.

$$
D_N(X) = e^{-iNx}(1 + \dots + e^{i2Nx})
$$

= $e^{-iNx} \left(\frac{1 - (e^{ix})^{2N+1}}{1 - e^{ix}} \right)$
= $\frac{e^{-iNx} - e^{i(N+1)x}}{1 - e^{ix}} \times \frac{e^{-\frac{ix}{2}}}{e^{-\frac{ix}{2}}} = \frac{\sin((N + \frac{1}{2})x)}{\sin(\frac{x}{2})}$

The Connection

• What was the point of these definitions? It turns out we can do something very nice with how we write our partial sums,

重

 299

メロメメ 御 メメ きょくきょう

The Connection

What was the point of these definitions? It turns out we can do something very nice with how we write our partial sums,

A new way to write $S_N(f, x)$

Using Equations [\(2\)](#page-17-1) and [\(3\)](#page-17-2) we can write:

$$
S_N(f, x) = \sum_{n=-N}^{N} \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} f(k) e^{-ink} dk \right) e^{inx}
$$

= $\frac{1}{2\pi} \int_{-\pi}^{\pi} f(k) \left(\sum_{n=-N}^{N} e^{in(x-k)} \right) dk$
= $\frac{1}{2\pi} \int_{-\pi}^{\pi} f(k) D_N(x - k) dk$

目

イロト イ部 トイ ヨ トイ ヨ トー

• This form may seem familiar to you - our partial sum is now in the form of an operation called a convolution

 299

K ロ > K 個 > K 경 > K 경 > 시 경

- This form may seem familiar to you our partial sum is now in the form of an operation called a convolution
- For now, we can understand a convolution as an operation on two functions, like multiplication or addition, that gives us a third function

 299

K ロ > K 個 > K 경 > K 경 > 시 경

- This form may seem familiar to you our partial sum is now in the form of an operation called a convolution
- For now, we can understand a convolution as an operation on two functions, like multiplication or addition, that gives us a third function

Definition

The convolution of two functions $f(x)$ and $g(x)$ is defined as:

$$
(f * g)(x) = \int_{-\infty}^{\infty} f(t) g(x - t) dt
$$

Where ∗ is the convolution operator

Definition

We can redefine the partial sums of the Fourier Series as:

- **•** This form may seem familiar to you our partial sum is now in the form of an operation called a convolution
- For now, we can understand a convolution as an operation on two functions, like multiplication or addition, that gives us a third function

Definition

The convolution of two functions $f(x)$ and $g(x)$ is defined as:

$$
(f * g)(x) = \int_{-\infty}^{\infty} f(t) g(x - t) dt
$$

Where ∗ is the convolution operator

Definition

We can redefine the partial sums of the Fourier Series as:

$$
S_N(f, x) = (f * D_N)(x)
$$
\n(5)

Amr Nazir Ahmad [Fourier Series](#page-0-0) July 15, 2024 10 / 15 and 10 μ / 15 and 10 μ

Definition

The N -th Cesàro sum of a series is defined as the sequence of arithmetic means of the first N partial sums of that series.

メロトメ 倒 トメ ミトメ ミト

 299

Definition

The N -th Cesàro sum of a series is defined as the sequence of arithmetic means of the first N partial sums of that series. Mathematically,

$$
\sigma_N = \lim_{N \to \infty} \frac{1}{N+1} \sum_{n=0}^{N} S_N(f, x)
$$

 QQ

メロメメ 倒 メメ ミメメ ヨメー

Definition

The N -th Cesàro sum of a series is defined as the sequence of arithmetic means of the first N partial sums of that series. Mathematically,

$$
\sigma_N = \lim_{N \to \infty} \frac{1}{N+1} \sum_{n=0}^{N} S_N(f, x)
$$

We say the series is Cesàro summable if σ_N converges to $L \in \mathbb{R}$ as $N \to \infty$.

• Why do we talk about Cesàro sums? It turns out it's better to work with arithmetic means of partial sums than partial sums themselves.

 Ω

Definition

The N -th Cesàro sum of a series is defined as the sequence of arithmetic means of the first N partial sums of that series. Mathematically,

$$
\sigma_N = \lim_{N \to \infty} \frac{1}{N+1} \sum_{n=0}^{N} S_N(f, x)
$$

We say the series is Cesàro summable if σ_N converges to $L \in \mathbb{R}$ as $N \to \infty$.

- Why do we talk about Cesàro sums? It turns out it's better to work with arithmetic means of partial sums than partial sums themselves.
- \bullet Our Cesàro limit L is equal to the usual limit if it exists.

 Ω

Definition

The N -th Cesàro sum of a series is defined as the sequence of arithmetic means of the first N partial sums of that series. Mathematically,

$$
\sigma_N = \lim_{N \to \infty} \frac{1}{N+1} \sum_{n=0}^{N} S_N(f, x)
$$

We say the series is Cesàro summable if σ_N converges to $L \in \mathbb{R}$ as $N \to \infty$.

- Why do we talk about Cesàro sums? It turns out it's better to work with arithmetic means of partial sums than partial sums themselves.
- \bullet Our Cesàro limit L is equal to the usual limit if it exists.
- **•** The Cesàro limit may exist even if the usual limit does not.

Definition

We define the N -th Fejér Kernel as the Cesàro sum of the Dirichlet Kernel,

 299

メロメメ 倒 メメ きょくきょう

Definition

We define the N -th Fejér Kernel as the Cesàro sum of the Dirichlet Kernel,

$$
K_N(x) = \frac{\sum_{n=0}^{N} D_N(x)}{N+1} = \frac{\sin^2(\frac{(N+1)x}{2})}{(N+1)(\sin^2(\frac{x}{2}))}
$$

 298

メロメメ 倒 メメ きょくきょう

Definition

We define the N -th Fejér Kernel as the Cesàro sum of the Dirichlet Kernel,

$$
K_N(x) = \frac{\sum_{n=0}^{N} D_N(x)}{N+1} = \frac{\sin^2(\frac{(N+1)x}{2})}{(N+1)(\sin^2(\frac{x}{2}))}
$$

 \bullet Since the N-th Fejér Kernel is the arithmetic mean of the first N Dirichlet Kernel...

 298

メロメメ 御 メメ きょくきょう

Definition

We define the N -th Fejér Kernel as the Cesàro sum of the Dirichlet Kernel,

$$
K_N(x) = \frac{\sum_{n=0}^{N} D_N(x)}{N+1} = \frac{\sin^2(\frac{(N+1)x}{2})}{(N+1)(\sin^2(\frac{x}{2}))}
$$

- \bullet Since the N-th Fejér Kernel is the arithmetic mean of the first N Dirichlet Kernel...
- \bullet ...and the N-th Cesàro sum of the Fourier Series is the arithmetic mean of the first N partial sums...

 Ω

Definition

We define the N -th Fejér Kernel as the Cesàro sum of the Dirichlet Kernel,

$$
K_N(x) = \frac{\sum_{n=0}^{N} D_N(x)}{N+1} = \frac{\sin^2(\frac{(N+1)x}{2})}{(N+1)(\sin^2(\frac{x}{2}))}
$$

- \bullet Since the N-th Fejér Kernel is the arithmetic mean of the first N Dirichlet Kernel...
- \bullet ...and the N-th Cesàro sum of the Fourier Series is the arithmetic mean of the first N partial sums...
- and recalling Equation [5,](#page-28-0)

 Ω

Definition

We define the N -th Fejér Kernel as the Cesàro sum of the Dirichlet Kernel,

$$
K_N(x) = \frac{\sum_{n=0}^{N} D_N(x)}{N+1} = \frac{\sin^2(\frac{(N+1)x}{2})}{(N+1)(\sin^2(\frac{x}{2}))}
$$

- \bullet Since the N-th Fejér Kernel is the arithmetic mean of the first N Dirichlet Kernel...
- \bullet ...and the N-th Cesàro sum of the Fourier Series is the arithmetic mean of the first N partial sums...
- and recalling Equation [5,](#page-28-0)

Definition

We can redefine the Cesàro sum of the partial sums of the Fourier Series:

$$
\sigma_N(f, x) = (f * K_N)(x) \tag{6}
$$

Amr Nazir Ahmad III (1993) 12 (1994) 13, 2024 12 / 15, 2024 12 / 15, 2024 12 / 15, 2024 12 / 15, 2024 12 / 15

 \leftarrow \Box

Theorem

Let $\{K_N\}_{n=1}^\infty$ be a family of good kernels and let f be an integrable function on the circle.

 298

メロメメ 御 メメ きょくきょう

Theorem

Let $\{K_N\}_{n=1}^\infty$ be a family of good kernels and let f be an integrable function on the circle. Then whenever f is continuous at x ,

 299

メロメメ 倒 メメ きょくきょう

Theorem

Let $\{K_N\}_{n=1}^\infty$ be a family of good kernels and let f be an integrable function on the circle. Then whenever f is continuous at x ,

$$
\lim_{N \to \infty} (f \ast K_N)(x) = f(x)
$$

 299

Theorem

Let $\{K_N\}_{n=1}^\infty$ be a family of good kernels and let f be an integrable function on the circle. Then whenever f is continuous at x ,

$$
\lim_{N \to \infty} (f \ast K_N)(x) = f(x)
$$

If f is continuous, then convergence is uniform on $[-\pi, \pi]$.

 Ω

≮ロト ⊀個 ▶ ≮ ヨ ▶ ⊀ ヨ ▶

Theorem

Let $\{K_N\}_{n=1}^\infty$ be a family of good kernels and let f be an integrable function on the circle. Then whenever f is continuous at x ,

$$
\lim_{N \to \infty} (f \ast K_N)(x) = f(x)
$$

If f is continuous, then convergence is uniform on $[-\pi, \pi]$.

 \bullet However, notice that f only being continuous, or f only being integrable does not guarantee convergence.

 Ω

≮ロト ⊀母 ▶ ≮ ヨ ▶ ⊀ ヨ ▶

Theorem

Let $\{K_N\}_{n=1}^\infty$ be a family of good kernels and let f be an integrable function on the circle. Then whenever f is continuous at x ,

$$
\lim_{N \to \infty} (f \ast K_N)(x) = f(x)
$$

If f is continuous, then convergence is uniform on $[-\pi, \pi]$.

 \bullet However, notice that f only being continuous, or f only being integrable does not guarantee convergence. Indeed,

Theorem

There is a function g which is 2π periodic and continuous for which:

 $\limsup S_N(0)=\infty$ $N\rightarrow\infty$

Where $S_N(0)$ is the partial sum of the Fourier Series for q, evaluated at $x=0$.

Applications

- **Solving PDEs**
	- **Heat Equation**
	- Waves and Vibrations
- **•** Signal Processing
- Acoustics (Noise Removal, Filtering, etc)

 298

メロメメ 御 メメ きょくきょう

Thank you!

 299

メロトメ 御 トメ 君 トメ 君 トー 君