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1 Introduction

1.1 Definition

The aim of a Fourier Series is to express a periodic function in terms of sines
and cosines (the purpose of this will be discussed later in this paper). We define
a periodic function for which the following holds true:

f(x) = f(x+ nT )

where n is any integer and T is the period of the function. since the Fourier
Series is just a sum of sines and cosines, we can define the Fourier Series of a
function f(x) as the following:

f(x) = a0 +

∞∑
n=1

an cos(nx) +

∞∑
n=1

bn sin(nx) (1)

where a0 is simply the cosine term evaluated at n=0 (this is not needed for sine,
since at n=0, the sine term is 0), and an and bn are the coefficients of the cosine
and sine terms respectively.

1.2 Orthogonality of Functions

In order to compute the coefficients a0, an and b0, we have to use the orthogo-
nality of functions. Similar to how two vectors are said to be orthogonal if their
dot product is 0, two functions g(x) and h(x) are said to be orthogonal if∫ b

a

g(x)h(x) = 0
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Using orthogonality, we can come to the following conclusions that will help us
compute the coefficients:

For m, n ∈ N andm ̸= n∫ π

−π

cos(nx) cos(mx) dx = 0∫ π

−π

sin(nx) sin(mx) dx = 0

For m, n ∈ N∫ π

−π

sin(nx) cos(mx) dx = 0

(2)

1.3 Computing a0, an and bn

We can use the general form of the Fourier Series shown in 1, and the results
shown in 2 to compute a0, an and bn0. Let us first multiply both sides of the
equation by cos(kx) and integrate from −π to π:∫ π

−π

f(x) cos(kx) dx = ak

∫ π

−π

(cos(kx))2 dx (3)

because all the sines are orthogonal to the cos(kx) term. All the cosine terms
are also orthogonal to the cos(kx) term except for the singular case where n = k.
The integral of (cos(kx))2 for any value of k is simply π. Thus, our equation is
simplified to ∫ π

−π

f(x) cos(kx) dx = akπ

ak =
1

π

∫ π

−π

f(x) cos(kx) dx

(4)

bk would be calculated in exactly the same way; we would multiply both sides
of Equation 1, and would get exactly the same equation as Equation (4), with a
sine instead of a cosine - once again, due to orthogonality, all the cosine terms
and all but one of the sine terms would drop out, and we would get:

bk =
1

π

∫ π

−π

f(x) sin(kx) dx (5)

a0 is just a special case of Equation (3):∫ π

−π

f(x) cos(kx) dx = ak

∫ π

−π

(cos(0))2 dx

= ak

∫ π

−π

1

= ak2π
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Thus

a0 =
1

2π

∫ π

−π

f(x) dx (6)

which is just the average of a0.

2 Complex form

2.1 Representation

Thanks to Euler’s formulas, we can rewrite the Fourier Series in complex form:

f(x) = a0 +

∞∑
n=1

(an cosnx+ bn sinnx)

= a0 +

∞∑
n=1

(
an

einx + e−inx

2
+ bn

einx − e−inx

2i

)

= a0 +

∞∑
n=1

an − ibn
2

einx +

∞∑
n=1

an + ibn
2

e−inx

= a0 +

∞∑
n=1

an − ibn
2

einx +

−1∑
n=−∞

a−n + ib−n

2
einx

Since the cos term in an has n, and the sine term in bn has n,

an = a−n

bn = −b−n

Writing the a0 term as part of our cosine sum, we get:

f(x) =

∞∑
n=0

an − ibn
2

einx +

−1∑
n=−∞

an − ibn
2

einx

f(x) =

∞∑
−∞

cne
inx

cn is then

cn =
an − ibn

2

=
1

2π

∫ π

−π

f(x) (cos(nx)− i sin(nx)) dx

=
1

2π

∫ π

−π

f(x) e−inx dx

(7)
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2.2 Partial Sums

One of the reasons that the complex representation of the Fourier Series is so
useful is because of how effective and natural it is to use when we work with
partial sums. We will define the N -th partial sum SN (f, x) of the Fourier Series
as

SN (f, x) =

N∑
k=−N

cke
ikx (8)

When N is a non-negative integer. Let us define the N -th Dirichlet Kernel,
which is a collection of periodic functions defined as:

DN (x) =

N∑
k=−N

eikx (9)

The kernel functions are 2π periodic We can prove that this is equal to
sin((n+ 1

2 )x

sin( x
2 )

:

DN (x) = e−iNx + . . .+ eiNx

= e−iNx(1 + . . .+ ei2Nx)

Inside the brackets, we have a geometric series with a common ratio r of eix.

Recall that the sum of a geometric series is a(1−rn+1)
1−r . Then our expression for

DN (x) becomes:

DN (x) = e−iNx

(
1− (eix)2N+1

1− eix

)
=

e−iNx − ei(N+1)x

1− eix

=
e−iNx − ei(N+1)x

1− eix
× e−

ix
2

e−
ix
2

=
ei(N+ 1

2 )x − e−i(N+ 1
2 )x

e
ix
2 − e−

ix
2

=
sin((N + 1

2 )x)

sin(x2 )

It turns out we can represent the partial sums of the Fourier Series using the
Dirichlet Kernel. Using (7) and (8), we get:

SN (f, x) =

N∑
n=−N

(
1

2π

∫ π

−π

f(k) e−ink dk

)
einx

=
1

2π

∫ π

−π

f(k)

(
N∑

n=−N

ein(x−k)

)
dk

=
1

2π

∫ π

−π

f(k)DN (x− k) dk
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Figure 1: The Square Wave

We have therefore shown that:

SN (f, x) = (f ∗DN )(x) (10)

Where ∗ is a convolution operator (more in Appendix A).
These partial sums can then help us in approximating the Fourier Series and

resolving the Gibbs Phenomenon (see subsection 4.1).

3 An Example of Use of the Fourier Series

Now that we have computed the coefficients, we can use the Fourier Series
to approximate various functions. We will compute the Fourier Series for the
Square Wave. Since it is periodic, we only need to define it for one period:

f(x) =

{
1 0 ≤ x < π

−1 −π ≤ x < 0

Clearly, the function is odd, and so there will be no cosines (since cosines are
only even). In other words, an will be 0 for all cosine terms. Let us compute
the coefficient bk for the sine terms:

bk =
2

π

∫ π

0

f(x) sin(kx) dx
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Figure 2: Fourier Series Approximation of the Square Wave - computed till n
= 500

We can do this since both f(x) and sin(kx) are odd, and so their product is
even. Notice that from 0 to π, f(x) is simply 1. Thus:

bk =
2

π

∫ π

0

1 · sin(kx) dx

=
2

π
· − cos(kx)

k

∣∣∣∣∣
π

0

Depending on whether k is even or odd, we get different solutions. For even
values of k, the integral evaluates to 0:

2

π
· − cos(kx)

k

∣∣∣∣∣
π

0

=

{
4
kπ k odd

0 k even

Since all sine terms with even values of bn are killed, we get the following Fourier
Series for the Square Wave:

f(x) =
4

π

∞∑
n=1,3,5,...

1

n
sin(nx)

As can be seen in Figure 2, even computed to 500 terms, the Fourier Series is
a very good approximation of the Square Wave.
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4 Cesàro Summation, Gibbs Phenomenon

4.1 The Gibbs Phenomenon

We notice a problem in Figure 2; at the edges of the jumps in the Square Wave,
the Fourier Series overshoots and undershoots. At these discontinuities, it is a
poor approximation of the function. This is not surprising; it does not seem
possible to reconstruct a discontinuous function from a sum of continuous ones.
We can say we can reconstruct the discontinuous function ’almost everywhere’,
except at the points of discontinuity. This ’rippling’ around the discontinuities
is called the Gibbs phenomenon. It does not shorten as the number of terms in
our sum goes to infinity, but it does narrow.

The Fourier Series - or more precisely, its finite sums - are not a replica of
our original function. To resolve this, and the Gibbs Phenomenon, we will use
the Cesàro summation of the partial sums of the Fourier Series.

4.2 Cesàro Summation

Let fn(x) be a series, and

SN (f, x) =

N∑
n=0

fn(x)

be the N -th partial sum of that series. Then the N -th Cesàro sum σN is:

σN = lim
N→∞

1

N + 1

N∑
n=0

SN (f, x) (11)

We say the series is Cesàro summable if σN converges to L ∈ R as N → ∞.
What is the point of these Cesàro sums? It turns out these averages show

better behaviour than partial sums in the sense that our Cesàro limit (if it
exists) will equal the usual limit (when it exists) and may even exist when the
usual limit does not.

4.3 The Fejér Kernel

The N -th Fejér Kernel is simply the Cesàro sum of the partial sums of the
Dirchilet Kernels. We prefer it over the Dirchilet Kernel because it is a good
kernel, whereas the latter is a bad one (see B for more). From the way we
defined the Cesàro sum, we can see the Fejér Kernel is a sort of averaging of
the Dirchilet Kernels - it makes sense, then, that we might be able to use it to
’smooth’ the overshoot and undershoot that is the Gibbs Phenomenon. Let us
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be a bit more mathematically rigorous; the Fejér Kernel is defined as:

KN (x) =

∑N
n=0 DN (x)

N + 1

From Equation (9),

KN (x) =
1

N + 1

N∑
n=0

n∑
k=−n

eikx

=
1

N + 1

(
0∑

k=0

eikx +

1∑
k=−1

eikx +

2∑
k=−2

+ . . .+

n∑
k=−n

eikx

)

=
1

N + 1

N∑
k=−N

(n+ 1− |k|)eikx

Then the Cesàro sum of the partial sums of the Fourier Series is given as follows:

σN (f, x) = (f ∗KN )(x) (12)

This can be seen by the fact that the N -th Cesàro sum is the arithmetic mean of
the partial sums, and so must be the convolution of f with the arithmetic mean
of the Dirichlet Kernel (keeping in mind Equation (9)). Before proceeding, let
us derive the trigonometric representation of the Fejér Kernel:

KN (x) =

∑N
n=0 DN (x)

N + 1

=

∑N
n=0 sin((n+ 1

2 )x)

(N + 1)(sin(x2 ))

=

∑N
n=0 sin((n+ 1

2 )x)

(N + 1)(sin(x2 ))
×

sin(x2 )

sin(x2 )

=

∑N
n=0 sin(

x
2 ) sin((n+ 1

2 )x)

2(N + 1)(sin2(x2 ))

=

∑N
n=0 cos(nx)− cos((n+ 1)x)

2(N + 1)(sin2(x2 ))

Which is a telescoping sum - all but 2 terms cancel. We thus get:

KN (x) =
1− cos((N + 1)x)

2(N + 1)(sin2(x2 ))

=
sin2( (N+1)x

2 )

(N + 1)(sin2(x2 ))

as the trigonometric representation of the Fejér Kernel. It is immediately ob-
vious from this trigonometric representation that the Fejér kernel is always
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non-negative - this is an incredibly important result to resolve the Gibbs phe-
nomenon.

How is the Fejér kernel relevant? Equation (12) shows us that the Cesàro
sum of the partial sums - its average, so to speak - is simply a convolution of f(x)
and KN (x). Essentially, when we replace our partial sums with their Cesàro
sums, we smooth the overshoot and undershoot that is the Gibbs phenomenon,
by smoothing and averaging it, so to speak.

5 Convergence

Let us put Cesàro sums on one side for a moment, and review the fundamental
claim made by Fourier as in Equation (1). Generally, we can show pointwise
convergence under the following conditions:

Theorem 1 Let f be a 2π periodic function that is continuous and has a
bounded continuous derivative, except, possible at a finite number of points.
Then Equation (1) holds at every x ∈ R where f is continuous.

Though we have discussed how the Fejér kernel and Cesàro sums of the partial
sums of the Fourier Series are vital in mitigating the Gibbs Phenomenon, we
have not yet discussed on of the key benefits of these techniques, which stems
from the fact that the Fejér kernel is a good kernel and the Dirichlet Kernel is
a bad kernel (see Appendix B for more). There are two significant results have
to do with the convergence of the Fourier Series

Theorem 2 Let {KN}∞n=1 be a family of good kernels and let f be an integrable
function on the circle. Then whenever f is continuous at x,

lim
N→∞

(f ∗ KN )(x) = f(x)

If f is continuous, then convergence is uniform on [−π, π].

Let us prove this: f ϵ > 0 and f is continuous at x, choose δ such that if |y| < δ,
then |f(x− y)− f(x)| < ϵ.

Using the first property of good kernels, we can write

(f ∗KN )(x)− f(x) =
1

2π

∫ π

−π

KN (y)f(x− y) dy − f(x)

=
1

2π

∫ π

−π

KN (y)[f(x− y)− f(x)] dy.
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Taking the absolute value,

|(f ∗KN )(x)− f(x)| =
∣∣∣∣ 12π

∫ π

−π

KN (y)[f(x− y)− f(x)] dy

∣∣∣∣
≤ 1

2π

∫ π

−π

|KN (y)||f(x− y)− f(x)| dy

≤ 1

2π

∫
|y|<δ

|KN (y)||f(x− y)− f(x)| dy

+
1

2π

∫
δ≤|y|≤π

|KN (y)||f(x− y)− f(x)| dy

≤ 1

2π

(
ϵ

∫
|y|<δ

|KN (y)| dy + 2B

∫
δ≤|y|≤π

|KN (y)| dy

)
,

where B is a bound for |f |.
The second property of good kernels shows that

ϵ

2π

∫ π

−π

|KN (y)| dy ≤ ϵM

2π
,

for all n ≥ 1. The third property of good kernels shows that

2B

2π

∫
δ≤|y|≤π

|KN (y)| dy ≤ ϵ,

for all n ≥ N(δ). Therefore, we have

|(f ∗KN )(x)− f(x)| ≤ Cϵ.

With Cϵ becoming arbitrarily small as ϵ goes to 0.

6 Divergence

Note that Thoerem 2 does not guarantee that a continuous function will con-
verge. Indeed, it was proved by Du-Bois Reymond that:

Theorem 3 There is a function g which is 2π periodic and continuous for
which:

lim sup
N→∞

SN (0) = ∞

Where SN (0) is the partial sum of the Fourier Series for g, evaluated at x = 0.

Similarly, for integrable functions, Kolmogorrof proved:

Theorem 4
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7 Using the Fourier Series to Solve PDEs

One of the most useful ways to employ the Fourier Series is while solving Partial
Differential Equations.

7.1 Laplace Equation

The Laplace Equation is one of the most fundamental second-order PDEs and
arises in the heat and diffusion equations. In the study of heat - which we
will use as an example - it is the steady state heat equation. The differential
equation is as follows:

∂2U

∂x2
+

∂2U

∂y2
= 0

We will use the Fourier Series to solve the Laplace equation inside a circle. Our
heat source is a point source on the boundary of a unit circle on the x axis, and
on the rest of the body, the temperature is 0. In other words, the boundary
function is, for all practical purposes, a Dirac Delta function. Since we are
dealing with circles, we will use polar coordinates, and we will define U as

U(r, θ) = a0 +

∞∑
n=1

anr
n cos(nθ) +

∞∑
n=1

anr
n sin(nθ)

which satisfies the Laplace equation. We must now use boundary conditions
to solve it. As mentioned above, on the boundary, we have the Dirac Delta
function:

δ(θ) = U(1, θ)

= a0 +

∞∑
n=1

an cos(nθ)

We have no sines, as the Delta function is even. Let us now compute the
coefficients:

a0 =
1

2π

∫ π

π

δ(θ) dθ

=
1

2π

(13)

where a0 is the average value of the temperature.

an =
1

π

∫ π

−pi

δ(θ) cos(nθ) dθ

=
1

π
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Substituting the coefficients back into our equation for U :

U(r, θ) =
1

2π
+

1

π

∞∑
n=1

rn cos(nθ)

A Appendix: Convolution

Just like addition and multiplication, a convolution is an operation we perform
on two functions that gives us a third function. Mathematically, we define the
convolution of two functions f(x) and g(x) as:

(f ∗ g)(x) =
∫ ∞

−∞
f(t) g(x− t) dt

Where t is some constant. We are essentially shifting g(x) over f(x), with the
integral giving us the overlap.

Some of the properties of the convolution operation are given ahead. It is
commutative; that is,

x ∗ h = h ∗ x

It is associative; that is,

x ∗ (h1 ∗ h2) = (x ∗ h1) ∗ h2

It is distributive; that is,

x ∗ (h1 + h2) = x ∗ h1 + x ∗ h2

B Appendix: Good and Bad Kernels

A family of integrable functions {KN}∞n=1 on the circle is said to be a family of
good kernels if it satisfies the following 3 properties:

1.

For all n ≥ 1,

1

2π

∫ π

−π

KN (x) dx = 1
(14)

2.

There existsM > 0 such that for all n ≥ 1,∫ π

−π

|KN (x)| dx ≤ M
(15)
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3.

For every δ > 0∫
δ≤|x|≤π

|KN (x)| dx → 0

as n → ∞

(16)
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