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Introduction

The Matrix-Tree Theorem is a fundamental result in combinatorial mathematics and graph
theory. It provides a powerful method for counting the number of spanning trees in a graph
using linear algebra. This theorem connects the combinatorial properties of a graph with the
algebraic properties of its Laplacian matrix, offering a bridge between discrete mathematics
and matrix theory.

History of the Matrix-Tree Theorem and Related Discoveries

Early Combinatorial Studies. The origins of the Matrix-Tree Theorem can be traced
back to the 19th century, with significant contributions from several pioneering mathemati-
cians. The study of combinatorial enumeration of spanning trees began with Gustav Kirch-
hoff, a German physicist, and mathematician, who laid the groundwork for the theorem
through his work on electrical circuits.
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Kirchhoff’s Contributions. In 1847, Gustav Kirchhoff introduced what are now known as
Kirchhoff’s circuit laws, which describe the flow of electric current in electrical networks.
Kirchhoff also formulated a method to count the number of spanning trees in a graph using
determinants, which is now considered an early form of the Matrix-Tree Theorem.

Kirchhoff’s approach involved analyzing the incidence matrix of a graph and applying
matrix theory to solve problems related to electrical circuits. His work established a profound
connection between graph theory and linear algebra, paving the way for future developments.

Developments in Algebraic Graph Theory. The formal statement and proof of the
Matrix-Tree Theorem were developed in the 20th century as part of the broader field of
algebraic graph theory. This period saw significant advancements in the study of graph
eigenvalues, spanning trees, and the application of linear algebra to combinatorial problems.

Arthur Cayley’s Work. Arthur Cayley, a British mathematician, made significant contribu-
tions to the enumeration of trees. In 1889, Cayley derived a formula to count the number of
labeled trees with a given number of vertices, known as Cayley’s formula. This work, while
focusing on trees, indirectly influenced the study of spanning trees in graphs.
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Further Contributions. Other mathematicians, such as Heinz Prüfer and James Joseph
Sylvester, contributed to the understanding of tree structures and their enumeration. Prüfer
introduced a coding system for labeled trees, known as Prüfer sequences, which provided a
bijective method to count labeled spanning trees.

In the mid-20th century, William Tutte, a Canadian mathematician, further developed
the theory of graph polynomials and their applications to spanning trees. Tutte’s work on
the Tutte polynomial generalized many results in graph theory, including those related to
spanning trees.

The Matrix-Tree Theorem

The Matrix-Tree Theorem states that the number of spanning trees τ(G) in a graph G
can be computed from any cofactor of its Laplacian matrix L. More formally,

τ(G) = det(Lii)

where Lii is the matrix obtained by deleting the i-th row and i-th column from L. Since all
cofactors of L are equal, the choice of i is arbitrary.

Definitions and Notation. Let G = (V,E) be an undirected graph with vertex set V =
{v1, v2, v3, v4} and edge set E. A spanning tree of G is a subgraph that includes all the
vertices of G and is a tree (i.e., it is connected and acyclic).

The degree of a vertex vi, denoted by deg(vi), is the number of edges incident to vi. The
adjacency matrix A of G is an n × n matrix where Aij = 1 if there is an edge between
vertices vi and vj, and Aij = 0 otherwise.

The degree matrix D is a diagonal matrix where Dii = deg(vi). The Laplacian matrix L
of G is defined as:

L = D−A

The signed incidence matrix B is an n×m matrix where Bij = 1 if edge j is incident to
vertex i, −1 if it is incident to i in the opposite direction, and 0 otherwise.

Example. Consider a simple graph G with four vertices v1, v2, v3, v4 and five edges
{(v1, v2), (v2, v3), (v3, v4), (v4, v1), (v1, v3)}. The adjacency matrix A, degree matrix D, and
Laplacian matrix L are:

A =


0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0

 , D =


3 0 0 0
0 2 0 0
0 0 3 0
0 0 0 2

 , L =


3 −1 −1 −1
−1 2 −1 0
−1 −1 3 −1
−1 0 −1 2


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To find the number of spanning trees, we compute any cofactor of L. For instance,
removing the first row and column, we get:

L11 =

 2 −1 0
−1 3 −1
0 −1 2


The determinant of L11 is:

det(L11) = 2

∣∣∣∣ 3 −1
−1 2

∣∣∣∣− (−1)

∣∣∣∣−1 −1
0 2

∣∣∣∣+ 0

∣∣∣∣−1 3
−1 −1

∣∣∣∣
Calculating the 2x2 determinants:∣∣∣∣ 3 −1

−1 2

∣∣∣∣ = (3)(2)− (−1)(−1) = 6− 1 = 5∣∣∣∣−1 −1
0 2

∣∣∣∣ = (−1)(2)− (−1)(0) = −2

So,
det(L11) = 2(5)− (−1)(−2) = 10− 2 = 8

If we select a different row and column to remove, we’ll get the same determinant. For
example, removing the second column and second row, we get the resulting matrix:

L22 =

 3 −1 −1
−1 3 −1
−1 −1 2


The determinant of L22 is:

det(L22) = 3

∣∣∣∣ 3 −1
−1 2

∣∣∣∣− (−1)

∣∣∣∣−1 −1
−1 2

∣∣∣∣+ (−1)

∣∣∣∣−1 3
−1 −1

∣∣∣∣
Calculating the 2x2 determinants:∣∣∣∣ 3 −1

−1 2

∣∣∣∣ = (3)(2)− (−1)(−1) = 6− 1 = 5∣∣∣∣−1 −1
−1 2

∣∣∣∣ = (−1)(2)− (−1)(−1) = −2− 1 = −3∣∣∣∣−1 3
−1 −1

∣∣∣∣ = (−1)(−1)− (3)(−1) = 1 + 3 = 4

So,
det(L22) = 3(5)− (−1)(−3) + (−1)(4) = 15− 3− 4 = 8

Therefore, the number of spanning trees in G is τ(G) = 8.
To verify, let’s list all the spanning trees of G:

(1) (v1, v2), (v2, v3), (v3, v4)
(2) (v1, v2), (v2, v3), (v1, v4)
(3) (v1, v2), (v1, v3), (v3, v4)
(4) (v1, v2), (v1, v4), (v3, v4)
(5) (v2, v3), (v3, v4), (v1, v4)
(6) (v2, v3), (v1, v3), (v1, v4)
(7) (v1, v2), (v1, v3), (v4, v3)
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(8) (v1, v3), (v2, v3), (v1, v4)

There are indeed 8 spanning trees in G.

Traditional Proof of the Matrix-Tree Theorem

Preliminaries. Let G = (V,E) be an undirected graph with n vertices and m edges. The
Laplacian matrix L of G is defined as L = D −A, where D is the degree matrix and A is
the adjacency matrix. The Laplacian matrix L has some important properties:

• L is symmetric and positive semi-definite.
• The row sums (and column sums) of L are zero, i.e., L1 = 0, where 1 is the all-ones
vector.

Cauchy-Binet Theorem. The Cauchy-Binet theorem is a generalization of the determi-
nant formula for matrix products. It states that for two n × m matrices A and B, where
m ≥ n,

det(ABT ) =
∑
S

det(AS) det(BS)

where the sum is over all subsets S of {1, 2, . . . ,m} with |S| = n, and AS and BS are the
n× n submatrices of A and B consisting of the columns indexed by S.

Key Insight: Contribution of Spanning Trees. To apply the Cauchy-Binet theorem in
the context of the Matrix-Tree Theorem, we use the incidence matrix B of G. The incidence
matrix is an n×m matrix where Bij = 1 if edge j is incident to vertex i, −1 if it is incident
to i in the opposite direction, and 0 otherwise.

B =


1 0 −1 0 1
−1 1 0 0 0
0 −1 1 1 −1
0 0 0 −1 0


The Laplacian matrix L can be written as L = BBT . When computing the determinant

of a principal minor of L (i.e., Lii), we can use the Cauchy-Binet theorem.
The key insight here is that each term in the expansion of det(Lii) corresponds to a product

of edge weights that form a spanning tree of G. Specifically:

Proposition 0.1. Consider τi(V (G)− i, S) where |S| = n− 1. We examine two cases:
Case 1: S is not a spanning tree. If S is not a spanning tree, the set of edges forms at
least two components, and some component does not contain vertex i. When we draw out
our matrix (with the columns representing edges and rows representing vertices), the rows
corresponding to the vertices in the same component are linearly dependent. This linear
dependence means that the determinant is zero.

1 0 −1 0 1

−1 1 0 0 0

0 −1 1 1 −1

0 0 0 −1 0



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Case 2: S is a spanning tree. If S is a spanning tree, the tree has at least two leaves, and
some leaf is not vertex i. Let’s call this leaf l1, and the edge connected to it e1. The entries
along the diagonal of our matrix are all 1 or -1, meaning the determinant is either 1 or -1.
When we square this determinant, we get 1. Therefore, each valid spanning tree contributes
1 to the determinant’s expansion.

1 0 −1 0 1

−1 1 0 0 0

0 −1 1 1 −1

0 0 0 −1 0




Random Walk Proof of the Matrix-Tree Theorem

In addition to the linear algebraic proof, the Matrix-Tree Theorem can also be understood
through a probabilistic perspective involving random walks on graphs. This section outlines
the random walk proof as presented in the paper A Random Walk Proof of the Matrix-Tree
Theorem by Jerzy A. Filar and Dmitry I. Katz (arXiv:1306.2059).

Consider a random walk on a graph G = (V,E). In this walk, a particle starts at a vertex
and moves to a neighboring vertex with equal probability along the edges. The stationary
distribution of this random walk plays a crucial role in counting spanning trees.

Stationary Distribution and Forests. A stationary distribution of a Markov chain is
a probability distribution that remains unchanged as the system evolves over time. For a
random walk on a graph G, the stationary distribution π is given by:

πi =
deg(vi)

2|E|
where deg(vi) is the degree of vertex vi and |E| is the number of edges in G. This distribution
ensures that the probability flow into each vertex equals the flow out, resulting in equilibrium.

Spanning Forests and Trees. A spanning forest of G is a subgraph that includes all the
vertices of G and is a disjoint union of trees. The number of spanning trees can be derived
by considering spanning forests and applying matrix techniques to the transition matrix of
the random walk.

Transition Matrix. The transition matrix P describes the probabilities of moving from
one vertex to another in a single step of the random walk. The (i, j)-th entry of P is given
by:

Pij =

{
1

deg(vi)
if (vi, vj) ∈ E

0 otherwise

This matrix is stochastic, meaning that the entries in each row sum to 1.
For example, consider the graph G with adjacency matrix A and degree matrix D as:

A =


0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0

 , D =


3 0 0 0
0 2 0 0
0 0 3 0
0 0 0 2


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The transition matrix P is then:

P =


0 1

3
1
3

1
3

1
2

0 1
2

0
1
3

1
3

0 1
3

1
2

0 1
2

0


Laplacian and Transition Matrix. The Laplacian matrix L can be related to the tran-
sition matrix P by:

L = D−A = D(I−P)

For our example graph G:

L =


3 −1 −1 −1
−1 2 −1 0
−1 −1 3 −1
−1 0 −1 2


Irreducible Markov Chains. A Markov chain is irreducible if it is possible to reach any
state from any other state. For a random walk on a connected graph G, the corresponding
Markov chain is irreducible because there is a path between any pair of vertices.

Limiting Matrix and Green’s Function. For an irreducible Markov chain, the limiting
matrix P∞ represents the stationary distribution and is given by:

P∞ = 1πT

where 1 is the column vector of all ones, and π is the stationary distribution vector.
For our example graph G, the stationary distribution π is:

π =



3
10

1
5

3
10

1
5


Define the Green’s function G of the Markov chain as:

G = (I−P+P∞)−1

Fundamental Matrix. The fundamental matrix Z of the Markov chain is defined as:

Z = (I−P+P∞)−1 −P∞

Hitting Times and Connection to Spanning Trees. The hitting time Hij is the ex-
pected number of steps for the random walk starting at vertex vi to first reach vertex vj.
The hitting time is related to the entries of the fundamental matrix Z.

The key insight is that the sum of the entries of any row (or column) of the inverse
of Z gives the expected number of steps to return to the starting vertex, weighted by the
stationary distribution. This sum is directly related to the effective resistance in an electrical
network interpretation of the graph G, which in turn is connected to the number of spanning
trees via Kirchhoff’s theorem.
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Proof. To prove the connection between the random walk and the determinant of the Lapla-
cian, we start with the Markov chain properties. For an irreducible and aperiodic Markov
chain with transition matrix P, there exists a unique stationary distribution π. For the

random walk on graph G, the stationary distribution is πi =
deg(vi)
2|E| .

The Green’s function G and the fundamental matrix Z are defined as:

G = (I−P+P∞)−1

Z = (I−P+P∞)−1 −P∞

The entries of Z relate to hitting times and effective resistance in the graph. The determi-
nant of the principal minor Lii of the Laplacian matrix equals the number of spanning trees
in G.

Consider the principal minor of the Laplacian matrix L. By removing the i-th row and
i-th column, we obtain Lii, whose determinant gives the number of spanning trees rooted at
vertex vi.
To connect this to the Markov chain, note that the inverse of the fundamental matrix

Z can be used to count the number of spanning trees. Specifically, the determinant of Lii

captures the total probability flow through all spanning trees rooted at vi, reflecting the fact
that each spanning tree corresponds to a unique acyclic path structure in the graph.

L = D−A = D(I−P)

For the Laplacian matrix L, consider the principal minor Lii:

Lii =


l11 l12 · · · l1n
l21 l22 · · · l2n
...

...
. . .

...
ln1 ln2 · · · lnn


The determinant of Lii can be interpreted in terms of spanning trees. By the Cauchy-

Binet theorem, each term in the determinant expansion corresponds to a valid spanning tree
configuration. If the selected edges form a spanning tree, their determinant is non-zero and
equals 1. If they do not form a spanning tree (e.g., they form a disconnected subgraph or
contain a cycle), the determinant is zero.

Combining these properties, we establish that the number of spanning trees τ(G) is given
by:

τ(G) = det(Lii)

This completes the random walk proof of the Matrix-Tree Theorem, providing an intuitive
and probabilistic perspective on the connection between spanning trees and the Laplacian
matrix of a graph.

Graph Theoretic Proof of the Matrix-Tree Theorem

Proof. We start by considering the properties of the Laplacian matrix L of a graph G. The
Laplacian matrix is defined as follows:

• The diagonal entry ℓii is the degree of vertex i.
• The off-diagonal entry ℓij is −1 if there is an edge between vertices i and j, and 0
otherwise.
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The Laplacian matrix has the important property that the sum of each row (and each
column) is zero. This implies that L is singular and its determinant is zero, i.e., det(L) = 0.
To find the number of spanning trees, we examine the determinant of a principal minor

of L. By removing the i-th row and i-th column from L, we obtain the matrix Lii. The
determinant of this (n− 1)× (n− 1) matrix, det(Lii), is what we need to consider.

Using the cofactor expansion of L along the i-th row, we have:

det(L) =
n∑

j=1

(−1)i+jℓij det(Lij),

where Lij is the (n− 1)× (n− 1) matrix obtained by removing the i-th row and j-th column
from L. Since the sum of each row of L is zero, we have:

n∑
j=1

ℓij = 0,

which implies that det(L) = 0.
However, the principal minor Lii has a determinant that is not zero and is directly related

to the spanning trees of G. Specifically, according to the Matrix-Tree Theorem, det(Lii)
counts the number of spanning trees of G rooted at vertex i.
To understand why this is true, consider the combinatorial interpretation of a spanning

tree:

• A spanning tree is a subgraph that connects all vertices with exactly n− 1 edges and
contains no cycles.

• The determinant det(Lii) captures the sum of the weights of all such spanning trees
in the graph G.

By the Matrix-Tree Theorem, the number of spanning trees τ(G) is given by:

τ(G) = det(Lii),

where i can be any vertex in the graph.
This completes the proof, showing that the determinant of any principal minor of the

Laplacian matrix corresponds to the number of spanning trees in the graph. □

Probabilistic Proof of the Matrix-Tree Theorem Using Generating
Functions

The Matrix-Tree Theorem can also be proved using probabilistic methods involving gen-
erating functions. This proof provides a different perspective by leveraging the connections
between spanning trees and certain types of generating functions.

Preliminaries. Let G = (V,E) be an undirected graph with n vertices and m edges. The
Laplacian matrix L of G is defined as L = D −A, where D is the degree matrix and A is
the adjacency matrix.

Probabilistic Proof.

Proof. We begin by considering the generating function approach. A generating function is
a formal power series whose coefficients encode information about a sequence of numbers.
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For our purposes, we define the generating function T (x) for the spanning trees of the graph
G as:

T (x) =
∑

T∈T (G)

x|E(T )|,

where T (G) is the set of all spanning trees of G and |E(T )| is the number of edges in the
spanning tree T . For spanning trees, |E(T )| = n− 1 for any tree T in G, so T (x) simplifies
to:

T (x) = τ(G)xn−1.

Next, consider the Laplacian matrix L. The characteristic polynomial of L, det(L− λI),
encodes important information about the graph’s structure. The eigenvalues of L are directly
related to the connectivity of the graph, with one eigenvalue being zero and the others being
positive if the graph is connected.

To connect this to spanning trees, we look at the minors of L. Specifically, the generating
function approach involves examining the principal minors Lii. For any i, removing the i-th
row and i-th column of L gives the matrix Lii. The determinant det(Lii) corresponds to the
generating function evaluated at x = 1.
Consider the matrix M(x) = L + xI, where I is the identity matrix. The determinant of

M(x) is a polynomial in x, and its coefficients give us information about the spanning trees.

M(x) = L+ xI =


3 + x −1 −1 −1
−1 2 + x −1 0
−1 −1 3 + x −1
−1 0 −1 2 + x


The characteristic polynomial of M(x) is:

det(M(x)) = det(L+ xI) =
n∑

k=0

akx
n−k.

To find the coefficient an−1, which corresponds to the number of spanning trees, we use
the fact that an−1 is the sum of the principal minors of size (n − 1) × (n − 1). Therefore,
det(Lii) corresponds to an−1, and the number of spanning trees τ(G) is given by:

τ(G) = det(Lii).

To illustrate this further, we consider the matrix M(x) and expand its determinant using
the cofactor expansion. The term an−1 in the expansion corresponds to the sum of the
determinants of all (n− 1)× (n− 1) principal minors of L, each weighted by xn−1.

This connection shows that the determinant det(Lii) counts the number of spanning trees
in G, as each minor corresponds to a unique spanning tree. Hence, the generating function
approach confirms that:

τ(G) = det(Lii),

where Lii is the matrix obtained by removing the i-th row and i-th column from L.
This completes the probabilistic proof of the Matrix-Tree Theorem using generating func-

tions. □
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Topological Proof of the Matrix-Tree Theorem

The Matrix-Tree Theorem can also be proved using topological methods. This proof
involves concepts from algebraic topology, specifically homology groups and their relationship
to spanning trees in a graph.

Preliminaries. Let G = (V,E) be an undirected graph with n vertices and m edges. The
Laplacian matrix L of G is defined as L = D −A, where D is the degree matrix and A is
the adjacency matrix.

Topological Proof.

Proof. We start by considering the combinatorial Laplacian matrix L of the graph G. The
Laplacian matrix can be interpreted in terms of the incidence matrix B of the graph. Let
B be the n×m incidence matrix where each row corresponds to a vertex and each column
corresponds to an edge. The entry Bij is 1 if vertex i is incident to edge j and −1 if it is the
other endpoint, and 0 otherwise.

v1 v2

v3v4

e1

e2

e3

e4
e5

The Laplacian matrix can be expressed as:

L = BBT

For a graph with vertices v1, v2, v3, v4 and edges e1, e2, e3, e4, e5 as shown above, the inci-
dence matrix B might look like:

B =


1 0 0 1 1
−1 1 0 0 0
0 −1 1 0 −1
0 0 −1 −1 0


Then, the Laplacian matrix L is:

L = BBT =


3 −1 −1 −1
−1 2 −1 0
−1 −1 3 −1
−1 0 −1 2


To relate this to spanning trees, we use homology groups from algebraic topology. The

first homology group H1(G,Z) of the graph G is defined as:

H1(G,Z) = ker(∂1)/im(∂2),

where ∂1 and ∂2 are boundary operators. In the case of a graph, ∂2 = 0 and ∂1 = BT .
Therefore,

H1(G,Z) = ker(BT ).
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The rank of ker(BT ) is equal to the nullity of BT , which is n − 1. This dimension corre-
sponds to the number of independent cycles in the graph, which are closely related to the
spanning trees.

Now, consider the Laplacian matrix Lii obtained by removing the i-th row and i-th column.
The determinant of this matrix gives us the number of spanning trees of G rooted at vertex
i. By the Matrix-Tree Identity, det(Lii) counts the number of spanning trees that span all
vertices of the graph.

Each spanning tree corresponds to a basis of the first homology group H1(G,Z). Thus,
the number of spanning trees τ(G) is equal to the rank of the homology group, which is
captured by det(Lii). Hence,

τ(G) = det(Lii),

where Lii is the matrix obtained by removing the i-th row and i-th column from L.
This completes the topological proof of the Matrix-Tree Theorem using concepts from

algebraic topology and homology groups. □

Cayley’s Theorem and Its Proof Using the Matrix-Tree Theorem

Cayley’s Theorem is a fundamental result in combinatorial graph theory that provides the
exact number of labeled trees on a given number of vertices. This section presents Cayley’s
Theorem and its proof using the Matrix-Tree Theorem.

Cayley’s Theorem. Cayley’s Theorem states that the number of distinct labeled trees on
n vertices is nn−2.

Theorem 0.2 (Cayley’s Theorem). The number of distinct labeled trees on n vertices is
nn−2.

Proof Using the Matrix-Tree Theorem. We use the Matrix-Tree Theorem to prove
Cayley’s Theorem. The proof involves considering the complete graph Kn on n vertices and
applying the Matrix-Tree Theorem to count the spanning trees of Kn.

Proof. Consider the complete graph Kn with n vertices. In a complete graph, each pair of
vertices is connected by an edge. The degree of each vertex in Kn is n − 1, and there are
n(n−1)

2
edges in total.

The Laplacian matrix L of Kn is an n× n matrix where:

ℓij =

{
n− 1 if i = j,

−1 if i ̸= j.

For example, for n = 4, the Laplacian matrix L of K4 is:

L =


3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3


To count the number of spanning trees, we can use any cofactor of L. Specifically, we

remove the first row and the first column of L to obtain the (n− 1)× (n− 1) matrix L11:

L11 =

 2 −1 −1
−1 2 −1
−1 −1 2


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The matrix L11 can be generalized for any n as:

L11 = (n− 1)In−1 − Jn−1,

where In−1 is the (n− 1)× (n− 1) identity matrix and Jn−1 is the (n− 1)× (n− 1) matrix
of all ones.

We compute the determinant of L11:

det(L11) = det((n− 1)In−1 − Jn−1).

Using the matrix determinant lemma, det(A+ uvT ) = det(A)(1 + vTA−1u), we find:

det((n− 1)In−1 − Jn−1) = (n− 1)n−2 det

(
In−1 −

1

n− 1
Jn−1

)
.

The matrix In−1 − 1
n−1

Jn−1 has eigenvalues 1 (with multiplicity n− 2) and 0 (with multi-
plicity 1), so its determinant is:

det

(
In−1 −

1

n− 1
Jn−1

)
= 1n−2 · 0 = 1.

Thus,

det((n− 1)In−1 − Jn−1) = (n− 1)n−2.

Hence, the number of spanning trees in the complete graph Kn is:

τ(Kn) = det(L11) = (n− 1)n−2.

Since each labeled tree on n vertices corresponds to a spanning tree in Kn, the number of
labeled trees on n vertices is:

τ(Kn) = nn−2.

□

The Tutte Polynomial and Its Connections

The Tutte polynomial is a fundamental invariant in graph theory that encodes various
combinatorial properties of a graph. It generalizes several important graph invariants, such
as the chromatic polynomial, the flow polynomial, and the reliability polynomial. This
section explores the derivation of these polynomials from the Tutte polynomial, as well as
the connection to the number of spanning trees in a graph.

The Tutte Polynomial. For a graphG = (V,E), the Tutte polynomial T (G;x, y) is defined
recursively using the following rules:

1. **Initial Condition**: If G has no edges, then T (G;x, y) = 1.
2. **Deletion-Contraction Recurrence**: If e is an edge of G,

T (G;x, y) =


T (G− e;x, y) + T (G/e;x, y), if e is neither a loop nor a bridge,

x · T (G/e;x, y), if e is a bridge,

y · T (G− e;x, y), if e is a loop.
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Key Definitions. - **Loop**: An edge that connects a vertex to itself.
- **Bridge**: An edge whose removal increases the number of connected components of the
graph.
- **Deletion**: Removing an edge from the graph.
- **Contraction**: Merging the two vertices of an edge into a single vertex and removing
any loops or duplicate edges.

Chromatic Polynomial. The chromatic polynomial P (G; k) counts the number of ways
to color the vertices of G using k colors such that no two adjacent vertices share the same
color. It is derived from the Tutte polynomial by the following specialization:

P (G; k) = (−1)|V |−componentsT (G; 1− k, 0).

**Derivation**: 1. For each coloring, there are k choices for the first vertex, k − 1 for
each adjacent vertex, and so on. 2. The chromatic polynomial P (G; k) can be obtained by
setting x = 1− k and y = 0 in the Tutte polynomial.

Proof. Consider the Tutte polynomial T (G;x, y). Setting y = 0 corresponds to removing
loops, which means no vertex can share the same color as itself. Setting x = 1 − k adjusts
for the number of color choices at each vertex:

P (G; k) = (−1)|V |−componentsT (G; 1− k, 0).

For example, for a complete graph Kn, we have:

T (Kn;x, y) =
n−1∏
i=1

(x+ i).

Substituting x = 1− k and y = 0, we get:

P (Kn; k) = (−1)n−1

n−1∏
i=1

(1−k+i) = (−1)n−1(k−1)(k−2) · · · (k−(n−1)) = k(k−1) · · · (k−(n−1)).

□

Flow Polynomial. The flow polynomial F (G; k) counts the number of nowhere-zero k-flows
in G. A k-flow assigns a flow to each edge such that the flow is conserved at each vertex,
and no flow is zero on any edge. It is derived from the Tutte polynomial by the following
specialization:

F (G; k) = (−1)|E|−|V |+componentsT (G; 0, 1− k).

**Derivation**: 1. Setting x = 0 ensures the edges form cycles or have non-zero flow. 2.
Setting y = 1− k adjusts for the number of flow values possible on each edge.

Proof. Consider the Tutte polynomial T (G;x, y). Setting x = 0 means considering cycles
and non-zero flows. Setting y = 1− k adjusts for the flow values:

F (G; k) = (−1)|E|−|V |+componentsT (G; 0, 1− k).

For example, for a cycle graph Cn, we have:

T (Cn;x, y) = x+ yn−1.
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Substituting x = 0 and y = 1− k, we get:

F (Cn; k) = (−1)n−1(1− k)n−1 = (k − 1)n−1.

□

Reliability Polynomial. The reliability polynomial R(G; p) gives the probability that a
network remains connected when edges fail independently with probability p. It is derived
from the Tutte polynomial by the following specialization:

R(G; p) = (1− p)|E|T

(
G;

1

1− p
,

p

1− p

)
.

**Derivation**: 1. Setting x = 1
1−p

and y = p
1−p

adjusts for edge failures and network
connectivity.

Proof. Consider the Tutte polynomial T (G;x, y). Setting x = 1
1−p

and y = p
1−p

accounts for

edge failures and connectivity:

R(G; p) = (1− p)|E|T

(
G;

1

1− p
,

p

1− p

)
.

For example, for a complete graph K3, we have:

T (K3;x, y) = x2 + 3x+ 3y.

Substituting x = 1
1−p

and y = p
1−p

, we get:

R(K3; p) = (1− p)3

((
1

1− p

)2

+ 3

(
1

1− p

)
+ 3

(
p

1− p

))
.

□

Spanning Trees and the Tutte Polynomial. The number of spanning trees in a graph
G is given by evaluating the Tutte polynomial at T (G; 1, 1):

τ(G) = T (G; 1, 1).

**Derivation**: 1. The evaluation T (G; 1, 1) counts the number of ways to select spanning
subgraphs that are trees.

Proof. Consider the Tutte polynomial T (G;x, y). Evaluating at x = 1 and y = 1 corresponds
to counting the spanning trees:

τ(G) = T (G; 1, 1).

For example, for a complete graph K4, we have:

T (K4;x, y) = x3 + 4x2 + 6xy + y3.

Evaluating at x = 1 and y = 1, we get:

τ(K4) = T (K4; 1, 1) = 13 + 4 · 12 + 6 · 1 · 1 + 13 = 12.

□
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Applications of the Matrix-Tree Theorem in Network Theory

The Matrix-Tree Theorem is a fundamental tool in Network Theory, providing deep in-
sights into the structural properties and reliability of networks. Networks, or graphs, consist
of vertices (nodes) connected by edges (links). By offering a method to count spanning
trees, the Matrix-Tree Theorem helps in analyzing network robustness, connectivity, and
reliability. This section explores specific applications of the theorem in Network Theory.

Network Reliability Analysis. Network reliability refers to the probability that a network
remains connected despite the failure of some of its components. The Matrix-Tree Theorem
aids in this analysis by counting the number of spanning trees in a network, each representing
a different way the network can remain connected.

Reliability Polynomial. The reliability of a network can be expressed using a reliability poly-
nomial R(G, p), where p is the probability that a given edge functions correctly. The polyno-
mial provides the probability that the network is connected. The coefficients of the reliability
polynomial often involve the count of spanning trees, as these are the minimum sets of edges
required to maintain connectivity.

To compute the number of spanning trees τ(G) of a network G, we use the Laplacian
matrix L. The Matrix-Tree Theorem states that the number of spanning trees is given by
any cofactor of L. This result allows us to analyze how robust a network is by determining
how many different ways the network can stay connected.

v1 v2

v3v4

Network Design. In network design, ensuring robustness and fault tolerance is crucial. By
leveraging the Matrix-Tree Theorem, engineers can design networks that remain connected
under various failure scenarios. The more spanning trees a network has, the more resilient it
is to edge failures. This principle is applied in the design of communication networks, trans-
portation networks, and power grids to ensure that the network can maintain its functionality
even when some connections are disrupted.

Electrical Networks. In electrical networks or circuits, the Matrix-Tree Theorem is used
to analyze the behavior of circuits. Each spanning tree of a graph representing an electri-
cal network corresponds to a unique way of maintaining current flow through the network
without forming cycles. This application is closely tied to Kirchhoff’s laws and the concept
of effective resistance.

Effective Resistance. Effective resistance between two nodes in an electrical network can be
calculated using the concept of spanning trees. The Matrix-Tree Theorem helps in determin-
ing all possible spanning trees, which in turn are used to compute the effective resistance.
The effective resistance Rij between nodes i and j in a network can be derived from the total
number of spanning trees that include the edge (i, j).

Consider an electrical network represented by a graph G. The Laplacian matrix L for this
network, considering the conductances of the resistors, is:
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L =


g12 + g13 + g14 −g12 −g13 −g14

−g12 g12 + g23 −g23 0
−g13 −g23 g13 + g23 + g34 −g34
−g14 0 −g34 g14 + g34


where gij represents the conductance of the resistor between nodes i and j.

v1 v2

v3v4

g12

g23

g34

g14
g13

By removing any row and column corresponding to a node, we can compute the number
of spanning trees and analyze the network’s robustness. The determinant of the resulting
matrix will give us the number of spanning trees in the network, reflecting the different ways
the network can maintain connectivity and current flow despite failures.

Kirchhoff’s Laws. Kirchhoff’s Current Law (KCL) and Kirchhoff’s Voltage Law (KVL) are
fundamental principles in circuit analysis. KCL states that the total current entering a node
must equal the total current leaving the node, while KVL states that the sum of electrical
potential differences around any closed loop in a network must be zero.

The Laplacian matrix L is a mathematical representation of these laws, where the matrix
elements correspond to the conductances (or inverse resistances) of the edges in the network.
The Matrix-Tree Theorem provides a way to count the number of spanning trees, which are
used to solve for the currents and voltages in the network according to Kirchhoff’s laws.

Applications in Communication Networks. Communication networks are designed to
be highly reliable and resilient to failures. The Matrix-Tree Theorem is used to assess the
robustness of these networks by counting the number of spanning trees, which represent
independent communication paths. This information helps in designing networks with high
fault tolerance, ensuring that communication can be maintained even if multiple connections
fail.

Network Robustness. Robustness in communication networks refers to the ability of the
network to maintain its performance despite failures. By using the Matrix-Tree Theorem to
count spanning trees, network designers can quantify the robustness of the network. A higher
number of spanning trees indicates a more robust network, as there are more independent
paths for data transmission.

A B

CD

E
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Fault Tolerance. Fault tolerance is the ability of a network to continue functioning in the
presence of faults. The Matrix-Tree Theorem helps in identifying critical links and nodes
whose failure would significantly impact the network’s connectivity. By designing networks
with a high number of spanning trees, engineers can ensure that there are alternative paths
for data to travel, thus improving fault tolerance.

Applications of the Matrix-Tree Theorem in Quantum Mechanics

The Matrix-Tree Theorem is a powerful tool in various domains, including Quantum Me-
chanics. It provides significant insights into the properties of quantum systems, particularly
in analyzing quantum graphs and molecular structures. This section explores specific appli-
cations of the theorem in Quantum Mechanics.

Quantum Graphs. Quantum graphs are mathematical models that represent quantum
systems where edges correspond to one-dimensional quantum wires and vertices correspond
to scattering centers. The Matrix-Tree Theorem helps in studying the spectral properties of
these graphs.

Spectral Properties. The eigenvalues of the Laplacian matrix L of a quantum graph provide
information about the energy levels of the system. By using the Matrix-Tree Theorem,
we can count the number of spanning trees and analyze how they influence the spectral
properties of the quantum graph.

v1 v2

v3v4

v5

The Laplacian matrix L for this quantum graph is:

L =


3 −1 0 −1 −1
−1 3 −1 0 −1
0 −1 3 −1 −1
−1 0 −1 3 −1
−1 −1 −1 −1 4


By calculating the number of spanning trees using the Matrix-Tree Theorem, we can infer

the connectivity and robustness of the quantum graph, which directly impacts the eigenvalues
and the corresponding energy levels.

Quantum Transport. Quantum transport in mesoscopic systems can also be analyzed using
the Matrix-Tree Theorem. In these systems, electrons can travel through a network of
quantum wires, and the transport properties are influenced by the network’s connectivity.
Spanning trees play a critical role in determining the paths available for electron transport.
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A B

CD

The analysis of quantum transport can be performed by examining the spanning trees
of the network. Each spanning tree corresponds to a unique configuration of the quantum
paths through which electrons can travel. The Matrix-Tree Theorem provides a method to
count these spanning trees and thereby analyze the possible quantum transport pathways.

Molecular Structures. In Quantum Mechanics, the Matrix-Tree Theorem is used to study
molecular structures. Atoms are represented as vertices and bonds as edges in a molecular
graph. The theorem aids in analyzing the stability and reactivity of molecules by counting
the number of spanning trees.

Chemical Graph Theory. Chemical graph theory uses the Matrix-Tree Theorem to predict
the properties of chemical compounds. The number of spanning trees in a molecular graph
correlates with the stability of the molecule. A higher number of spanning trees indicates
greater stability.

C

C

O

H

H H

For a molecule represented by a graph G, the Laplacian matrix L is used to calculate the
number of spanning trees. The stability of the molecule can be inferred from the count of
these spanning trees.

Vibrational Modes. The vibrational modes of a molecule are influenced by its structural
properties. The Matrix-Tree Theorem helps in analyzing these modes by providing insights
into the graph’s connectivity. The eigenvalues of the Laplacian matrix, which are related to
the vibrational frequencies, can be studied using the spanning trees of the molecular graph.

Consider a benzene molecule, represented by a hexagonal graph. The vibrational modes
of the benzene molecule can be analyzed by studying the spanning trees of its graph repre-
sentation.

C

C

C

C

C C
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The Laplacian matrix L for this molecule is:

L =


2 −1 0 −1 0 0
−1 3 −1 0 −1 0
0 −1 3 −1 0 −1
−1 0 −1 3 0 −1
0 −1 0 0 1 0
0 0 −1 −1 0 2


By analyzing the eigenvalues of this matrix, we can infer the vibrational frequencies and

modes of the benzene molecule, which are crucial for understanding its chemical properties.

Quantum Entanglement. In quantum information theory, the Matrix-Tree Theorem is
used to analyze quantum entanglement. Entanglement measures can be studied using the
spanning trees of a graph that represents the quantum state. The robustness of entangled
states can be inferred from the count and structure of spanning trees.

Entanglement Measures. The degree of entanglement in a quantum system can be related
to the connectivity of the corresponding graph. The Matrix-Tree Theorem helps in quanti-
fying this connectivity by counting the spanning trees, thereby providing a measure of the
entanglement.

Consider a quantum network represented by a graph G. The entanglement between dif-
ferent quantum states can be analyzed by studying the spanning trees of this graph.

q1 q2

q3 q4

For a quantum system represented by a graph G, the Laplacian matrix L can be used to
analyze the entanglement measures. The number of spanning trees in the graph provides
insights into the degree of entanglement.

Entanglement Robustness. The robustness of quantum entanglement can be analyzed by
studying the spanning trees of the graph representing the quantum system. A higher number
of spanning trees indicates a more robust entanglement, as there are more independent paths
for entanglement to be maintained.

A B

CD

The Laplacian matrix L for this quantum network is:
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L =


2 −1 −1 0
−1 3 −1 −1
−1 −1 3 −1
0 −1 −1 2


By analyzing the number of spanning trees in this network, we can determine the robust-

ness of the entangled states.

Conclusion

In this paper, we have explored the Matrix-Tree Theorem, its historical context and pro-
gressing through various proofs that highlight its versatility and foundational importance
in graph theory. We examined proofs utilizing the Cauchy-Binet Theorem, Markov Chains,
Generating Functions, and Topological methods, each offering unique insights into the theo-
rem’s robustness and applications. The relationship between the Matrix-Tree Theorem and
Cayley’s Theorem was elucidated, demonstrating how the former can be used to provide a
proof of the latter, thereby reinforcing the interconnectedness of different areas within graph
theory.

Beyond the theoretical exploration, we examined the Tutte Polynomial and its specializa-
tions, such as the chromatic polynomial, reliability polynomial, and flow polynomial. These
specializations underscore the wide-ranging implications of the Matrix-Tree Theorem in var-
ious branches of mathematics. The practical applications of the theorem and its derived
results vary between fields such as Network Reliability, Electrical Circuits, Communications
Networks, Quantum Graphs, Molecular Structures, and Quantum Entanglement. What we
have covered in this paper is just the tip of the iceberg: there are many other applications,
generalizations, and connections with other areas of math to explore.
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