Primality Testing

Aaditya Bilakanti abilak@gmail.com

Euler Circle

July 7, 2024

			N • •		
Aad	dit/	na I	SH:	aka	nti
	,	~ •	- · · · ·		

Primality Testing

July 7, 2024

∃ ⇒

Image: A mathematical states and a mathem

æ

Table of Contents

2 Probabilistic Tests

Δ ¬	А	i+v.		R	н		6	n	÷	
<u>na</u>	u	ity	a		1	a	na		C.	

2

イロト イヨト イヨト

Introduction

A			0			
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	du	51/2	- H	112	20	nti
$\neg a$	uı.	Lva	_		Na	II UI

3

3/19

## Definition and Uses

Primality Testing, as the name suggests, determines if a number n is prime. This is useful in cryptography, which uses large prime numbers.

э

イロト 不得 トイヨト イヨト

# A Simple Test

A simple test to determine if n is prime:

- Test all numbers  $\leq \sqrt{n}$
- If any of these numbers divide n, n is composite
- Otherwise, *n* is prime
- Optimizations
  - Only test numbers of the form  $6k \pm 1$
- Time complexity of  $\mathcal{O}(\sqrt{n})$

æ

(日)

## **Probabilistic Tests**

A			0			
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	du	51/2	- 141	112	20	nti
$\neg a$	uı.	Lva	_		Na	II UI

3

Fermat Primality Test

Theorem 2.1 (Fermat's Little Theorem)

Let a, p be positive integers, where p is prime. The following congruence holds:

$$a^{p} \equiv a \pmod{p}. \tag{2.1}$$

If a and p are relatively prime, then 2.1 can be simplified to:

$$a^{p-1} \equiv 1 \pmod{p}.$$
 (2.2)

- Fermat Primality Test evaluates $a^{n-1} \equiv 1 \pmod{n}$ for all integers n.
- Higher accuracy with k iterations
- Time complexity of $\tilde{\mathcal{O}}(k \log^2(n))$

Fermat Primality Test

- Fermat Primality Test fails because of Carmichael Numbers
 - Numbers satisfying $a^{n-1} \equiv 1 \pmod{n}$ for all a coprime to n
- Infinitely many of them

Theorem 2.2 (Korselt's Criterion)

A number n is a Carmichael number if p - 1 | n - 1 for all prime divisors p | n, n is odd, and n is squarefree.

561 is the first Carmichael number.

$$\begin{array}{l} 47^{560} \equiv 1 \pmod{561} \\ 59^{560} \equiv 1 \pmod{561} \\ 28^{560} \equiv 1 \pmod{561} \end{array}$$

Solovay–Strassen Test

Definition 2.3

We define the Legendre Symbol $\left(\frac{a}{p}\right)$, where p is an odd prime number and $a \in \mathbb{Z}$, as following:

Definition 2.4

We define the Jacobi Symbol $\left(\frac{a}{n}\right)$, where $a \in \mathbb{Z}$, n is an odd positive integer and is factorized as $p_1^{a_1} \cdot p_2^{a_2} \cdot \ldots \cdot p_k^{a_k}$, as following: $\left(\frac{a}{p_1}\right)^{a_1} \cdot \left(\frac{a}{p_2}\right)^{a_2} \ldots \left(\frac{a}{p_k}\right)^{a_k}$, where each of the terms are Legendre Symbols.

Solovay–Strassen Test

Theorem 2.5 (Euler's Criterion)

Let $a \in \mathbb{N}$ and p be an odd prime such that gcd(a, p) = 1. Then,

$$a^{\frac{p-1}{2}} \equiv \left(\frac{a}{p}\right) \pmod{p}.$$
 (2.3)

- Solovay–Strassen test generalizes to $a^{\frac{n-1}{2}} \equiv \left(\frac{a}{n}\right) \pmod{n}$
- Any *n* can be a pseudoprime to at most $\frac{1}{2}$ of the bases
- Running k iterations gives a higher accuracy
- Time complexity is $\mathcal{O}(k \log^3(n))$

10/19

Example

Let's say we want to see if 15 is prime, and we choose the base 7. We have:

$$7^{7} \equiv \left(\frac{7}{15}\right) \pmod{15}$$
$$7^{7} \equiv -1 \pmod{15}$$
$$13 \not\equiv -1 \pmod{15}$$

Therefore, 15 is not prime.

3

11 / 19

Miller-Rabin Test

Let *n* be an odd integer. Factor $n - 1 = 2^{s}d$ (where *d* is odd), and pick a positive integer *a* relatively prime to *n*. *n* is a strong probable prime if:

$$a^d \equiv 1 \pmod{n}$$

or

$$a^{2^r d} \equiv -1 \pmod{n}$$
, for some $0 \leq r < s$.

EXAMPLE

We try to see if 53 is prime. We find that $53 - 1 = 2^2 \cdot 13$, so s = 2 and d = 13. We pick *a* as 19. We now perform the test. We find that $19^{13} \not\equiv 1 \pmod{53}$. However, we do find in the second equation that when r = 1, then $19^{2 \cdot 13} \equiv -1 \pmod{53}$, thus showing that 53 is prime.

イロト 不得下 イヨト イヨト 二日

Proof

We now show that if n is a prime p, then it passes the Miller–Rabin test. Let's say we factor p - 1 as $2^{s}d$ where d is odd. We then pick an x such that gcd(x, p) = 1.

Let us have the polynomial $x^{p-1} - 1$. By FLT, we know $x^{p-1} - 1 \equiv 0 \pmod{p}$. We can repeatedly factor with difference of squares to give us:

$$(x^d - 1)(x^d + 1)(x^{2d} + 1)(x^{4d} + 1)\dots(x^{2^{s-1}d} + 1) \equiv 0 \pmod{p}.$$

Note that since p is prime, one of the factors is 0 modulo p. Thus, either $x^d \equiv 1 \pmod{p}$ or $x^{2^r d} \equiv -1 \pmod{p}$, for some $0 \leq r < s$. We thus shown that any prime p passes the test.

Properties

- Any *n* can be a pseudoprime to at most $\frac{1}{4}$ of the bases
- Run k iterations of the test
- Time complexity of $\mathcal{O}(k \log^3(n))$
 - FFT-based multiplication gives $O(k \log^2(n))$

3

(日)

Deterministic Tests

A			0			
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	du	51/2	- 141	112	20	nti
$\neg a$	uı.	Lva	_		Na	II UI

2

## AKS Primality Test

The AKS Primality Test was the first deterministic, unconditional, and general primality test. The test is based off of a corollary of FLT:

Corollary 3.1

Given an  $n \ge 2$ , and an  $a \in \mathbb{N}$  relatively prime to n, n is prime if and only if:

 $(X+a)^n \equiv X^n + a \pmod{n},$ 

is true within the polynomial ring  $\mathbb{Z}/n\mathbb{Z}[X]$ . Here, X is the indeterminate generating the polynomial ring.

The test can be made more efficient by taking it modulo  $X^r - 1$  and p. In other words, there exists polynomials f(x) and g(x) such that:

$$(X+a)^n - (X^n + a) = (X^r - 1)g(x) + n \cdot f(x). \tag{3.1}$$

This reduces the amount of computation needed in Corollary 3.1.

Aaditya Bilakanti	Primality Testing	July 7, 2024	16 / 19

# **AKS Primality Test**

### Definition 3.2 (AKS Algorithm)

The AKS Primality Test is as follows:

- Check if n is a perfect power. If n is, then output that n is composite.
- 2 Find the smallest r such that  $\operatorname{ord}_r(n) > \log_2^2(n)$ .
- So For all 2 ≤ a ≤ min{r, n − 1}, check that a ∤ n. Otherwise, n is composite.
- If  $n \leq r$ , then *n* is prime.
- So For a = 1 to  $\left\lfloor \sqrt{\phi(r) \log_2(n)} \right\rfloor$  perform Equation 3.1 (defined on the previous slide). If *n* does not satisfy one of the equations, then *n* is composite.
- If the test has reached here, output that *n* is prime.

# **AKS Primality Test**

The time complexity of the AKS Algorithm is  $\tilde{\mathcal{O}}((\log(n))^{12})$ . However, this could be cut down to  $\tilde{\mathcal{O}}((\log(n))^6)$  if the Sophie Germain Prime Density Conjecture is true. The conjecture is as follows:

#### Conjecture 3.3 (Sophie Germain Prime Density Conjecture)

The number of primes  $q \le m$  such that 2q + 1 is also a prime is asymptotically  $\frac{2C_2}{\ln^2(m)}$ , where  $C_2$  is the twin prime constant(approximately 0.66).

#### Thanks for Listening!

Aaditva	Bi	al	kar	nti	
, tauteya			(a)		

3

19/19

#### Thanks for Listening! Any questions?

			<u> </u>		
1 A A	<b>C</b> 1 <b>T</b> 1	10	<b>-</b>	100	
$-\alpha$					

3