Primality Testing

Aaditya Bilakanti <abilak@gmail.com>

Euler Circle

July 7, 2024

∢ ロ ▶ ィ 何 ▶ ィ

Þ \mathbf{p} 重

 299

Table of Contents

2 [Probabilistic Tests](#page-5-0)

重

 298

ヨメ メヨメ

K ロ ト K 伊 ト K

[Introduction](#page-2-0)

 2990

Definition and Uses

Primality Testing, as the name suggests, determines if a number n is prime. This is useful in cryptography, which uses large prime numbers.

э

 QQ

K ロ ト K 伺 ト K ミ ト

A Simple Test

A simple test to determine if n is prime:

- Test all numbers $\leq \sqrt{2}$ n
- \bullet If any of these numbers divide n, n is composite
- \bullet Otherwise, *n* is prime
- **•** Optimizations
	- Only test numbers of the form $6k \pm 1$
- Time complexity of $\mathcal{O}(\sqrt{2})$ $\overline{n})$

G.

 Ω

イロト イ押 トイヨ トイヨ トー

[Probabilistic Tests](#page-5-0)

重

 2990

イロメ イ部メ イヨメ イヨメー

Fermat Primality Test

Theorem 2.1 (Fermat's Little Theorem)

Let a, p be positive integers, where p is prime. The following congruence holds:

$$
a^p \equiv a \; (\text{mod } p). \tag{2.1}
$$

If a and p are relatively prime, then [2.1](#page-6-0) can be simplified to:

$$
a^{p-1} \equiv 1 \pmod{p}.\tag{2.2}
$$

- Fermat Primality Test evaluates $a^{n-1} \equiv 1 \pmod n$ for all integers n.
- \bullet Higher accuracy with k iterations
- Time complexity of $\tilde{\mathcal{O}}(k \log^2(n))$

Fermat Primality Test

- Fermat Primality Test fails because of Carmichael Numbers
	- Numbers satisfying $a^{n-1} \equiv 1 \pmod{n}$ for all a coprime to n
- Infinitely many of them

Theorem 2.2 (Korselt's Criterion)

A number n is a Carmichael number if $p - 1 \mid n - 1$ for all prime divisors $p \mid n$, n is odd, and n is squarefree.

561 is the first Carmichael number.

$$
47^{560} \equiv 1 \pmod{561}
$$

59⁵⁶⁰ $\equiv 1 \pmod{561}$
28⁵⁶⁰ $\equiv 1 \pmod{561}$

Solovay–Strassen Test

Definition 2.3

We define the Legendre Symbol $\left(\frac{a}{a}\right)$ $\left(\frac{\partial}{\partial \rho}\right)$, where ρ is an odd prime number and $a \in \mathbb{Z}$, as following:

 $\int \frac{a}{2}$ $\left(\frac{\partial \rho}{\partial \rho}\right)=1$ if \emph{a} is a quadratic residue modulo \emph{p} and $\emph{a}\not\equiv 0\ ({\rm mod}\ \emph{p})$ $2)$ $\left(\frac{a}{2} \right)$ $\left(\frac{\partial \rho}{\partial \rho}\right)$ = -1 if *a* is a non-quadratic residue modulo ρ 3 $\frac{a}{2}$ $\left(\frac{a}{p}\right) = 0$ if $a \equiv 0 \pmod{p}$.

Definition 2.4

We define the Jacobi Symbol $\left(\frac{a}{b}\right)$ $\left(\frac{a}{n}\right)$, where $a \in \mathbb{Z}$, *n* is an odd positive integer and is factorized as $p_1^{a_1 \cdots a_2^{a_2}} \cdots \cdots p_k^{a_k}$, as following: $\frac{a}{2}$ $p₁$ $\bigg\}^{a_1} \cdot \bigg(\frac{a}{a_1} \bigg)$ $p₂$ $\Big)^{a_2} \ldots \Big(\frac{a}{a}$ $\overline{p_k}$ $\int_{0}^{a_{k}}$, where each of the terms are Legendre Symbols.

Solovay–Strassen Test

Theorem 2.5 (Euler's Criterion)

Let $a \in \mathbb{N}$ and p be an odd prime such that $gcd(a, p) = 1$. Then,

$$
a^{\frac{p-1}{2}} \equiv \left(\frac{a}{p}\right) \pmod{p}.
$$
 (2.3)

- Solovay–Strassen test generalizes to $a^{\frac{n-1}{2}} \equiv (\frac{a}{n})$ $\frac{a}{n}$ (mod *n*)
- Any n can be a pseudoprime to at most $\frac{1}{2}$ of the bases
- Running k iterations gives a higher accuracy
- Time complexity is $\mathcal{O}(k \log^3(n))$

 Ω

Example

Let's say we want to see if 15 is prime, and we choose the base 7. We have:

$$
7^7 \equiv \left(\frac{7}{15}\right) \pmod{15}
$$

7^7 \equiv -1 \pmod{15}
13 \not\equiv -1 \pmod{15}

Therefore, 15 is not prime.

G. Ω

K ロ ▶ K 何 ▶ K

Miller–Rabin Test

Let n be an odd integer. Factor $n - 1 = 2^sd$ (where d is odd), and pick a positive integer a relatively prime to n . n is a strong probable prime if:

$$
a^d \equiv 1 \ (\mathrm{mod}\ n)
$$

or

$$
a^{2^rd}\equiv -1\ (\mathrm{mod}\ n),\ \text{for some}\ 0\leq r< s.
$$

EXAMPLE

We try to see if 53 is prime. We find that $53-1=2^2\cdot 13$, so $s=2$ and $d = 13$. We pick a as 19. We now perform the test. We find that $19^{13} \not\equiv 1 \pmod{53}$. However, we do find in the second equation that when $r = 1$, then $19^{2.13} \equiv -1 \pmod{53}$, thus showing that 53 is prime.

Proof

We now show that if n is a prime p, then it passes the Miller–Rabin test. Let's say we factor $p-1$ as 2^sd where d is odd. We then pick an x such that $gcd(x, p) = 1$.

Let us have the polynomial $x^{p-1}-1$. By FLT, we know $\mathsf{x}^{p-1}-1\equiv 0\ ({\rm mod}\ \pmb{\rho}).$ We can repeatedly factor with difference of squares to give us:

$$
(xd - 1)(xd + 1)(x2d + 1)(x4d + 1)...(x2s-1d + 1) \equiv 0 \pmod{p}.
$$

Note that since p is prime, one of the factors is 0 modulo p . Thus, either $\alpha^{\boldsymbol{d}}\equiv 1\ ({\rm mod}\ \boldsymbol{p})$ or $\alpha^{2^{r}\boldsymbol{d}}\equiv -1\ ({\rm mod}\ \boldsymbol{p})$, for some $0\leq r<\boldsymbol{s}.$ We thus shown that any prime p passes the test.

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 『 YO Q @

Properties

- Any *n* can be a pseudoprime to at most $\frac{1}{4}$ of the bases
- \bullet Run *k* iterations of the test
- Time complexity of $\mathcal{O}(k \log^3(n))$
	- FFT-based multiplication gives $\mathcal{O}(k \log^2(n))$

∢ □ ▶ ∢ [□] ▶ ∢ ∃

÷.

 Ω

[Deterministic Tests](#page-14-0)

 ORO

イロト イ団 トイ ヨト イヨト 一番

AKS Primality Test

The AKS Primality Test was the first deterministic, unconditional, and general primality test. The test is based off of a corollary of FLT:

Corollary 3.1

Given an $n > 2$, and an $a \in \mathbb{N}$ relatively prime to n, n is prime if and only if:

 $(X + a)^n \equiv X^n + a \pmod{n}$,

is true within the polynomial ring $\mathbb{Z}/n\mathbb{Z}[X]$. Here, X is the indeterminate generating the polynomial ring.

The test can be made more efficient by taking it modulo $X^r - 1$ and p . In other words, there exists polynomials $f(x)$ and $g(x)$ such that:

$$
(X + a)^n - (X^n + a) = (X^r - 1)g(x) + n \cdot f(x).
$$
 (3.1)

This reduces the amount of computation neede[d in](#page-14-0) [C](#page-16-0)[o](#page-14-0)[ro](#page-15-0)[ll](#page-16-0)[a](#page-13-0)[ry](#page-14-0) [3.1](#page-15-1)[.](#page-19-0)

AKS Primality Test

Definition 3.2 (AKS Algorithm)

The AKS Primality Test is as follows:

- **O** Check if n is a perfect power. If n is, then output that n is composite.
- **2** Find the smallest r such that $\text{ord}_r(n) > \log_2^2(n)$.
- **3** For all $2 \le a \le \min\{r, n-1\}$, check that $a \nmid n$. Otherwise, *n* is composite.
- \bullet If $n \leq r$, then *n* is prime.
- \bullet For $a=1$ to $\left|\sqrt{\phi(r)\log_2(n)}\right|$ perform Equation 3.1 (defined on the previous slide). If n does not satisfy one of the equations, then n is composite.
- **•** If the test has reached here, output that n is prime.

 Ω

イロト イ押 トイヨ トイヨ トー

AKS Primality Test

The time complexity of the AKS Algorithm is $\mathcal{O}((\log(n))^{12})$. However, this could be cut down to $\tilde{\mathcal{O}}((\log(n))^{6})$ if the Sophie Germain Prime Density Conjecture is true. The conjecture is as follows:

Conjecture 3.3 (Sophie Germain Prime Density Conjecture)

The number of primes $q \le m$ such that $2q + 1$ is also a prime is asymptotically $\frac{2C_2}{\ln^2(m)}$, where C_2 is the twin prime constant(approximately 0.66).

 Ω

Thanks for Listening!

Thanks for Listening! Any questions?

