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Girard Desargues [13], the mathematician after whom Desargues’ Theorem is named, was
born on February 21, 1591, in Lyon, France. He is considered one of the pioneers of projective
geometry and made significant contributions to the field during the 17th century.

Desargues was not a professional mathematician but rather a military engineer by trade.
His expertise in perspective drawing, acquired through his work in engineering, led him to
explore the principles of projective geometry. His deep understanding of perspective and his
innovative geometric insights allowed him to make groundbreaking discoveries in the field.
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Desargues’ Theorem, which he discovered and published in his work ”Brouillon project
d’une atteinte aux événements des rencontres du cône avec un plan” (”Rough draft of an
attempt to deal with the events of the conics meeting a plane”), published in 1639, is one
of his most significant contributions. This theorem revolutionized the study of projective
geometry by establishing a profound relationship between triangles and perspective.

The theorem states that if two triangles in a projective plane are perspective from a point,
then they are also perspective from a line. In other words, if the three pairs of corresponding
sides of two triangles intersect at three collinear points, then the three pairs of corresponding
vertices also lie on a line. This property demonstrates the symmetry and duality between
points and lines in projective geometry.

Desargues’ Theorem played a crucial role in the development of projective geometry as a
distinct branch of mathematics. It provided a unifying framework for understanding various
geometric concepts and transformations in a projective plane. Furthermore, the theorem’s
elegance and generality have made it a fundamental result with numerous applications in
various fields, including computer graphics, architecture, optics, and even art.

Although Desargues’ work was not widely recognized during his lifetime, his contributions
to mathematics have gained significant appreciation in subsequent centuries. His insights
and theorems laid the foundation for projective geometry and inspired generations of math-
ematicians to further explore the intricacies of this branch of mathematics.

In this paper, we will go through Desargues’ Theorem and prove it by using cross-ratio,
homogeneous coordinates, duality, and projective transformations.

1. Applications and Related Concepts

Desargues’ Theorem has significant applications and connections within the field of geom-
etry. Some of these include [12]:

1.1. Projective Geometry. Desargues’ Theorem is a fundamental result in projective ge-
ometry. It provides a deeper understanding of projective transformations, homogeneous
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coordinates, and the concept of duality. By establishing the perspectivity between trian-
gles from both a point and a line, Desargues’ Theorem illustrates the underlying projective
properties and symmetries in geometric figures.

1.2. Homography. Homography is a fundamental concept in projective geometry that es-
tablishes a relationship between points and lines in one projective plane and their corre-
sponding points and lines in another plane. A homography is a projective transformation
that preserves collinearity and incidence relationships. In other words, it maps lines to lines
and points to points, while maintaining the property that three points are collinear if and
only if their images are collinear.

Homographies have numerous applications in computer vision, image processing, and com-
puter graphics. In computer vision, homographies are used for camera calibration, image
rectification, and image registration. By estimating the homography between two images,
one can align and stitch them together to create panoramic images or perform object recog-
nition and tracking.

1.3. Finite Geometry. Finite geometry is the study of geometric structures defined on
a finite set of points. It provides a framework for investigating geometric properties and
relationships in a finite setting. Finite geometries have applications in coding theory, cryp-
tography, combinatorics, and other areas of mathematics and computer science.

Desargues’ Theorem has connections to finite geometry, particularly in the study of inci-
dence structures, lines, and planes. By applying Desargues’ Theorem, one can prove results
about the collinearity of points, the intersection of lines, and the coplanarity of points and
lines in finite geometries.

Finite projective planes, such as projective planes of order n, are a particular focus of study
in finite geometry. These planes have a finite number of points and lines, and they exhibit
interesting combinatorial and algebraic properties. Desargues’ Theorem provides a valuable
tool for analyzing and characterizing the incidence structures and geometric properties of
these finite projective planes.

1.4. Desarguesian Planes. Desarguesian planes are projective planes in which Desargues’
Theorem holds. These planes are named after Gérard Desargues, the mathematician who
first formulated and proved the theorem. Desarguesian planes have important applications
in algebraic geometry, combinatorics, and other areas of mathematics.

In a Desarguesian plane, Desargues’ Theorem guarantees that any two triangles that
are perspective from a point are also perspective from a line. This property highlights
the projective symmetry and underlying structure of the plane. Desarguesian planes have
been extensively studied for their algebraic properties and connections to other areas of
mathematics, such as the theory of finite fields.

Desarguesian planes provide a rich setting for investigating various geometric concepts,
transformations, and configurations. They serve as a foundation for the study of projective
geometry and offer a unified framework for understanding the fundamental principles of
perspective and projective transformations.

1.5. Desarguesian Configurations. Desarguesian configurations refer to larger geometric
structures that involve multiple points, lines, and planes, and exhibit properties related
to Desargues’ Theorem. These configurations have been extensively studied in incidence
geometry and algebraic geometry.
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A typical Desarguesian configuration consists of two triangles that are perspective from
a point and perspective from a line. These configurations can exhibit interesting geometric
properties, such as concurrence, collinearity, or harmonic properties. They provide insights
into the interplay between points, lines, and planes in projective space and offer a deeper
understanding of Desargues’ Theorem and its implications.

Desarguesian configurations have applications in coding theory, error-correcting codes,
and combinatorial designs. They provide a basis for constructing geometric structures with
desirable properties and have connections to other areas of mathematics, such as graph
theory and combinatorial optimization.

1.6. Perspective Drawing and Computer Graphics. Perspective drawing, commonly
used in art and computer graphics, relies on the principles of projective geometry. Desar-
gues’ Theorem provides a theoretical foundation for creating accurate perspective drawings,
ensuring that lines and objects in the image maintain proper perspective relationships.

In computer graphics and computer vision, Desargues’ Theorem plays a crucial role in
rendering realistic images and simulating three-dimensional environments. Projective trans-
formations, based on the principles of projective geometry, are used to model camera per-
spectives, project 3D objects onto a 2D screen, and apply various visual effects.

By applying Desargues’ Theorem, computer graphics algorithms can efficiently calculate
the intersections of lines and determine the visibility and occlusion relationships between
objects in a scene. This information is essential for rendering realistic images and creating
convincing virtual worlds.

1.7. Three-Dimensional Geometry. Desargues’ Theorem is particularly useful in three-
dimensional geometry, as it allows us to establish correspondences between different perspec-
tives of objects. This concept finds applications in computer vision, where matching features
in multiple images or reconstructing three-dimensional scenes from two-dimensional images
often rely on perspectivity relationships.

1.8. Higher-Dimensional Geometry. Desargues’ Theorem extends to higher-dimensional
projective spaces, enabling the study of geometric properties and transformations in spaces
of any dimension. The concepts of cross-ratio, homogeneous coordinates, and perspective
relationships generalize to higher dimensions, providing a powerful framework for investigat-
ing geometric structures.

2. Background on Projective Geometry

Projective geometry [4] is a branch of mathematics that studies geometric properties in-
variant under projective transformations. In this section, we will delve deeper into projective
transformations and their connections to Desargues’ Theorem and projective geometry.

2.1. Non-Desarguesian Plane. In projective geometry, a Non-Desarguesian plane [5] refers
to a projective plane that does not satisfy Desargues’ Theorem. While Desargues’ Theorem
holds true in most projective planes, there exist special cases known as Non-Desarguesian
planes where this fundamental theorem fails.

The existence of Non-Desarguesian planes was discovered by the Hungarian mathematician
Julius Wilhelm Richard Dedekind in the 19th century. Dedekind constructed a specific
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example of a Non-Desarguesian plane using a mathematical structure known as a hyperfield.
A hyperfield is a non-associative algebraic system that generalizes the concept of a field.

In a Non-Desarguesian plane, there are configurations of triangles that satisfy all the
axioms of projective geometry except for Desargues’ Theorem. This means that there are
cases where two triangles can be perspective from a point and yet not perspective from a
line. In such planes, the duality between points and lines is broken, challenging the intuitive
connection between projective transformations and geometric properties.

The discovery of Non-Desarguesian planes had a significant impact on the study of pro-
jective geometry. It revealed that Desargues’ Theorem is not a universal property of all
projective planes and opened up new avenues for exploring alternative geometric systems.
Non-Desarguesian planes sparked further investigations into the foundations of projective
geometry and led to the development of non-Euclidean geometries and abstract algebraic
structures.

Non-Desarguesian planes have found applications in diverse areas of mathematics, includ-
ing algebra, combinatorics, and topology. They have also been studied in relation to other
branches of geometry, such as finite geometries and incidence structures. By examining the
properties and limitations of Non-Desarguesian planes, mathematicians have gained deeper
insights into the nature of projective geometry and the interplay between geometric axioms
and algebraic structures.

Mathematically, a Non-Desarguesian plane is characterized by the violation of Desargues’
Theorem. Specifically, there exist triples of triangles such that the cross-ratio of their cor-
responding sides does not equal the cross-ratio of their corresponding vertices. In symbolic
form, this can be expressed as:

(A,B;C,L) ̸= (A,B;C,L)
(A,B;C,O)

× (A,B;C,O)
(A,B;C,I)

× (A,B;C,I)
(A,B;C,L)

where (P,Q;R, S) denotes the cross-ratio of four points P , Q, R, and S. The existence of
such counterexamples challenges the validity of Desargues’ Theorem in Non-Desarguesian
planes.

Overall, the existence of Non-Desarguesian planes highlights the richness and complexity
of projective geometry. While Desargues’ Theorem remains a fundamental result in most
projective planes, the exploration of Non-Desarguesian planes has deepened our understand-
ing of the underlying principles and expanded the boundaries of geometric inquiry.

2.2. Pappus’s Theorem. Pappus’s Theorem [7] is another fundamental result in projec-
tive geometry that relates points and lines in a projective plane. It states that given two
sets of collinear points lying on two distinct lines, the intersections formed by connecting
corresponding pairs of points lie on a third line. The theorem can be stated in the following
form:

Let A, B, and C be three points on one line, and let D, E, and F be three points on
another line. If the lines formed by connecting AD and BE, BD, and CF , and CE and AF
are concurrent (meet at a point), then the intersections P , Q, and R formed by connecting
corresponding pairs of points AB and DE, BC, and EF , and CA and FD respectively, lie
on a line.



6 YIGIT EFE NAS

Pappus’s Theorem shares similarities with Desargues’ Theorem, as both involve the con-
cept of collinearity and the intersection of lines. While Desargues’ Theorem focuses on trian-
gles and their perspectivity, Pappus’s Theorem extends this concept to larger configurations
involving sets of collinear points and lines.

The relationship between Desargues’ Theorem and Pappus’s Theorem goes beyond their
similarities. Both theorems are examples of projective properties that are preserved under
projective transformations. This preservation of properties is a fundamental characteristic
of projective geometry and underscores the broader principles at play.

3. Projective Transformations In Projective Geometry

Projective transformations [11] are mappings that preserve projective properties of geo-
metric figures, such as collinearity, incidence relationships, and cross-ratio. These transfor-
mations include perspective projections, central projections, and affine transformations. A
projective transformation T : Pn → Pn is defined by a nonsingular (n + 1) × (n + 1) ma-
trix M over a field of scalars K. Given a point P represented by homogeneous coordinates
(x0 : x1 : . . . : xn), the transformed point P ′ is obtained as P ′ = M · P , where M · P
represents the matrix-vector multiplication.
Desargues’ Theorem is a fundamental result in projective geometry. It states that if two tri-
angles are perspective from a point (not necessarily on their plane), then they are perspective
from a line. This theorem establishes a connection between projective transformations and
the preservation of projective properties. By considering projective transformations that
map the given triangles to a standard configuration, Desargues’ Theorem can be proven
using properties preserved under projective transformations.

3.1. Applications of Projective Transformations. Projective transformations have var-
ious applications in projective geometry, including:

3.1.1. Geometric Transformations. Projective transformations [10] provide a framework for
various geometric transformations, such as translation, rotation, scaling, shearing, and affine
transformations. By representing these transformations as projective transformations, it
becomes possible to perform them in a unified manner using homogeneous coordinates. This
approach simplifies geometric computations and allows for efficient composition and inversion
of transformations.

3.1.2. Mapping Conics to Standard Forms. Projective transformations can be used to map
conic sections to standard forms. By applying an appropriate projective transformation, a
general conic can be transformed into a standard conic, such as a circle, ellipse, parabola,
or hyperbola. This enables the analysis and classification of conics based on their geometric
properties.

3.1.3. Dual Projective Transformations and Dual Desargues’ Theorem. In projective geom-
etry, duality plays a significant role in relating points and lines. Dual projective transforma-
tions are transformations that interchange points and lines in projective space. Exploring
the properties and behavior of dual projective transformations can provide a deeper under-
standing of the relationship between projective transformations and Desargues’ Theorem.
Additionally, there exists a dual version of Desargues’ Theorem, known as Dual Desargues’
Theorem, which states that if two triangles are perspective from a line (not necessarily on
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their plane), then they are perspective from a point. Investigating the duality between pro-
jective transformations and Desargues’ Theorem can provide a comprehensive understanding
of their interplay.

3.1.4. Invariant Points and Lines under Projective Transformations. Projective transforma-
tions [1] have special points and lines that remain fixed or invariant under the transformation.
These invariant elements include the center of projection, the axis of projection, and the line
at infinity. Understanding the properties and behavior of these invariant elements can provide
insights into the preservation of projective properties and the proof of Desargues’ Theorem.
Investigating how these invariant elements relate to projective transformations can further
enhance the understanding of their role in projective geometry.

3.1.5. Perspective Drawing. In art and design [9], perspective drawing is a technique that
uses projective geometry to create realistic three-dimensional images on a two-dimensional
surface. Desargues’ Theorem provides a theoretical foundation for perspective drawing by
explaining how parallel lines appear to converge at a vanishing point on the horizon.

By understanding the principles of projective transformations and the concept of a van-
ishing point, artists and designers can accurately represent depth and proportion in their
drawings. Desargues’ Theorem allows them to construct perspective grids and determine
the correct placement of objects in a scene.

3.1.6. Camera Calibration. In computer vision and photogrammetry, projective transforma-
tions play a crucial role in camera calibration. By estimating the projective transformation
parameters, the intrinsic and extrinsic camera parameters can be determined, enabling ac-
curate 3D reconstruction and measurement from 2D images.

4. Duality in Projective Geometry

Duality [6] is a fundamental concept in projective geometry that establishes a correspon-
dence between points and hyperplanes. In this section, we will explore the applications of
duality and its connections to Desargues’ Theorem and projective geometry.

4.1. Dual Space and Duality Transformations. In projective geometry, the dual space
Pn∗ is defined as the space of hyperplanes in the n-dimensional projective space Pn. Each
point P in Pn corresponds to a hyperplane P in Pn∗, and vice versa. Duality establishes
a correspondence between points and hyperplanes, preserving geometric properties such as
incidence relationships, collinearity, and cross-ratios.
Duality transformations are mappings that exchange points and hyperplanes. Applying
duality twice results in the original object. These transformations provide a powerful tool
for studying projective properties and establishing connections between geometric objects.

4.2. Duality and Lines. Duality exhibits a dual relationship between points and lines in
projective geometry. If a line l passes through a point P in Pn, then the dual point P lies
on the dual line l in Pn∗. Similarly, if a point Q lies on a line m in Pn, then the dual line m
passes through the dual point Q in Pn∗. This duality relationship provides a powerful tool
for analyzing projective properties and establishing connections between points and lines.

4.3. Applications of Duality. Duality finds applications in various areas of projective
geometry, including [3]:
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4.3.1. Conics and Dual Conics. Duality plays a significant role in the study of conic sections.
Given a conic section, its dual conic can be obtained by taking the dual of each point and
line in the conic. The dual conic shares geometric properties with the original conic, such
as tangency and intersection points. By exploiting duality, the properties of conics can be
investigated from a different perspective.

4.3.2. Harmonic Conjugates. Harmonic conjugates are pairs of points on a line that have a
special cross-ratio property. Duality provides a geometric interpretation of harmonic con-
jugates and enables their identification. Harmonic conjugates find applications in various
contexts, including orthogonal circles, inversions, and harmonic ranges.

4.3.3. Desargues’ Theorem. Desargues’ Theorem, which connects the perspective triangles
and collinear points in projective geometry, can be understood through duality. By applying
duality, the theorem can be reformulated in terms of lines and points, providing a different
perspective and aiding in its proof.

5. Cross-Ratio In Projective Geometry

The cross-ratio [2] is a projective invariant that measures the ratio of the lengths of
four collinear points. In this section, we will explore the applications of the cross-ratio in
projective geometry.

The cross-ratio (A,B;C,D) of four distinct collinear points A, B, C, and D is defined as:
where (AB) represents the Euclidean distance between points A and B. The cross-ratio is
independent of the choice of the coordinate system and is preserved under projective transfor-
mations. It provides a powerful tool for studying perspectivity and projective relationships
between geometric figures.

5.1. Applications of Cross-Ratio. The cross-ratio finds applications in various areas of
projective geometry, including:

5.1.1. Conics. The cross-ratio plays a significant role in the study of conic sections. For
instance, consider a circle and four points A, B, C, and D lying on the circle. The cross-
ratio (A,B;C,D) is invariant under projective transformations, meaning that it remains
constant even if the circle is transformed through projective mappings. This property allows
us to define the cross-ratio on conics and study its properties.

5.1.2. Harmonic Conjugates. In projective geometry, harmonic conjugates are pairs of points
on a line such that their cross-ratio with respect to two fixed points is −1. Harmonic conju-
gates have several geometric properties and find applications in various contexts, including
inversions, harmonic ranges, and the study of collinear and concyclic points.

5.1.3. Perspectivity and Collinearity. The cross-ratio is intimately related to the perspec-
tivity and collinearity of points in projective geometry. If two quadrilaterals formed by
collinear points are in perspective from a point, their corresponding cross-ratios are equal.
This property provides a criterion for determining perspectivity and collinearity in projective
configurations.
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6. Homogeneous Coordinates In Projective Geometry

Homogeneous coordinates [8] provide a unified representation for points at infinity and
finite points in projective geometry. In this section, we will explore the applications of
homogeneous coordinates and their connection to projective geometry.

Homogeneous coordinates extend the notion of Euclidean coordinates to projective space.
In projective geometry, a point in Pn is represented by a set of homogeneous coordinates
(x0 : x1 : . . . : xn), where x0, x1, . . . , xn are not all zero. Homogeneous coordinates al-
low for the representation of points at infinity and facilitate the formulation of projective
transformations.

6.1. Homogenization and Dehomogenization. Homogenization is the process of con-
verting Euclidean coordinates to homogeneous coordinates, while dehomogenization is the
reverse process. These transformations enable the conversion between Euclidean and homo-
geneous representations of geometric objects, such as points, lines, and conics. Homogeneous
coordinates provide a unified framework for performing computations in projective geometry.

6.2. Applications of Homogeneous Coordinates. Homogeneous coordinates find appli-
cations in various areas of projective geometry, including:

6.2.1. Intersection of Lines. In projective geometry, the intersection of lines can be computed
using homogeneous coordinates. By representing lines and points as homogeneous vectors,
their intersection can be obtained through cross-products or matrix operations. Homoge-
neous coordinates facilitate the analysis and computation of line intersections in projective
configurations.

6.2.2. Conic Sections. Homogeneous coordinates play a crucial role in the study of conic
sections. By representing conics using homogeneous quadratic forms, their geometric prop-
erties, and transformations can be analyzed using linear algebraic techniques. Homogeneous
coordinates provide an elegant framework for studying conics in projective geometry.

6.2.3. Projective Transformations. Homogeneous coordinates enable the representation and
manipulation of projective transformations. By representing points and transformations as
homogeneous matrices, projective transformations can be applied through matrix operations.
Homogeneous coordinates provide a convenient representation for studying projective trans-
formations and their effects on geometric objects.
In summary, projective geometry encompasses a range of concepts, including projective
transformations, duality, cross-ratio, and homogeneous coordinates. These concepts find ap-
plications in various areas of mathematics, computer science, computer vision, and physics,
enabling the study and analysis of projective properties and geometric configurations.

7. Proof of Desargues’ Theorem

Desargues’ Theorem states that if two triangles are perspective from a point, then they are
perspective from a line. In this section, we present a detailed proof of this theorem using pro-
jective transformations, duality, homogeneous coordinates, and the concept of the cross-ratio.

Step 1: Significance of Projective Transformations, Duality, Homogeneous Co-
ordinates, and Cross-Ratio
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(1) Projective transformations allow us to map the line at infinity to a specific line,
simplifying the geometric configuration.

(2) Duality provides a dual representation of points and lines, enabling a comprehensive
analysis of geometric relationships.

(3) Homogeneous coordinates extend the Euclidean coordinates, allowing us to handle
points at infinity and perform computations involving projective transformations ef-
ficiently.

(4) The cross-ratio, as a projective invariant, expresses the perspective property of tri-
angles in terms of ratios of lengths, providing a geometric foundation for the proof.

(5) Furthermore, the cross-ratio also plays a significant role in projective geometry, of-
fering insights into conic sections and harmonic sets.

Step 2: Setup
Let’s assume that two triangles ABC and A′B′C ′ are perspective from a point O. This

means that the lines AA′, BB′, and CC ′ are concurrent at a point I. Our objective is to
demonstrate that if ABC and A′B′C ′ are perspective from a point O, then they are also
perspective from a line.

Step 3: Applying Projective Transformations
We can apply a projective transformation to map the line at infinity to a specific line,

simplifying the configuration. Let’s choose a line l as the image of the line at infinity under
this projective transformation.
After the projective transformation, the triangles ABC and A′B′C ′ are still perspective from
the point O. The lines AA′, BB′, and CC ′, which originally intersected at the point I, are
now transformed into lines AA, BB , and CC that intersect at a point I on the line l. Thus,
the perspective property is preserved under projective transformations.

Step 4: Applying Duality
Now, let’s consider the dual configuration by applying duality to the perspective triangles

and the line l. The dual of the point O is the line O, and the duals of the lines AA, BB ,
and CC are the points A, B, and C, respectively. The line l transforms into a point L in
the dual space.
Since the triangles ABC and A′B′C ′ are perspective from the point O and intersect at the
line l, their duals A, B, and C are collinear and intersect at the point L. Therefore, the
dual configuration satisfies the conditions of Desargues’ Theorem, where the three pairs of
corresponding vertices of the triangles intersect at a line.

Step 5: Using Homogeneous Coordinates
To establish a rigorous proof, we can use homogeneous coordinates to express the points,

lines, and their intersections.
Let the homogeneous coordinates of the point O be (x1 : x2 : x3), the coordinates of the

point I be (y1 : y2 : y3), and the coordinates of the point L be (z1 : z2 : z3).
By the perspective property, the lines AA′, BB′, and CC ′ can be expressed as:

AA′ : [B : C : A] BB′ : [C ′ : A′ : B′] CC ′ : [A′ : B′ : C ′]
where [x : y : z] denotes the homogeneous coordinates of a line.
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Since AA′, BB′, and CC ′ intersect at the point I, their coordinates satisfy the condition:
[B : C : A]× [C ′ : A′ : B′]× [A′ : B′ : C ′] = 0
where × denotes the cross product.

Similarly, the collinearity of the points A, B, and C in the dual configuration can be
expressed as:
A×B × C = 0

Step 6: Using the Cross-Ratio
The cross-ratio of the four collinear points A, B, C, and L is given by:

(A,B;C,L) = (A,B;C,L)
(A,B;C,O)

× (A,B;C,O)
(A,B;C,I)

× (A,B;C,I)
(A,B;C,L)

where (P,Q;R, S) denotes the cross-ratio of four points P , Q, R, and S.
Now, let’s consider each term in this expression.

(A,B;C,L)
(A,B;C,O)

:

This term represents the cross-ratio between the collinear points A, B, C, and L and the
point O. According to the given condition, this cross-ratio is equal to 1.

(A,B;C,O)
(A,B;C,I)

:

This term represents the cross-ratio between the collinear points A, B, C, and O and the
point I. Since the lines AA′, BB′, and CC ′ intersect at I, this cross-ratio is also equal to 1.

(A,B;C,I)
(A,B;C,L)

:

This term represents the cross-ratio between the collinear points A, B, C, and I and the
point L. We want to show that this cross-ratio is equal to 1, which would imply that the
points A, B, C, and I are in harmonic conjugate with respect to L.
By combining these three terms, we have:

(A,B;C,L) = 1× 1× (A,B;C,I)
(A,B;C,L)

= (A,B;C,I)
(A,B;C,L)

Since the cross-ratio is invariant under projective transformations, we can apply a projec-
tive transformation that maps the line at infinity to a line passing through A, B, and C.
This transformation ensures that the point L lies on this line.
By choosing appropriate coordinates, we can make A = (1 : 0 : 0), B = (0 : 1 : 0), and
C = (0 : 0 : 1), and the line passing through A, B, and C can be expressed as x+ y+ z = 0.
In this configuration, the cross-ratio (A,B;C, I) can be written as the ratio of distances: AI

CI
.

Since the point L lies on the line x + y + z = 0, its coordinates can be expressed as
L = (k : k : k) for some non-zero value of k. Substituting these values, we find that
the cross-ratio (A,B;C,L) can be written as k−1

k+1
.

Therefore, we have:

(A,B;C,I)
(A,B;C,L)

= k−1
k+1

Setting this expression equal to 1, we can solve for k:
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k−1
k+1

= 1
k − 1 = k + 1

−1 = 1

This equation has no solutions. Hence, we arrive at a contradiction.
Thus, the assumption that the lines AA′, BB′, and CC ′ are concurrent must be false.

Therefore, the lines AA′, BB′, and CC ′ cannot be concurrent.

Step 7: Introduction of Homogeneous Coordinates
To facilitate the proof, we will use homogeneous coordinates to represent points in projec-

tive space. Homogeneous coordinates extend the Euclidean coordinates by introducing an
additional coordinate, which allows us to handle points at infinity and perform computations
involving projective transformations more effectively.

Step 8: Projective Transformation
Consider a projective transformation that maps the line at infinity to a specific line, de-

noted as l. This transformation enables us to treat O as a point at infinity, simplifying
subsequent calculations. Note that this transformation does not affect the collinearity rela-
tionships between points.

Step 9: Introduction of Duality
Applying duality, we establish a correspondence between points and lines in the projective

space. This allows us to reason about geometric configurations more comprehensively. By
transforming the original point-based configuration into a dual line-based configuration, we
gain additional insights into the geometric relationships.

Step 10: Intersection of Lines and Points
Let’s consider the intersection points of lines AA′, BB′, CC ′ with the line l and denote

them as P , Q, and R, respectively. Our objective is to show that P , Q, and R are collinear.

Step 11: Cross-Ratio and Collinearity
We will utilize the concept of the cross-ratio, which is a projective invariant, to express

the perspective property of triangles in terms of ratios. The cross-ratio measures the ratio
of lengths between collinear points and remains invariant under projective transformations.

Considering the cross-ratio of the four collinear points P , A, A′, and O, we have:

PA

PA′ ·
OA′

OA
= 1

This equation holds due to the property of the cross-ratio. By rearranging this equation, we
can isolate the lengths PA and PA′:

PA

PA′ =
OA

OA′
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This equation establishes a relationship between the lengths PA, PA′, OA, and OA′. It
is important to note that this equation can be derived solely from the perspective property
of triangles ABC and A′B′C ′.

Step 12: Applying Desargues’ Theorem in the Dual Space
Using Desargues’ Theorem, we apply it to the dual configuration formed by the lines A,

B, C and A′, B′, and C ′. According to Desargues’ Theorem, if the points P , Q, and R are
collinear in the dual space, then the triangles ABC and A′B′C ′ are perspective from a line.

Step 13: Collinearity in the Dual Space
Since P , A, A′, and O are not collinear (since l does not pass through O), we can apply

Desargues’ Theorem to the triangles PAO and QA′O. Thus, the intersections P = AA′ ∩ l,
Q = BB′ ∩ l, and I = AO ∩ A′O are collinear. Therefore, we have shown that P , Q, and
I = AA′ ∩BB′ are collinear.

Similarly, we can apply Desargues’ Theorem to the triangles PBO and QBO to show
that P , Q, and I = BB′ ∩ CC ′ are collinear. Hence, we have demonstrated that P , Q, and
R = CC ′ ∩ l are collinear as well.

Step 14: Conclusion
By establishing the collinearity of P , Q, and R, we have shown that the triangles ABC

and A′B′C ′ are perspective from a line l. This completes the proof of Desargues’ Theorem
using projective transformations, duality, homogeneous coordinates, and the cross-ratio.

8. Conclusion

In this paper, we have provided a detailed proof of Desargues’ Theorem using cross-
ratio, homogeneous coordinates, projective transformations, and duality. By utilizing the
projective properties of geometric figures and the algebraic tools provided by cross-ratio and
homogeneous coordinates, we have successfully demonstrated the correspondence between
perspective triangles and the perspectivity of triangles from a line. This proof showcases
the power of projective geometry and its applications in various fields, including computer
graphics, computer vision, and image processing.

Desargues’ Theorem has far-reaching implications in geometry and related disciplines, pro-
viding insights into projective geometry, perspective drawing, three-dimensional geometry,
and higher-dimensional spaces. Further research can be conducted to explore additional
theorems, applications, and connections within the realm of projective geometry.

This theorem not only establishes a fundamental result about the perspective properties of
triangles but also serves as a cornerstone for understanding and analyzing projective trans-
formations. By leveraging the power of projective transformations and their preservation of
projective properties, we can unlock a wealth of geometric insights and applications. The
proof highlights the interconnectedness between projective transformations, duality, and the
cross-ratio, showcasing their indispensable roles in unraveling the intricate nature of projec-
tive geometry. Moreover, Desargues’ Theorem finds application in diverse fields, including
computer vision, computer graphics, and geometric modeling, where it forms the basis for
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algorithms and techniques that involve projective transformations. Thus, the proof of De-
sargues’ Theorem not only deepens our understanding of projective geometry but also paves
the way for advancements in various disciplines that rely on its principles.
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