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Abstract

In this paper, we explore a few methods of attacking the RSA cryptosystem. These attacks are
categorized into 3 different sections: guess and check, faults and human error, and factorization
methods. Commentary is added on the effectiveness of these attacks, fixes for security, and possible
ways to improve in the future.

1 Background

The RSA cryptosystem was invented by Ron Rivest, Adi Shamir, and Len Adleman at MIT in 1977. It
is widely used in numerous domains, ranging from secure communication systems to digital signatures
and online transactions.

At its core, RSA operates as a public-key encryption method, meaning it employs a pair of keys: a
public key and a private key. The public key is openly shared and readily accessible to anyone, while
the private key is securely held by each individual user.

The public key is made up of 2 distinct values, N and e, where:
N = p · q, and
e = (p− 1) · (q − 1) .
p and q are both prime numbers.

The private key is the value d, where:
d = e−1 (mod (p− 1)(q − 1)) = e−1 (mod φ(N))
Where φ(N) is Euler’s totient function, that is, there exists an integer k such that ed−kφ(N) = 1.

An easier way to think about this is φ(N) = (p− 1)(q − 1).

To encrypt a message M , where M < N and M ∈ Z∗
N , into a cipher text C , the user will use the

equation:
C = Memod(n)
Conversely, to decrypt a message C into a cipher text M , the user will use the equation:
M = Cd ·mod(n)

The key length of RSA is the length of the modulus n in bits. Currently, the minimum recom-
mended length is at least 1024 bits. Even if it’s not trivial to break for the common person, a key with
a bit length of 512 is no longer considered secure. There are a few conventions associated with the
key length. One convention is that the key length is the position of the most significant bit in n that
has value ’1’, where the least significant bit is at position 1. The most significant byte 0x0A in binary
is 00001010’B. The most significant bit is at position 508, so its key length is 508 bits. On the other
hand, this value needs 64 bytes to store it, so the key length could also be referred to by some as 64 x
8 = 512 bits. Equivalently, key length = ⌈log2(n+ 1)⌉. The other convention is that the key length is
the number of bytes needed to store n multiplied by 8, ⌈log256(n+1)⌉ · 8. In practice, nothing shorter
than 1024 bits is used.
One example is the keyN = 11929413484016950905552721133125564964460656966152763801206748195
494305685115033380631595703771562029730500011862877084668996911289221224545711806057499598
951708004210526342737632227426639311619351783957077350563223159668112192733747397322031251
2599061231322250945506260066557538238517575390621262940383913963, which is composed of the
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primes p = 10933766183632575817611517034730668287155799984632223454138745671121273456287670
008290843302875521274970245314593222946129064538358581018615539828479146469 and q = 1091061
6967349110231723734078614922645337060882141748968209834225138976011179993394299810159736904
468554021708289824396553412180514827996444845438176099727. Scary!

The following table is taken from NIST’s Recommendation for Key Management [NIST-80057]
[Bar20]. It shows the recommended comparable key sizes for symmetrical block ciphers (AES and
Triple DES) and the RSA algorithm. That is, the key length you would need to use to have comparable
security.

Symmetric Key Algorithm Comparable RSA key length Comparable hash function bits of security
2TDEA 1024 SHA-1 80
3TDEA 2048 SHA-224 112

AES-128 3072 SHA-256 128
AES-192 7680 SHA-384 192
AES-256 15360 SHA-512 256

The strength of the algorithm comes from these one way functions - they are easy to calculate but
extremely difficult to reverse. By withholding the prime numbers used in the key generation process
confidential, it becomes challenging, though not impossible, for an unauthorized party to deduce the
necessary components for decryption. This paper introduces numerous methods of RSA decryption,
attacking not only the cipher itself but the systems using it.

2 Guess and Check Methods

2.1 Searching the Message Space

Public key cryptography has a weakness in the fact that part of it must be given away. With a small
enough message space, an attacker can simply try to encrypt every message block, until a match is
found with the corresponding section of ciphertext. In practice, this would only work with tiny message
spaces, and would take too long to be a realistic approach to decrypt any actual usage of RSA.

2.2 Guessing d

This is also called a ”known ciphertext attack”. This attack requires the attacker to know both the
plaintext and the ciphertext. They then try to guess the key to discover the private key d. Once d
has been found, it is easy to find the factors of N , at which point the system has been cracked. From
here, all ciphertexts can be decrypted.

The issue with this attack is that is it very slow, as trying every d can be very time consuming.

2.3 Cycle Attack

Another potential attack on public key cryptography involves repeatedly encrypting the ciphertext
until the original plaintext is obtained, counting the number of iterations required. Essentially, you

calculate Me(mod(N)),Me2(mod(N)). . . and so on until, for some k, Mek(mod(N)) = M .
This method, although theoretically possible, is exceedingly slow and impractical, particularly

when dealing with large encryption keys. A more generalized version of this attack leverages the
factorization of the modulus and can be faster in most cases. However, even with this approach, the
difficulty significantly increases when a large key is used.

2.4 Wiener’s Theorem

The theorem states that if the private exponent in RSA is smaller than a certain threshold related
to the size of the modulus, an attacker can efficiently recover the private key and decrypt encrypted
messages.
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Theorem Let N = pq with p < p < 2q. Let d < 1
3N

1
4 . Given (N, e) with ed ≡ 1mod(φ(N)), d

can be efficiently recovered by searching the right k
d among the convergents of e

N .
This attack is based on the continued fraction representation of the private exponent and its relation

to the convergents. By analyzing these convergents, an attacker can determine the private key with high
probability. We may start by noting the congruence ed ≡ 1 mod φ(n) can be written as the equality
ed = kφ(n)+1 for some value k. We can additionally note that φ(n) = (p− 1)(q− 1) = pq− p− q+1,
since both p and q are much shorter than pq = n, we can say that φ(n) ≈ n. Dividing the former
equation by dφ(n) gives us e

φ(n) =
k+1
d , and using the approximation, we can write this as e

n ≈ k
d . An

important part of this theorem is that the left-hand side of the equation is made up of entirely public
information.

It is possible to factor n by knowing n and φ(n). Consider the quadratic polynomial (x−p)(x− q),
which has the roots p and q . Expanding it gives us the polynomial x2 − (p + q)x + pq, and by
substituting for the variables we can write this as x2 − (n − φ(n) + 1)x + n. Applying the quadratic
formula gives us both p and q, where a = 1, b = n− φ(n) + 1, and c = n.

This attack works by expanding e
n to a continued fraction and iterating through the terms to check

various approximations k
d . In order to make this checking process more efficient, we can make a few

observations:

• since φ(n) is even, and e and d are both by definition coprime to φ(n), we know that d is odd

• Given the above equations and the values of e, n, d, and k, we can solve for φ(n) with the equation
φ(n) = ed−1

k , thus we know that ed− 1 has to be divisible by k

• if the φ(n) is correct, the polynomial x2 − (n−φ(n) + 1)x+ n will have roots p and q, which we
can verify by checking that pq = n

3 Faulty Encryption & Human Error

3.1 Common Modulus

In this case, users within an organization have shared the public modulus, such as an administration
choosing a secure public modulus and generating keys for its employees and users. This is very
convenient for software writing and management, but it can give away information to various groups.
If the same N is used by all users, but a central authority provides each user i with a unique pair of ei
and di, each user now has a ”unique” set of keys. While at first glance this may seem to work, since
any ciphertext C intended for one user cannot be decrypted by another as they do not have the same
di, this notion is incorrect. Eve can use her own exponents ee, de to factor the modulus N . One is it
factored, she car recover any other private key from the known public key of the user. This is easily
fixed by not sharing a modulus between multiple users.

Another example would be that any message encrypted with 2 keys can be broken by an eaves-
dropper, such as a memo sent to multiple employees [SIM83].

Another issue is that this sort of system is at risk of decryption from insiders, who could break the
whole system and view anybody’s messages [DEL84].

3.2 Faulty Communication

In a situation where an attacker has access to a user communication channel, as in, the attacker can
listen to and change what is being transmitted, the encryption system is at risk of being broken. Lets
call the users Alice and Bob, and the attacker Eve.

If Alice decides to talk to Bob, but does not know his public key, she can request it over the faulty
communication channel. Bob replies over the same channel. However, during the communication, Eve
intercepts the message and sees the public key. She flips a single bit in Bob’s public key, changing it
from (e, N) to (e′, N).

When Alice receives the faulty public key, she uses it to encrypt her message and sends it to Bob.
Bob cannot decrypt it since the wrong key was used, and tells Alice to try again. Once again, he sends
his public key. This time Eve does not interfere and Alice is able to encrypt and send her message.
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Now, assuming that Alice encrypted the same text twice, Eve has two ciphertexts, as well as the full
public keys. Now, she can use the public modulus attack in order to retrieve Alice’s message [JQ87].

This attack only works with several faults in communication, both within the channel and the
human decision to encrypt the same message twice. With a change in either, this attack would not
work.

3.3 Low Public Exponent (e)

To reduce calculation time, a small public exponent is used, often at a minimum of e = 3. It is
recommended to use e = 216 + 1 , as it only requires 17 multiplications for signature verification and
is large enough to deter most low e attacks.

3.3.1 Coppersmith Theorem

Theorem Let N be an integer and f ∈ Z[x] be a monic polynomial of degree y . Set X = N1/d−ϵ

for some ϵ ≥ 0 . The, given (N, f), an attacker can find all integers |x0| < X satisfying f(x0) ≡ 0
(mod N). [Cop97]

The theorem provides an algorithm for efficiently finding all roots of f (mod N) that are less

than X = N
1
d . The algorithm’s running time decreases as X gets smaller. The strength of this

theorem is its ability to find small roots of polynomials modulo a composite N . Given a polynomial
h(x) = Σaix

i ∈ Z[x], define ∥h∥2 = Σi|ai|2. The proof relies on the following observation:

Lemma Let h(x) ∈ Z[x] be a polynomial of degree d and let X be a positive integer. Suppose
∥h(xX)∥ < N/

√
(d). If |x0| < X satisfies h(x0) = 0 (mod N), then h(x0) = 0 holds over the integers

[How97].

Proof Observe from the Schwarz inequality that

|h(x0)| = |Σaixi
0| = |ΣaiXi(

x0

X
)i|

≤ Σ|aiXi(
x0

X
)i| ≤ Σ|aiXi| ≤

√
(d)∥h(xX)∥ < N

Since h(x0) = 0 (mod N), we conclude that h(x0) = 0.

The lemma states that if h is a polynomial with low norm, then all small roots of h (mod N) are
also roots of h over the integers. The lemma suggests that to find a small root x0 of f(x) (mod N) we
should look for another polynomial h ∈ Z[x] with small norm having the same roots as f (mod N).
Then x0 will be a root of h over the integers and can be easily found. Coppersmith found a trick
to solve the problem: if f(x0) = 0 (mod N), then f(x0)k = 0 (mod Nk) for any k. More generally,
define the following polynomials:

gu,v(x) = Nm−vxuf(x)v

for some predefined m. Then x0 is a root of gu,v(x) (mod Nm) for any for any u ≥ 0 and 0 ≤ v ≤ m.
To use the previous Lemma, we must find an integer linear combination h(x) of the polynomials gu,v(x)
such that h(xX) has norm less than Nm. Thanks to this upper bound on the norm, we can show that
for a sufficiently large m there always exists a linear combination h(x) satisfying the required bound.
Once h(x) is found, the lemma implies that it has x0 as a root over the integers. Consequently x0 can
be found.

The efficiency of this theorem can be proved using the LLL Algorithm

This theorem can be used to attack stereotyped messages (messages whose difference is less than

N
1
e ), polynomially related messages (identical messages sent to multiple recipients), and factoring N

if the high bits of p are known.
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3.3.2 Hastad’s Broadcast Attack

Suppose Bob sends a message to a number of parties, P1, P2, . . . , Pk . Each party has its own public
key, (ei, Ni), where M < N . In this case, Bob would encrypt each party’s message with its own public
key, and send a separate encrypted message to each one. Eve can then eavesdrop and collect the k
sent messages.

In this case, Eve can recover the message if k ≥ e, where Cn = Mk (mod N). We may assume that
gcd(Ni, Nj) = 1 for all i ̸= j since otherwise Eve can factor some of the Ni’s. Hence, applying the Chi-
nese Remainder Theorem to C1, . . . , Ck gives a C ∈ ZN1...Nk

Satisfying C ′ = Mk (mod N1, . . . , Nk).
Since M is less than all of the Ni’s, we have Mk < N1 . . . Nk. Then C ′ = Mk holds over the integers.
Thus, Eve can recover M by computing the real cube root of C ′. More generally, if all public exponents
are equal to e, Eve can recover M as soon as k ≤ e.

3.3.3 Franklin-Reiter Related Message Attack

If two related messages, as in, two messages with a fixed difference, M1 = f(M2)mod(N), are en-
crypted with the same modulus, it is possible to decrypt it under any e.

Lemma Set e = 3 and let (N, e) be an RSA public key. Let M1! = M2 satisfy M1 = f(M2)mod(N)
for some linear polynomial f = ax+b with b! = 0. Then, given (N, e, C1, C2, f) an attacker can recover
M1 and M2 in time quadratic in log(n) .

Proof Since C1 = Me
1mod(N), we know that M2 is a root of the polynomial g1(x) = f(x)e − C1

and similarly M2 is a root of g2(x) = f(x)e −C2. The linear factor x−M2 divides both polynomials.
Therefore, an attacker can use the euclidean algorithm to compute the gcd of g1 and g2. If the gcd

turns out to be lieanr, M2 is found.

We show that when e = 3 the gcd must be linear. The polynomial x3 − C2 factors modulo both
p and q into a linear factor and an irreducible quadratic factor. Since g2 cannot divide g1, the gcd
must be linear. For e > 3 the gcd is almost always linear. However, for some rare M1; M2, and f , it
is possible to obtain a nonlinear gcd, in which case the attack fails. For e > 3 the attack takes time
quadratic in e. Consequently, it can be applied only when a small public exponent e is used. For large
e the work in computing the gcd is prohibitive.

3.3.4 Coppersmith’s Short Pad Attack

When sending a message, padding is added around it to increase randomness and ensure byte format-
ting. However, if used improperly, it allows an attacker access to the message.

Suppose Bob sends Alice a padded message. Eve intercepts it, and stops it from reaching Alice.
Bob resends the same message, this time with random padding. Eve now has 2 messages, and is able
to decrypt them despite not knowing the padding. [H̊as88]

Theorem Let (N, e) be a public key where N is n bits long. Set m = |n/e2| . Let M ∈ Z/NZ∗

be a message of length at most n −m bits. Define M1 = 2mM + r1 and M2 = 2mM + r2, where r1
and r2 are distinct integers with 0 ≤ r1, r2 < 2m. If Eve is given (N, e) and the encryptions C1, C2 of
M1,M2 (but is not given r1 or r2), she can efficiently recover M .

Proof Define g1(x, y) = xe − C1 and g2(x, y) = xe − C2. We know that when y = r2 − r1, these
polynomials have M1 as a common root. In other words, ∆ = r2 − r1 is a root of the resultant

h(y) =resx(g1, g2) ∈ ZN [y]. The degree of h is at most e2. Furthermore, |∆| < 2m < N
1
e2 . Hence, ∆

is a small root of h (mod N), and Eve can efficiently find it using Coppersmith’s Theorem. Once ∆

is known, the FR attack from the previous section can be used to recover M2 and M .

3.3.5 Partial Key Exposure Attack

This attack is possible when the public key is small. If an attacker exposed a fraction of the bits of d,
he can, on the assumption that the modulus is small, reconstruct the rest of d. [BDF98]
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Theorem 3.3.5.1 Let (N, d) be a private key with N being n bits long. Given the ⌈n
4 ⌉ least

significant bits of d, an attacker can reconstruct all of d in time linear in e log2 e.

Theorem 3.3.5.2 (Coppersmith) Let N = pq. Given the n
4 least or the most significant bits of p,

one can factor N efficiently. k integer exists such that ed− k(N − p− q + 1) = 1.
Since d < φ(N), then 0 < k ≤ e. Reducing N to 2n/4 and setting q = N/p, we get (ed)p− kp(N −

p+ 1) + kN = p(mod2n/4)

Since Eve is given the n/4 least significant bits of d, she knows the value of ed (mod 2n/4). Con-
sequently, she obtains an equation in k and p. For each of the e possible values of k, Eve solves the
quadratic equation in p and obtains a number of candidate values for p (mod 2n/4). For each of these
candidate values, she runs the algorithm of Theorem 3.3.5.2 to attempt to factor N . One can show
that the total number of candidate values for p (mod 2n/4) is at most e log2 e. Hence after at most
e log2 e attempts, N will be factored.

3.4 Blinding

One common use of RSA is to attach encrypted signatures. Eve can ask Bob to sign a random ”blinded
message”, one where he does not know what the message is. Most signature systems attach a one-way
hash, and since it is fairly secure, Bob’s system would attach a valid signature.

RSA does not inherently have a system to check whether a message is dangerous or not, so most
systems will look for specific characters or strings to determine if it should sign the message. This is
easily bypassed, such as by multiplying the dangerous message with a prime number.

To apply the attack, Eve simply has to choose a buffer re, where r is any small integer. She then
sends her message with the applied buffer, M ′ = (re ·M)mod(N). Since this now looks like a string
of random characters rather than the searchable dangerous message, Bob’s system signs the message,
S′ = M ′d ·mod(N), and sends it back. To take out the blinding factor, Eve simply has to calculate

(S
′e

re ) ·mod(N).

3.5 Timing Attack

Timing attacks exploit the fact that cryptographic operations can take varying amounts of time depend-
ing on the input and private keys. By measuring the execution time of RSA private key operations, it is
possible to analyze the timing patterns and potentially uncover the secret key used in the calculations.

Let us consider a simple example of implementing a string compare function, where we have to
return true if the strings match and return false if they don’t.

def string\_compare(s1,s2):

if len(s1) != len(s2):

return False

for i in range(len(s1)):

if s1[i] != s2[i]:

return False

return True

In the above function, we first compare the two strings’ lengths and then compare the individual
characters if they are of equal length. While iterating over the loop, if we encounter two different
characters, we return false. If we do not find any difference, we return true. Let us assume that
the correct password is 5263987149, and the attacker starts guessing from the first digit (beginning
from 0000000000). He measures that the system returns false after x seconds. After getting the same
response time x for the first five guesses (i.e., from 0000000000 to 4000000000), he notices that the
system takes a slightly longer time to respond (x + ∆x) when he tries 5000000000. This is because
the for loop during its first iteration doesn’t return false since the first digit of the user input and
the stored password is equal. Hence, the loop runs another iteration, thereby taking more time (∆x).
Therefore, the attacker knows that the first digit he tried now is correct. He can repeat the same
procedure to guess the remaining digits by observing the pattern of ∆x. In this way, it would take the
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attacker only 10 · 10 guesses at the maximum to find the correct password, compared to 1010 possible
combinations while trying to brute force it.

For this attack, the attacker must have the target system compute Cd (mod N) for a couple selected
values of C. Then, the attacker measures the time required to perform computations, which allows
them to recover the private key d bit by bit. The sample size required is proportional to the number
of bits in the private key, and since the number of bits is finite, this calculation is computationally
practical.

How to use:

1. Let d = dndn−1 . . . d0 (binary of d)

2. Set z = M and C = 1. For i = 0 . . . n do:

(a) if di = 1 set C = C.zmod(N)

(b) z = z ∗ zmod(N)

3. C at the end has the value Mdmod(N)

3.6 Bleichenbacher’s Attack on PKCS 1

Bleichenbacher’s Attack on PKCS 1 (also known as the RSA padding oracle attack) is a cryptographic
vulnerability that targets the RSA encryption scheme using PKCS 1 padding. This attack exploits
the behavior of servers that provide different error responses based on the validity of the padding in
RSA ciphertexts. By interacting with such a server and carefully analyzing the server’s responses, an
attacker can gradually obtain information about the private key.

The attack relies on a mathematical property of RSA decryption that allows an attacker to iter-
atively narrow down the possible value of the decrypted message. By repeating this process multiple
times, an attacker can eventually deduce the complete plaintext message.

Let N be an n-bit RSA modulus and M be an m bit message with m < n. Before applying RSA
encryption it is natural to pad the message M to n bits by appending random bits to it. An old
version of a standard known as Public Key Cryptography Standard 1 (PKCS 1) uses this approach.
After padding, the message is n bits long, staring with a 16-bit long block containing ”02”, followed
by a random pad, followed by ”00” and finally the message M . The ”02” is added to signal that a
random pad has been attached to the message. The 16-bit block does not have to be ”02”, it can be
any specified block.

When a PKCS 1 message is received by Bob’s machine, an application (such as a web browser)
decrypts it, checks the initial block, and strips off the random pad. However, some applications check
for the ”02” initial block and if it is not present they send back an error message saying ”invalid
ciphertext”. Bleichenbacher showed that using this error message, an attacker can decrypt ciphertexts
of his choice.

Suppose Eve intercepts a ciphertext C intended for Bob and wants to decrypt it. Eve picks a
random r ∈ Z∗

N , computes C ′ = rC (mod N), and sends C ′ to Bob’s machine. Bob’s checking
application recieves the new message and attempts to decrypt it. His machine responds with either
an error message or does not respond at all, depending on if C ′ was properly formatted, aka has the
correct initial 16-bit block. From this response, Eve can tell if she has guessed the intial block correctly,
or can make another guess and send the message again. Bleichenbacher showed that this is sufficient
for decrypting C. [Ble98]

3.7 Random Faults

Very rarely, a key can be chosen that encrypts a message to itself. This would allow the attacker access
without any work on their part. However, these results are far more theoretical, and their randomness
makes them impractical to use on a larger scale.

In addition, our computers can encounter bugs and make mistakes within calculations. If a glitch
causes someone’s computer to miscalculate a single instruction, such as flipping a bit, an attacker can
easily factor N using the invalid signature. This sort of glitch was present in an early version of the
Pentium chip, and can be caused by a hardware bug or ambient EM interference [BDF98].
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A version of this error can occur while Bob is generating a signature. Suppose a single error occurs,
and as a result, exactly one text letter Cp or Cq will be computed incorrectly. Say Cp is correct, but

Ĉq is not. The resulting signature is now Ĉ = T1Cp + T2Ĉq. Once Eve receives Ĉ, she knows that

it is a false signature since Ĉe ̸= M (mod N). However, notice that Ĉ = M (mod p) while Ĉe ̸= M
(mod q). As a result, gcd(N, Ĉe −M) exposes a nontrivial factor of N .

For the attack to work, Eve must have full knowledge of M . Namely, we are assuming Bob does not
use any random padding procedure. Random padding prior to signing defeats the attack. A simpler
defense is for Bob to check the generated signature before sending it out to the world. Checking is
especially important when using a Chinese Remainder Theorem speedup method, such as the ones
used by many corporate implementations.

4 Factorization Methods

4.1 Fermat’s Factorization

This method of factorization consists of finding an x and y such that x2 − y2 = z. The right side of
the equation factors into (x − y)(x + y), and if x − y is not one, then you have found a non-trivial
factorization.

Fermat’s method is not very efficient in finding factors themselves, but are theoretically important
in that many more modern methods such as: the quadratic sieve, multiple polynomial quadratic sieve,
and the special and the general number field sieves are all based upon this method.

4.2 Pollard’s p-1 Algorithm

The p−1 algorithm was developed by J.M.Pollard in the 1970’s . The basic idea of the algorithm is to
use some information about the order of an element of the group Zp to find a factor p of N [Cha05].
The algorithm is based on Fermat’s little theorem:

Theorem 4.2: Fermat’s Little Theorem Let p be a prime and a ∈ Z such that p ∤ a. Then,
ap−1 ≡ 1mod(p)

Proof Consider the following two sets of equivalence classes:

A = {[a], [2a], [3a], [4a], . . . , [(p− 1)a]}

B = {[1], [2], [3], [4], . . . , [(p− 1)]} = Zp − {[0]}

A ⊆ B since p ∤ a and p divides none of 1, 2, 3, . . . , p− 1.
Suppose that ∃r, s ∈ N such that 1 ≤ r ≤ s ≤ p− 1 and [ra] = [sa] .
Then, r − s = 0 since [a] ̸= mod(p) (since p ∤ a)
Since r ≤ p and s ≤ p , r − s ≡ 0mod(p) ⇒ r = s
So, [a], [2a], [3a], . . . , [(p− 1)a] are all different (mod p), which means that the cardinality of A is

p − 1. And, since ♯A = p − 1, ♯B = p − 1 and A ⊆ B , we can conclude that A = B , that is the
equivalence classes in A are congruent to the equivalence classes of B under a certain rearrangement.

Hence, a ∗ 2a ∗ 3a ∗ . . . ∗ (p− 1)a = 1 ∗ 2 ∗ 3 ∗ . . . ∗ p− 1mod(p) ap−1 ∗ (p− 1)! = (p− 1)!
ap−1 = 1, since (p− 1)! ̸= 0mod(p)

This shows that A = B

How to use the algorithm:

1. Choose a bound for B for the algorithm, usually 105 − 106

2. Compute m =
∏

p prime
1≤p≤B

p⌊logB/ log p⌋
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3. choose a random positive integer a between 1 and n

4. compute d = gcd(a, n)

(a) if d = 1 go to 5

(b) if d ̸= 1 return d (it is a non-trivial factor of n)

5. compute am mod(n)

6. compute e = gcd(am − 1, n)

(a) if e = 1 go to 1 and increase B

(b) if e = n go to 3 and change a

(c) if e ̸= 1 and e ̸= n return d (it is a non-trivial factor of n)

There are 3 steps in this algorithm that would become too time-consuming to be able to use:
computing m =lcm(b), am (mod n), and d = gcd(am − 1, n).

The first, compute m =lcm(b), could be solved by making a list of all primes leqB by going through
all integers smaller than B and checking for primality. However, this takes an extremely long time and
could be replaced by the Sieve of Eratosthenes. To use the sieve, we write all the integers between 2
and the bound B. Then, for each number up to

√
(B) which is still remaining, we cross out all its

multiples, at most an n number of p terms. The numbers remaining will be the integers smaller than
B which have no factor smaller than

√
(B), that is the primes smaller than B. The total operation

required is:

Σ

√
(B)

p=2 ⌈B
p
⌉ ≈

∫ √
(B)

2

B

p
dp = B · ln(

√
(B)) = O(B · log(B))

The second time-consuming step, calculating am (mod n), can be calculated with fast modular
multiplication. We compute it by expanding m as a sum of powers of 2, repeatedly squaring a, then
multiplying the relevant powers of a.

Let m = k02
0 + k12

1 + . . . + kr2
r, where the ki’s are either 1 or 0. Then, am = ak02

0+k12
1+...+kr2

r

is calculated to am = A0 · A1 · . . . · Ar. The Ai’s are computed by A0 = a, A1 = A2
0 = a2, . . .

Ar = A2
r−1 = a2

r

. We only need r operations to compute the Ai’s and than at most r operations to
add them together and get am. And, since m = k02

0 + k12
1 + . . .+ kr2

r ≥ 2r, we get that r ≤ log2 k.
So, with this method, we can compute a m in at most 2log2k operations, where each operation consists
of one multiplication and one reduction (mod n).

The third step, computing d = gcd(am − 1, n), can be computed using Euclid’s algorithm.

4.3 Number Field Sieve

The number field sieve is an algorithm used to factor large numbers, usually meaning numbers with
over 110 digits. It is one of the most efficient classical methods for factoring, which means it works
on conventional computers. The number field sieve breaks down the problem of factoring into smaller,
more manageable steps, allowing it to factor large numbers more quickly than other methods. There is
also a ”special” number field sieve, which is faster than the generalized version when factoring integers
in the form of re ± s with r, e, s ∈ Z and e > 0.

The algorithm involves several crucial steps, including sieving, linear algebra, and polynomial
selection. In the sieving step, a set of numbers is generated and filtered to find values that have
a special property related to the factorization process. The linear algebra phase solves a system of
equations using a matrix composed of the sieved numbers. Finally, polynomial selection is performed
to find polynomials that satisfy certain conditions and aid in factoring.

This method can be read about more in the paper A Beginner’s Guide To The General Number Field
Sieve [Cas], but will not be covered in this expository paper due to length and extensive background
needed.

The best implementation of this algorithm currently has a running time of ((c+ o(1))n1/3log2/3n .
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4.4 Quantum Computing & Shor’s Algorithm

Quantum computing poses a unique challenge, being able to factor large numbers very easily and
quickly. The primary concern arises from Shor’s algorithm, a quantum algorithm capable of efficiently
factoring large numbers by utilizing the principles of quantum superposition and entanglement. If a
practical quantum computer capable of running Shor’s algorithm efficiently becomes available, it could
undermine the security provided by RSA and other similar encryption methods.

Shor’s algorithm is the current best algorithm for factorization. However, it cannot be used on
prime numbers, even numbers, or numbers of the form xz.

To use Shor’s algorithm:

1. Choose a number, N , to factor

2. Randomly choose a number, k, between 1 and N

3. Calculate gcd(N, k)

(a) If gcd is not equal to 1, you have found a factor

(b) If gcd is equal to 1, move on to step 4

4. We need to find the smallest possible integer r such that if f(x) = kx mod (N), then f(a) =
f(a+ r)

(a) Define a new variable q = 1

(b) Calculate (q · k) mod (N)

i. If the remainder is 1, proceed to step 4.c

ii. If the remainder is not 1, set the value of q to the remainder. Repeat step 4.b until the
remainder is 1.

(c) The number of transformations done is the value of r

5. If r is odd, go back to step 2 and choose a different value for k

6. Define p as the remainder in the (r/2)th transformation

(a) If p+ 1 = N , go back to step 2 and choose a different value for k

(b) If not, proceed to step 7

7. The factors of N are f1 = gcd(p+ 1, N) and f2 = gcd(p− 1, N)

Steps 1, 2, 3, 5, 6, and 7 can be run efficiently on a classical computer. However, step 4 takes a
much larger amount of time, unrealistic for any current classical computer. In classical computers,
this algorithm takes an exponentially larger amount of time with larger numbers. However, in quan-
tum computers, the relationship is logarithmic. This makes Shor’s algorithm extremely powerful, and
potentially dangerous for large RSA keys.

Currently, there are a few claims for quantum related factoring.

• Xu, et al. [Xu+12] claimed to factor 143 = 11 · 13.

• Dattani, et al. [DB14] claimed to have factored 56153 = 233 · 241.

• Dash, et al. [Das+18] expanded on the previous claim and factored 4088459 = 2017 · 2027. This
is similar to the previous claim. The method only applies to a very narrow class of integers
(product of integers differing only by 2 bits). Both attempts fit the method. It also expands
on Xu, et al. as their technique factors an integer product of two odd exactly-4-bit integers
(thus with two unknown bits per factor). The scarcity of primes in range [8,15] makes 143 the
only product of two distinct primes that the technique can factor. Their experimental setup
iteratively minimizes a function with a 2-bit input.

• Pal, et al. [Pal+19] claims to have factored 551 = 19 · 29, but acknowledges that the technique
probably can’t factor some larger 10-bit integers. The number of qubit, which influences what
integers can be factored, depends on the molecule used, in this case dibromofluoromethane.
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• Li, et al. [Li+17] used a different molecule, 3C-labeled diethyl-fluoromalonate to factor 291311 =
523 · 557. They still use 3 qubits, but the larger value is explained by pre-screening the integer
factored.

Any of the above factorizaitons can be obtained using the first step of Fermat’s method:

1. let n be the integer to factor

2. let u = ⌈
√
n⌉

3. if v =
√
u2 − n is an integer, then u− v and u+ v are factors of n

None of the above techniques implement Shor’s algorithm. They express factorization as a com-
binatorial minimization problem, solved using a variant of Grover’s algorithm or adiabatic quantum
computing. The aproach is not scalable to anything that could hope to break a real RSA code, and is
therefore of no cryptographic interest.

However, a recently released approach by Yan, et al. [Yan+22] is hopeful. By performing the
harder part of the algorithm (Short Vector Problem) on a 10-bit quantum computer, they are able to
factor any 48-bit integer. This raises the current record to 261980999226229 = 15538213 · 16860433.
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