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Overview

The class number problem for quadratic fields was formulated by
Gauss in his book Disquisitiones Arithmeticae [Gau01], written in
1798 when Gauss was 21 years old

It has wide connections to number theory, algebra, analysis and a long
history of results and theory development.

It still attracts mathematicians’ attention to this day

In this talk, we’ll

Introduce the background of the Gauss class number problem

Present Dirichlet’s class number formula for imaginary quadratic fields

Outline the historical development of the works on the lower bound
for the class number of imaginary quadratic fields, including the
landmark Siegel’s theorem and the Goldfeld-Gross-Zagier theorem,
the first general result with an effective constant.
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The Start

x2 − x + 41 is a prime for all x ∈ {1, 2, · · · , 40} (Euler 1772) [Eul72]

x2 + x + 41 is a prime for all x ∈ {0, 1, 2, · · · , 39} (Legendre 1798)

Theorem

(Rabinovitch) D < 0,D ≡ 1(mod 4),

x2 − x +
1 + |D|

4
is a prime for all x ∈ {1, 2, · · · , |D| − 3

4
},

if and only if every integer of the field Q(
√
D) has unique factorization

into product of primes.

−163 is the discriminant
Q(

√
−163) has the unique factorization property.

−163 is one of nine so-called Heegner numbers.
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Binary Quadratic Forms

In Disquisitiones Arithmeticae, Gauss works with binary quadratic forms:

f (x , y) = ax2 + bxy + cy2 for a, b, c ∈ Z .

The discriminant of the form is d = b2 − 4ac. We consider only d < 0, in
particular, the fundamental discriminants, where d ≡ 1 (mod 4) is
square-free or d = 4n where n ≡ 2, 3 (mod 4) is square-free (every form is
equivalent to one such).

f (x , y) is called primitive when gcd(a, b, c) = 1

f (x , y) a positive-definite form if f (x , y) ≥ 0 for all (x , y)
(negative-definite if f (x , y) ≤ 0 for all (x , y) and indefinite if neither
positive- nor negative-definite).

Two forms f (x , y) and g(x ′, y ′) are called equivalent, denoted as
f (x , y) ∼ g(x ′, y ′), if there is a matrix in SL2(Z) such that(

x ′

y ′

)
=

(
p q
r s

)(
x
y

)
and ps − qr = 1.
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Binary Quadratic Forms - cont.

It can be shown that two forms are equivalent iff they represent the
same set of integers (Lagrange 1773).

Any two equivalent forms f (x , y) ∼ g(x , y) have the same
discriminant.

Let f (x , y) be a form with discriminant b2 − 4ac < 0. Then f (x , y) is
either positive- or negative-definite, as determined by the sign of a.

A form f (x , y) is reduced if |b| ≤ a ≤ c and b ≥ 0 if either a = |b| or
a = c .

It follows that every primitive, positive-definite form is equivalent to a
canonical unique reduced form.

Definition

The class number for integer d , denoted h(d), is the number of
nonequivalent forms f (x , y) with discriminant d = b2 − 4ac.
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Class Number Is Positive and Finite

For a reduced form, −d = 4ac − b2 ≥ 3a2 =⇒ |b| ≤ a ≤
√

−d
3 . This

implies that h(d) is finite. Furthermore, since d ≡ b2 ≡ 0 or 1 (mod 4),
the following provides at least one binary quadratic form of discriminant d
for any valid d , called the principal form:{

x2 − 1
4dy

2 if d ≡ 0 (mod 4)

x2 + xy − 1
4(d − 1)y2 if d ≡ 1 (mod 4).

(0.1)

Hence h(d) is a positive integer, and together we get the following:

Theorem

[Cox22] For fixed d , the number h(d) of primitive, positive-definite forms
of discriminant d is positive and finite. Further, h(d) is equal to the
number of reduced forms of discriminant d .
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The Gauss Class Number Problem

In the Disquisitiones Arithmeticae (1801) [Gau01], Gauss showed (using
the language of binary quadratic forms) that h(d) is finite. He conjectured

1 h(d) = 1 for d = −3,−4,−7,−8,−11,−19,−43,−67,−163 and no
others for d < −163, known as Gauss’ class number one problem,

2 limd→−∞ h(d) = ∞,

3 There are infinitely many real quadratic fields with class number one
(still an open problem!)

This set off a race of more than 200 years of finding an effective algorithm
to determine all imaginary quadratic fields with a given class number h,
known as the Gauss class number problem.
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Connection to Abstract Algebra

Given the form f (x , y) = ax2 + bxy + cy2 with d < 0, consider the

fractional ideal < a, −b+
√
d

2 > of the algebraic integer subring of

Q(
√
d) (”fractional” because < a, −b+

√
d

2 > is not but

2 < a, −b+
√
d

2 > is contained in the algebraic integer subring when b
or d is odd).

Two ideals a, b are equivalent, denoted as a ∼ b, if ∃ principal ideals
(λ1), (λ2) such that a(λ1) = b(λ2).

It can be shown that equivalent ideals of the ideal generated from
f (x , y) above correspond to equivalent forms of f (x , y).

These ideal classes of Q(
√
d) form a group, i.e., the quotient group of

{nonzero fractional ideals}/{principal fractional ideals}, called ideal
class group, with order h(d).

When h(d) = 1, every ideal in Q(
√
d) is principal, thus a principal

ideal domain, and the algebraic integers of Q(
√
d) have unique

factorization.
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Legendre and Kronecker Symbols

Definition

Legendre symbol: Let a be an integer and p be a prime.(
a
p

)
=


1, if a ̸≡ 0 and a is a quadratic residue (mod p)

−1, if a is not a quadratic residue (mod p)

0, if a ≡ 0 (mod p)

Legendre symbol satisfies the quadratic reciprocity law

Definition

Kronecker symbol: Let n be a non-zero integer, with prime factorization
n = u · pe11 · · · pekk , where u is a unit (±1). Let a be an integer. Define the
Kronecker symbol

(
a
n

)
recursively as

(a
n

)
=

(a
u

) k∏
i=1

(
a

pi

)ei
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Legendre and Kronecker Symbols - cont.

For odd pi , the number
(

a
pi

)
is simply the usual Legendre symbol. When

pi = 2, we define
(
a
2

)
by

(a
2

)
=


0, if a is even

1, if a ≡ ±1 (mod 8)

−1, if a ≡ ±3 (mod 8)

.

For u = 1,
(
a
1

)
= 1. For u = −1 and n = 0, we define as(

a

−1

)
=

{
−1, if a < 0

1, if a ≥ 0

(a
0

)
=

{
1, if a = ±1

0, otherwise

Kronecker symbol generalizes the Jacobi symbol and satisfies its own
quadratic reciprocity law.
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Dirichlet Character

When Euler proved (1748) that there are infinitely many primes, he used
the so-called Euler product

∞∑
1

1

n
=

∏
p prime

∞∑
k=0

1

pk
=

∏
p prime

(1− 1

p
)−1.

When Dirichlet proved that there are infinitely many primes in the
arithmetic progression

a, a+ q, a+ 2q, · · · ,where (a, q) = 1,

similar product
∏

p≡a (mod q)(1−
1
p )

−1 could not be directly used as there
is no known equality like the harmonic series. Dirichlet remedied the
problem with the Dirichlet character.
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Dirichlet Character - cont.

Definition

Dirichlet Character: A complex-valued arithmetic function χ : Z → C is
a Dirichlet character of modulus m (where m is a positive integer) if for all
integers a and b:

1 χ(ab) = χ(a)χ(b); that is, χ is completely multiplicative.

2 χ(a)

{
= 0 if gcd(a,m) > 1

̸= 0 if gcd(a,m) = 1.

3 χ(a+m) = χ(a); that is, χ is periodic with period m.

The simplest possible character, called the principal character, usually

denoted χ0, exists for all moduli: χ0(a) =

{
0 if gcd(a,m) > 1

1 if gcd(a,m) = 1.

Real-valued characters are just Kronecker symbols

William Zhang Growth Rate of the Class Number of Imaginary Quadratic FieldsJuly 17, 2023 12 / 21



Dirichlet L-function

With a character χ, Dirichlet defined the L-function:

Definition

L(s, χ) =
∞∑
n=1

χ(n)

ns
=

∏
p prime

∞∑
k=0

(χ(p))k

(ps)k
=

∏
p

(
1− χ(p)

ps

)−1

(Re(s) > 1)

Before introducing Dirichlet’s class number formula, we also need to look
at the automorphs - SL2(Z) transformations keeping a form unchanged:

Always two trivial automorphs, identity and its negative:
x = x ′, y = y ′; x = −x ′, y = −y ′.

If d < 0, no others except for d = −3 or − 4. For both, only the
principal form. If d = −3, it is x2 + xy + y2 with 4 more:
x = −y ′, y = x ′ + y ′; x = x ′ + y ′, y = −x ′ and their negatives.

If d = −4, it is x2+ y2 with 2 more: x = y ′, y = −x ′ and its negative.
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Dirichlet’s Class Number Formula

Let w(d) denote the number of automorphs on a form of a given d . We
have:

w(d) =


2 if d < −4

4 if d = −4

6 if d = −3

(0.2)

Theorem

(Dirichlet’s class number formula) [LD39] Let d < 0 be a fundamental
discriminant and χ be the (mod d) Kronecker symbol (χ(m) =

(
d
m

)
).

Then

h(d) =
w(d)

√
|d |

2π
L(1, χ), (0.3)

L(1, χ) = − π

|d |
3
2

|d |−1∑
m=1

m

(
d

m

)
. (0.4)
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Dirichlet’s Class Number Formula - cont.

Combining the two formulas above gives the following finite sum of
Kronecker symbols for h(d) with d < 0:

h(d) = −w(d)

2|d |

|d |−1∑
m=1

m

(
d

m

)
Examples

1 d = −3,w(d) = 6, h(d) = − 6
2·3

∑2
m=1m

(−3
m

)
=

−1(1
(−3

1

)
+ 2

(−3
2

)
) = −1(1 · 1 + 2 · (−1)) = −1(−1) = 1.

Therefore, the algebraic integers of Q(
√
−3) form a PID, and its

integers have unique factorizations.

2 For Q(
√
−5), the fundamental discriminant d = −20 (−5 ≡ 3

(mod 4)), and similarly h(−20) = 2, so the algebraic integers of
Q(

√
−5) do not form a PID, and its integers may have multiple

factorizations. For example, 6 = 2 · 3 = (1 +
√
−5)(1−

√
−5).
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Siegel’s Theorem

In 1934, Heilbronn [Hei34] proved part of the Gauss class number
conjecture:

lim
d→−∞

h(d) = ∞.

(Heilbronn proved this under the assumption of falsity of the generalized
Riemann hypothesis while Hecke (1918) did it under the opposite
assumption!)
In 1935, Siegel proved the following beautiful result about the growth rate
of h(d).

Theorem

(Siegel) [Sie35] Let Q(
√
d), d < 0 be a quadratic field, and h(d) denote

its class number. For every ϵ > 0, we have

h(d) > Cϵ|d |
1
2
−ϵ

for some constant Cϵ > 0 .
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Siegel’s Theorem - cont.

Eastermann [Est48] (1948) has a short analytical proof.

See Goldfeld [Gol74] (1974) for a short half-page proof.

Siegel’s theorem gives a landmark result on the lower bound of the class
number with respect to the magnitude of the discriminant. However, it has
an ineffective constant Cϵ in that, given ϵ, there is no way of computing a
constant value that makes the inequality hold even though it exists.

Therefore, even with these results and the Dirichlet class number formula,
we were still far from solving even the Gauss class number one problem.

The first important milestones were obtained by Heegner [Hee52] (1952),
Stark [Sta67] (1967), Baker [Bak71] (1971), and Stark [Sta72] (1972),
whose work led to the solution of the class number one and two problems.
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Goldfeld-Gross-Zagier Theorem

The general Gauss class number problem was finally solved completely, at
least theoretically, by Goldfeld–Gross–Zagier (Goldfeld [Gol76] (1975) and
[Gol85] (1985), Gross and Zagier [GZ85] (1985)) in 1985. Their results
combined to reduce the problem of finding all the d < 0’s with given h(d)
to a finite amount of computation in applying the Dirichlet class number
formula.

Theorem

(Goldfeld-Gross-Zagier)[Gol85] For every ϵ > 0 there exists an effective
computable constant c > 0 such that h(d) > c(log(|d |)1−ϵ.

Even though the GGZ theorem reduces the order of magnitude of the

lower bound on the class number from almost |d |
1
2 to less than log(|d |), it

gives an effective constant, which can be computed given ϵ.
Its effectiveness can be seen in that it can be utilized to limit the possible
d ′s to a finite number of choices, given a fixed class number.
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The Current State

Oesterl´e in 1985 [Oes88] improved the constant in GGZ that led to
the solution of the class number 3 problem.
Arno (1992) [Arn92] solved the class number four problem, and
subsequently, work with Robinson and Wheeler (1998) [ARW98], and
work of Wagner (1996) [Wag96] gave a solution to Gauss’ class
number problem for class numbers 5,6,7 and odd class numbers ≤ 23.
Watkins (2004) [Wat04] obtained the complete list of all imaginary
quadratic fields with class number ≤ 100 (the computation took
seven months!).

It is worth noting that the Generalised Riemann Hypothesis implies that
the class number h(d) is at least

(1 + o(1))
π

12eγ

√
|d |

log log |d |
by Littlewood (1928) [Lit28] (Paley (1932) [Pal32] has shown that this is
best possible except for a factor of two).
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Conclusion and Discussion

The Gauss class number problem has been one of the main drivers in
mathematical research for over 200 years in number theory, with wide
connection to algebra and analysis, etc.

Significant results such as Siegel’s theorem and Goldfeld-Gross-Zagier
theorem have been proven.

Even though h(d) grows approximately in the order of |d |
1
2 , its

constant is uncomputable, thus ineffective. The GGZ theorem gives a
growth rate of approximately log(|d |) with a computable constant,
thus effective.

Complete lists of imaginary quadratic fields with class number ≤ 100
have been identified.

Future work: Can the order of growth be increased from log with an
effective constant? Can the effective constant of the lower bound be
increased? Compute the d ’s for h(d) > 100.
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théorie des nombres.
1839.

William Zhang Growth Rate of the Class Number of Imaginary Quadratic FieldsJuly 17, 2023 21 / 21



John E Littlewood.
On the class-number of the corpus p (- k).
Proceedings of the London Mathematical Society, 2(1):358–372, 1928.

Joseph Oesterlé.
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