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ABSTRACT: This paper presents a review of the results on the growth rate of class
number of imaginary quadratic fields. We first develop the theory of binary quadratic forms
and algebraic number fields, and explore how the class number is represented in each of these
contexts. We then review Dirichlet’s class number formula. This background in turn allows
us to outline the historical development of the works on the lower bound for the class number
of imaginary quadratic fields, from Gauss’ class number one problem to Siegel’s theorem and
then the Goldfeld-Gross-Zagier theorem, the first general result with an effective constant.

1. Introduction

In 1772 Euler [Eul72] discovered that

x2 − x+ 41 is a prime for all integers x ∈ {1, 2, · · · , 40}.
Similarly, Legendre observed in 1798 that

x2 + x+ 41 is a prime for all x ∈ {0, 1, 2, · · · , 39}.
A century later, in 1912, Rabinovitch [Rab13] would present the following general result for
quadratics of this form:

Theorem 1.1. (Rabinovitch) D < 0, D ≡ 1(mod 4),

x2 − x+
1 + |D|

4
is a prime for all x ∈ {1, 2, · · · , |D| − 3

4
},

if and only if every integer of the field Q(
√
D) has unique factorization into product of primes.

Ayoub and Chowla [AC81] showed that a similar theorem holds for x2 + x + 1+|D|
4

. It

is known that Q(
√
−163) has the unique factorization property, which accounts for the

polynomial property above. In fact, this makes −163 one of the nine Heegner numbers
that have the same property. These Heegner number quadratics, which evaluate to prime
numbers for many consecutive integer values of x, are some of the earliest examples related
to what is now known as Gauss’ class number one problem.

Finding all of the Heegner numbers is a special case of Gauss’ class number problem,
which Gauss first described in his book Disquisitiones Arithmeticae [Gau01]. Written in
1798, Disquisitiones is one of the most influential texts in the history of algebraic number
theory. The book consolidates the work of Gauss’ predecessors, such as Euler, Lagrange, and
Legendre, and presents interesting questions that still attract attention from mathematicians
over two centuries later. This paper seeks to give an overview of the class number problem for
imaginary quadratic fields with particular focus on its lower bound. However, to rigorously
discuss this issue, we must first define some terms.
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The rest of the paper is organized as follows. Section 2 discusses the theory of binary
quadratic forms, as described in Cox [Cox22]. The notion of equivalence between forms
allows us to define the class number. The main result of this section is that the class number
is finite and positive. This section also states Gauss’ class number problem and one of
its special cases, the Gauss class number one problem. Section 3 introduces the concepts
necessary to present the class number problem in an algebraic number theoretical approach.
Section 4 presents Dirichlet’s class number formula with a rough sketch of analytical proof
[LD39] and its generalization. Section 5 covers Siegel’s theorem [Sie35] with a short proof by
Goldfeld [Gol74] plus description of the initial solutions to the Gauss class number problem.
Section 6 reviews the Goldfeld-Gross-Zagier theorem [Gol85], which, in contrast to Siegel’s,
provides an effective constant that can be utilized to limit the number of candidates for
consideration when classifying imaginary quadratic fields with a given class number. Section
7 gives a brief on the up-to-date classification results of imaginary quadratic fields with
class number ≤ 100, most notably the work by Watkins [Wat04]. Section 8 summarizes the
main results and points out potential future work on the growth rate of the class number of
imaginary quadratic fields, with a theoretical upper bound under the Generalized Riemann
Hypothesis.

2. Binary Quadratic Forms

2.1. Definition, Equivalence, and Definiteness. InDisquisitiones Arithmeticae, Gauss
also deals with generalized binary quadratic forms, which have the the form

ax2 + bxy + cy2 for a, b, c ∈ Z.

The discriminant of the form is d = b2 − 4ac, analagous to the standard single variable
quadratic. We will focus mainly on forms with negative discriminants, so we assume both
a, c ̸= 0. In particular, we are interested in fundamental discriminants, where d ≡ 1(mod 4)
is square-free or d = 4n where n ≡ 2, 3(mod 4) is square-free. For the remainder of this
section, we let f(x, y) denote the form ax2+ bxy+ cy2. The study of binary quadratic forms
began with Lagrange, as treated in his 1773- 1775 work Recherchesd′Arithmetique [DL73],
in the context of determining when an integer m can be represented by some form f(x, y)
for some integer x and y. The theory from Recherches was further developed by Gauss
to whom most of the terminology is due, although many of the concepts were inspired by
Lagrange. For further discussion of the origin of the study of binary quadratic forms and
the more general theory, see the work by Cox [Cox22] or Ribenboim [Rib06].

A form f(x, y) is called primitive when gcd(a, b, c) = 1. Since any form is an integer
multiple of a primitive form, it is sufficient to concern ourselves exclusively with primitive
forms. We also restrict our attention to positive-definite forms, which are those for which
f(x, y) ≥ 0 for all (x, y). Similarly, a form is negative-definite if f(x, y) ≤ 0 for all (x, y) and
indefinite if neither positive- nor negative-definite.

Two forms f(x, y) and g(x′, y′) are called equivalent if there is a matrix in

SL2(Z) =
{(

p q
r s

) ∣∣∣∣p, q, r, s ∈ Z such that ps− qr = 1

}
such that (

x′

y′

)
=

(
p q
r s

)(
x
y

)
.
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It is clear that the equivalence of forms is an equivalence relation: the group action of SL2(Z)
on the set of forms as given above partitions the set into classes according to equivalence.
Following Gauss, we say that two equivalent forms are in the same class, denoted by f(x, y) ∼
g(x, y).
It is clear that the form f(x, y) can be written in matrix form as

f(x, y) =
(
x y

)(a b
2

b
2

c

)(
x
y

)
.

We denote the matrix by F :

F =

(
a b

2
b
2

c

)
.

Clearly, the discriminant

(1) d = −4 · det(F ),

where det(F ) is the determinant of F . It is well known that f(x, y) is positive or negative
definite if and only if F is positive or negative definite, respectively.

If g(x′, y′) = Ax′2 +Bx′y′ + Cy′2 has matrix G and is equivalent to f(x, y) via

M =

(
p q
r s

)
∈ SL2(Z),

then

f(x, y) = g(x′, y′) =
(
x′ y′

)
G

(
x′

y′

)
=

(
M

(
x
y

))T

G

(
M

(
x
y

))
=
(
x y

)
(MTGM)

(
x
y

)
,

which implies
F = MTGM,

from which in turn we get

det(F ) = det(MT ) · det(G) · det(M) = 1 · det(G) · 1 = det(G).

Therefore, we have the following

Proposition 2.1. Any two equivalent forms f(x, y) ∼ g(x, y) have the same discriminant.

We can see that the converse of this proposition is not necessarily true. For example,
consider d = −20 and the forms g(x′, y′) = x′2 + 5y′2 and f(x, y) = 2x2 + 2xy + 3y2 .
We claim these forms are not equivalent. Using methods from the proof of Proposition 2.1
above, with (a, b, c) = (2, 2, 3) and (A,B,C) = (1, 0, 5), suppose we have a matrix M as
given above. But then a little algebra gives

2 = a = Ap2 +Bpr + Cr2 = p2 + 5r2,

2 = b = 2(Apq + Crs) +B(ps+ qr) = 2(pq + 5rs),

3 = c = Aq2 +Bqs+ Cs2 = q2 + 5s2,

and this is impossible for p, q, r, s ∈ Z as the first equation necessitates r = 0, but then p
would not be an integer.

To examine the special case of Gauss’ class number problem that we are interested in, i.e.,
that of imaginary quadratic fields, we restrict our attention to positive-definite forms with
negative discriminant, so d < 0. The sign of the discriminant strongly restricts the behavior
of the form.
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Proposition 2.2. Let f(x, y) be a form with discriminant b2 − 4ac < 0. Then f(x, y) is
either positive- or negative-definite, as determined by the sign of a.

This follows directly from 1 and d < 0 as F is a 2 × 2 matrix, and so the only main
diagonal sub-matrices are the first element (a) and the entire matrix.
From this point on, we take a to be positive (and so c > 0 as well), which provides an

especially nice notion of a reduced form. A form f(x, y) is reduced if |b| ≤ a ≤ c and b ≥ 0
if either a = |b| or a = c. It follows that every primitive, positive-definite form is equivalent
to a canonical unique reduced form [Cox22]. As a complement to the more classically-styled
proof of Cox in [Cox22], Goldfeld [Gol85] gives a discussion of this result. In particular, for

a form f(x, y) with discriminant d, we get an associated complex number ω = −b+
√
d

2a
. A

form is thus reduced precisely when ω is in the fundamental domain of the modular group
SL2(Z).

2.2. Class Number.

Definition 2.1. The class number, denoted h(d), is the number of nonequivalent forms
f(x, y) with discriminant d = b2 − 4ac.

Determining h(d) for a given d can be a challenge in and of itself, although the task is
made much easier via computer programs. Note that −d = 4ac − b2 ≥ 3a2, and so we can

bound the coefficients by |b| ≤ a ≤
√

−d
3

. This implies that there are only finitely many

reduced forms for a given discriminant since a and b are bounded by |d| and c is uniquely
determined by a, b, d, and thus the number of equivalence classes is also finite.

Furthermore, since d ≡ b2 ≡ 0 or 1 (mod 4), the following provides at least one binary
quadratic form of discriminant d for any valid d, called the principalform:

(2)

{
x2 − 1

4
dy2 if d ≡ 0 (mod 4)

x2 + xy − 1
4
(d− 1)y2 if d ≡ 1 (mod 4).

Hence h(d) is a positive integer, and together we get the following theorem.

Theorem 2.1. [Cox22] For fixed d, the number h(d) of primitive, positive-definite forms of
discriminant d is finite and positive. Further, h(d) is equal to the number of reduced forms
of discriminant d.

Remarkably, Gauss conjectured the same fact in Disquisitiones. Without knowing what
a group is, Gauss proves that the classes of forms with a given discriminant form a finite
group under composition as the group operation [Cox22]. This group is known as the form
class group and denoted C(d), and the order of C(d) is clearly the class number h(d).

2.3. Gauss Class Number Problem. In theDisquisitiones Arithmeticae (1801) [Gau01],
Gauss conjectured

(1) h(d) = 1 for d = −3,−4,−7,−8,−11,−19,−43,−67,−163 and no others for d <
−163, known as Gauss’ class number one problem.

(2) limd→−∞ h(d) = ∞
(3) There are infinitely many real quadratic fields with class number one.
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This set off a race of more than 200 years of finding an effective algorithm to determine all
imaginary quadratic fields with a given class number h, known as the Gauss class number
problem. The Gauss class number problem is especially intriguing, because if such an
effective algorithm did not exist, then the associated Dirichlet L–function would have to
have a real zero, and the Generalized Riemann Hypothesis would necessarily be false.

To highlight the difficulty of the problem, the third part of the Gauss class number problem
concerns the real quadratic fields, which are not covered in this paper, and is still an open
question today!

2.4. Automorphs on Binary Quadratic Forms. For describing Dirichlet’s class number
formula in Section 4, we also need to look at the automorphs on the forms of a given d,
namely, SL2(Z) transformations that keep a form unchanged - not just equivalent. There
are always two trivial automorphs, namely, the identity x = x′, y = y′ and the negative
identity x = −x′, y = −y′. If d < 0, there are in general no others, except for when
d = −3 or − 4. In both these cases there is only one class of forms, represented by the
principal form 2.1. If d = −3, the principal form is x2 + xy+ y2, and this has the additional
automorphs x = −y′, y = x′ + y′, and x = x′ + y′, y = −x′ and their negatives. If d = −4,
the principal form is x2 + y2, and this has the additional automorph x = y′, y = −x′ and its
negative. We denote by w the number of automorphs, so that

(3) w(d) =


2 if d < −4

4 if d = −4

6 if d = −3

(Another interpretation for w is that it is the number of roots of unity in the quadratic
field of discriminant d.)

3. Connection to Algebraic Number Theory

In this section, we introduce the fundamental algebraic number field concepts necessary
for establishing the class number in that regard.

3.1. Basics.

Definition 3.1. Let E be a field, and F ⊆ E be a subfield of E. That is, F is a subset of
E and is a field with respect to E’s operations.

Then, the dimension of F considered as a vector space over E is called the degree of
extension of F over E and is denoted by [F : E]. The degree of extension can be finite or
infinite: [C : R] = 2, but [R : Q] = ∞

Definition 3.2. An algebraic element α of a field K satisfies that α is a root of some
polynomial in Q[x].

Definition 3.3. An Algebraic Extension K of Q satisfies that ∀ α ∈ K, α is an algebraic
element of Q. K may be a finite or infinite extension.

Definition 3.4. Let α1, α2, α3 . . . αn be complex numbers. The smallest subfield of C con-
taining Q and all of α1, α2, α3 . . . αn is denoted by Q(α1, α2, α3 . . . αn), which is said to be
obtained by adjoining Q with α1, α2, α3 . . . αn. Such a field always exists and it is the inter-
section of all subfields of C containing Q and α1, α2, α3 . . . αn.
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Definition 3.5. A cyclotomic field is a number field obtained by adjoining a complex root
of unity to Q.

Definition 3.6. An algebraic integer is any complex number that is a root of a monic
polynomial, meaning a polynomial with leading coefficient 1, with coefficients in Z.

Definition 3.7. The ring of algebraic integers OK in an algebraic field K is the set of all
algebraic integers in K. This set is guaranteed to be a ring.

Definition 3.8. A quadratic field is an algebraic number field of degree two over Q. Every
quadratic field is of the form Q(

√
d), where d is a square free integer other than 0 and 1.

If d > 0, Q(
√
d) is a real quadratic field, and if d < 0 it is an imaginary quadratic field or

complex quadratic field.

3.2. Ideals. Note: since the only rings necessary to consider are commutative, we will as-
sume every ring considered in the following sections to be commutative.

Definition 3.9. Let (R,+, ·) be a commutative ring. I ⊆ R is called an ideal of R if (I,+)
is a subgroup of (R,+) and ∀r ∈ R and x ∈ I, rx ∈ I.

Notation: I ◁ R means that I is an ideal of R. Ideals I ̸= R are called proper ideals.
Multiplication of Ideals
Let I and J be two ideals of a ring R. Then, the product IJ is the smallest ideal containing

all the products of elements of I with elements of J .
Notation : Let a1, a2, . . . an be elements of a commutative ring R. The smallest ideal that

contains these elements is denoted by (a1, a2 . . . an).
Example. If I = (a1, b1), J = (a2, b2) are two ideals, then IJ = (a1a2, a1b2, a2b1, b1b2).
For a numerical example, consider I = (2, 1 +

√
−17) in Z[

√
−17]. From the above

formula, I2 = (4, 2(1+
√
−17), 2(1+

√
−17), (1+

√
−17)2) = (4, 2(1+

√
−17), (1+

√
−17)2) =

(4, 2(1 +
√
−17), (−16 + 2

√
−17)). The three generators 4, 2(1 +

√
−17), (−16 + 2

√
−17) of

I2 are all multiples of 2, so
I2 ⊆ (2).

Note also that
2 = 4 · 5− 2(1 +

√
−17) + (−16 + 2

√
−17),

2
√
−17 = 4 · −5 + 2 · 2(1 +

√
−17)− (−16 + 2

√
−17)

So, 2, 2
√
−17 ∈ I2 since they can be written as a linear combination of generators of I2 with

coefficients from Z[
√
−17]. Thus, we can also conclude

(2) ⊆ I2.

So, I2 = (2).

Definition 3.10. A prime ideal P of an integral domain D is a proper ideal that satisfies
∀a, b ∈ D, ab ∈ P =⇒ a ∈ P or b ∈ P.

Definition 3.11. The maximal ideal I of a ring R satisfies that for all ideals J of R,
I ⊆ J ⊆ R =⇒ I = JorJ = R.

Proposition 3.1. If p is a prime ideal in OK, then p ∩ Q = pZ. So, p contains a unique
prime p.

This is because p ∩Q is a prime ideal in Z.
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Proposition 3.2. Every prime ideal OK is a maximal ideal of OK.

Proposition 3.3. If p is a prime ideal of OK then for ideals a, b ∈ OK such that p ⊂ ab,

p ⊃ a or p ⊃ b.

Theorem 3.1. Let K be an algebraic number field. Then, every proper ideal Ok is uniquely
expressible as a product of prime ideals up to order.

Definition 3.12. Let D be an integral domain, and K be the quotient field of D. Any
nonempty subset A of K that satisfies the following three properties is called a fractional
ideal of D.

(1) A is closed under addition.
(2) α ∈ A, r ∈ D =⇒ rα ∈ A
(3) There exists a nonzero γ ∈ D such that γA ⊆ D

A fractional ideal A of D can be expressed as A = 1
γ
I for some γ ̸= 0, γ ∈ D and I is an

ordinary ideal of D.

Theorem 3.2. The set of fractional ideals of an algebraic number field K form an Abelian
group under multiplication.

Definition 3.13. The norm I of a nonzero proper ideal is defined as

N(I) = |OK/I| = [OK : I]

The norm when I is the zero ideal is defined to be zero.

Proposition 3.4. If J is an ideal in OK, then N(J) = |OK/J | is finite.

Proposition 3.5. For an ideal J , if the norm N(J) is a prime number, J is a prime ideal.

Definition 3.14. Let K be an algebraic number field.
An embedding of K into C is a homomorphism from K to C. K is generated by a single

algebraic element, say θ. Let deg θ = n, meaning θ has n algebraic conjugates θ1, θ2, . . . θn
including θ itself.

Every embedding σ : K → C is an isomorphism from K onto σ(K). This embedding is
completely determined just by the value of σ(θ), so there are n possible embeddings.

Definition 3.15. Let K be an algebraic number field and σ1, σ2, . . . σn be all of the n
embeddings of K into C. If α ∈ K, NK/Qα is defined by

NK/Q(α) =
n∏

i=1

σi(α).

Corollary 3.2.1. In the caze of a quadratic number field K = Q(
√
d), there are exactly two

embeddings σ1 and σ2 of K into C, given by σ1(
√
d) =

√
d and σ2(

√
d) = −

√
d.

If α = a+ b
√
d, then

N(α) = σ1(α)σ2(α) = αα,

where σ2(α) = α.

So, N(a+ b
√
d) = a2 − db2.

For example, N(3) = 32 = 9, while N(3 + 2
√
2) = 32 − 2 · 22 = 1.
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Definition 3.16. A principal ideal is an ideal I in ring R generated by a single element a
of R. Like before, we represent this by I = (a).

Since (a) is generated by a single element, I = {ra : r ∈ R}.

Proposition 3.6. Principal fractional ideals form a group under multiplication, and this
group is a subgroup of the group of fractional ideals.

3.3. Domain.

Definition 3.17. An integral domain is a nonzero commutative ring where the product of
any two nonzero elements is nonzero. In other words, there are no zero divisors.

Definition 3.18. An element u of an integral domain D is said to be a unit if there exists
some element u−1 usch that uu−1 = 1

Definition 3.19. An irreducible element of an integral domain is anonzero element that is
not invertible and is not the product of two non invertible elements.

Definition 3.20. An element p is said to be a prime element of an integral domain D if
p ̸= 0, p is not a unit, and if p|ab, then either p|a or p|b for a, b ∈ D.

Unique Factorization Domain

Definition 3.21. Two elements a and b in an integral domain D are called associated if
b = au, where u ∈ D is a unit. Then, a = bu−1.

Example. In Z, for every integer n ∈ Z, n and −n are associated elements.

Definition 3.22. An integral domain D is called a Unique Factorization Domain, or UFD, if
every nonzero, nonunit element a ∈ D can be expressed uniquely as a product of irreducible
elements up to ordering.

For example, Z is a unique factorization domain, and this fact is known as the fundamental
theorem of algebra.

Definition 3.23. A principal ideal domain, or PID, is an integral domain in which every
ideal is principal (generated by a single element).

Proposition 3.7. Suppose that a principal ideal domain R is not a field. Then an ideal
I = (p) is maximal if and only if p is an irreducible element.

Proposition 3.8. In every PID, the ascending chain of ideals

(a1) ⊆ (a2) ⊆ (a3) . . .

stabilizes, meaning (an) = (am) for all n ≥ m starting at some m. This is called the
ascending chain condition on principal ideals.

Corollary 3.2.2. Let R be a PID ring. Then every nonzero nonunit element a is divisible
by an irreducible element.

Corollary 3.2.3. An element in a PID is prime iff it is irreducible.

Corollary 3.2.4. Every nonzero, nonunit element in a PID is a product of irreducible
elements.

Theorem 3.3. Every PID is a UFD.
Note: The converse of this theorem is not true.
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3.4. Integral Basis.

Definition 3.24. A set of algebraic integers α1, α2, . . . αs ∈ K is an integral basis of OK if
every algebraic integer γ ∈ K can be written uniquely as γ = b1α1+ b2α2+ . . .+ bsαs, where
b1, b2, . . . bs ∈ Z.

An integral basis of OK is an integral basis of K.

Definition 3.25. Let α1, α2, . . . , αn be elements of K. Their discriminant is defined by

∣∣∣∣∣∣
σ1(α1) σ2(α2) . . . σ1(αn)
. . . . . . . . . . . .

σn(α1) σn(α2) . . . σn(αn)

∣∣∣∣∣∣
2

This discriminant is nonzero iff α1, α2, . . . , αn are linearly independent over Q.

Theorem 3.4. Every number field has an integral basis.

Theorem 3.5. Let K be a quadratic field Q(
√
d). If d ≡ 1 (mod 4), then an integral basis

of K is
{
1, 1+

√
d

2

}
, and otherwise it is {1,

√
d}.

Definition 3.26. An Abelian groupG is called a free Abelian group with rank n if there exist
n elements α1, α2, . . . , αn in G such that G = Zα1+Zα2+ . . .+Zαn and every element p of G
can be expressed with a unique linear combination of the form p = m1α1+m2α2+. . .+mnαn,
with mi ∈ Z for all i = 1, 2, . . . , n.

Theorem 3.6. Let [K : Q] = n and J be a nonzero ideal of OK. Then J has an integral
basis of n elements.

Lemma 3.7. Let J be a nonzero ideal of OK. Suppose that α1, α2, . . . , αn is an integral basis
of OK. Then for every i, 1 ≤ i ≤ n, there is a positive integer mi such that miαi ∈ J .

Lemma 3.8. Let J be a nonzero ideal of OK. Then, J has an integral basis with n elements
of the form

β1 = m1α1 + c1,2α2 + . . .+ c1,nαn

β2 = m2α2 + c2,3α3 + . . .+ c2,nαn,

. . .

βn = mnαn,

where all ci,j are integers and m1,m2, . . . ,mn are positive integers.

Lemma 3.9. We have |OK | = m1m2 . . .mn, where m1,m2, . . .mn are the same as those in
the previous lemma.

Theorem 3.10. Let J ̸= 0 be an ideal of OK. Then, N(J) = |OK/J | =
√

δ(β1β2...βn)
δ(α1α2...αn)

, where

{α1, α2, . . . , αn} is an integral basis of OK, and {β1, β2, . . . , βn} is an integral basis of J .
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3.5. Examples of Calculation of Integral Basis of Ideals and Their norms.

Proposition 3.9. If α is a generator of an ideal J , then NQ(α)
Q

(α) is in J .

Corollary 3.10.1. If J = (α1, α2, . . . , αk), then d = gcd

(
NQ(α1)

Q
, NQ(α2)

Q
, . . . , NQ(αk)

Q

)
∈ J .

So, if d = 1, then J = OKandN(J) = 1. The integral basis of J in this case is just the
integral basis of OK.

Definition 3.27. If a is an element of the ring of integers OF of an algebraic number field
F , a is called a unit if there exists a nonzero element b ∈ OF such that ab = 1. OF may
have an infinite number of units.

Theorem 3.11. Let K be an algebraic number field of degree n. Let r be the number of real
embeddings of K into C and 2s the number of complex embeddings of K. Dirichlet’s unit
theorem states that OK contains r + s− 1 units ε1, ε2, . . . , εr+s−1 such that each unit of OK

can be expressed uniquely in the form ρεn1
1 εn2

2 . . . ε
nr+s−1

r+s−1 , where ρ is a root of unity in OK

and n1, n2, . . . nr+s−1 are integers.

3.6. Units in Quadratic Number Fields. To describe all units in quadratic number fields
K = Q(

√
d), we use Dirichlet’s Unit Theorem.

When d > 0, K is a real quadratic field with r = 2, s = 0, r+s−1 = 1. So, for a primitive
root of unity ζ ∈ K, ε = ζnηk = ±ηk, as ζ = −1 is the only real primitive root of unity
in OK . So, every real quadratic field has infinitely many units, and the unit η is called the
fundamental unit of OK .

3.7. Fundamental Unit.

Theorem 3.12. Let d > 1 be a squarefree integer, and K = Q(
√
d).

(1) Then, the smallest unit η > 1 exists in OK.
(2) Every unit of OK is of the form u = ±ηn with n ∈ Z.

Definition 3.28. Let d > 1 be a squarefree integer and K = Q(
√
d). Then, the unit η > 1

described in the preceding theorem is called the fundamental unit of K.

3.8. Ideal Class Groups. An ideal class group is the quotient group of the group of frac-
tional ideals of the integers with the subgroup of principal ideals.

Definition 3.29. Let K be an algebraic number field of degree of n. Let {η1, η2, . . . , ηn} be
an integral basis for K. Then, D(η1, η2, . . . , ηn) is called the discriminant of K and denoted
by d(K).

Theorem 3.13. Let K be a quadratic number field, and d be the unique squarefree integer
such that K = Q(

√
d). Then, d(K) = 4d if d ̸ ≡ 1 (mod 4) and d(K) = d if d ≡ 1 (mod 4).

Definition 3.30. The ideal class group of the algebraic number field K is the quotient
group JK

PK
, where JK is the group of fractional ideals of the ring of integers K, and PK is the

subgroup of principal ideals in JK ,
JK
PK

is denoted by H(K).
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Theorem 3.14. Let K = Q(θ) be an algebraic number field of degree n = r + 2s, where
θ has r real conjugates and s pairs of nonreal complex conjugates. Let A be an integral or
fractional ideal of OK. Then there exists an element α, α inA, α ̸= 0, such that

|N(α) ≤
(
2

π

)s

N(A)
√
|d(K)|.

This result’s proof also invokes the following lemmas:

Lemma 3.15. Let S(Rn) be a centrally symmetric convex body of volume V (S) ≥ 2n. Then,
S contains a nonzero lattice point.

Lemma 3.16. Let A = [aj,k]n×n be a complex matrix such that aj,k ∈ R for j = 1, 2, . . . , r
and k = 1, 2, . . . , n, and

aj+sk = aj,kforj = r + 1, r + 2, . . . r + s; k = 1, 2, . . . , n.

Suppose that positive real numbers δ1, δ2, . . . , δn satisfy the following conditions

δ1δ2 . . . δn ≥
(
2

π

)s

| det(aj,k)|

and

δj = δj+s, j = r + 1, r + 2, . . . , r + s

Then, the system of linear equations∣∣∣∣∣
n∑

k=1

aj,kyk

∣∣∣∣∣ ≤ δj, j = 1, 2, . . . , n.

Theorem 3.17. Let K = Q(θ) be an algebraic number field of degree n = r + 2s, where
θ has r real conjugates and s pairs of nonreal complex conjugates. Let A be an integral or
fractional ideal of OK. Then there exists an element α, α inA, α ̸= 0 such that

|N(α) ≤
(
2

π

)s

N(A)
√
|d(K)|.

3.9. Correspondence between Form Classes and Ideal Classes. Given a binary qua-
dratic form f(x, y) = ax2 + bxy + cy2 with discriminant d = b2 − 4ac < 0, consider the

fractional ideal < a, −b+
√
d

2
> generated over OK .

It can be shown that equivalent fractional ideals of the ideal generated from f(x, y) this way
correspond to equivalent forms of f(x, y). Thus there is a one-to-one correspondence between
the equivalent classes of binary quadratic forms f(x, y) and the ideal classes. Therefore, the
ideal class group has order h(d).

When h(d) = 1, every fractional ideal in Q(
√
d) is principal, thus OK a principal ideal

domain (PID), and the algebraic integers of Q(
√
d) have unique factorizations. This is why

Theorem 1.1 holds for D = −163 because h(−163) = 1.

4. Dirichlet’s Class Number Formula

Dirichlet’s class number formula, in its simplest and most striking form, was conjectured
by Jacobi in 1832 and proved in full by Dirichlet in 1839. Before we cover Dirichlet’s
class number formula, we need to introduce some basic concepts: Legendre and Kronecker
symbols, Dirichlet character, and Dirichlet L-function.
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4.1. Legendre and Kronecker Symbols.

Definition 4.1. Legendre Symbol: Let a be an integer and p be a prime. We define
Legendre symbol as follows:

(
a

p

)
=


1, if a ̸≡ 0 and a is a quadratic residue (mod p)

−1, if a is not a quadratic residue (mod p)

0, if a ≡ 0 (mod p)

Properties of the Legendre symbol: Suppose p and q are two odd primes, and a and
b are integers not divisble by p, the following properties for Legendre symbol hold:

(1) Periodic: if a ≡ b (mod p), then
(

a
p

)
=
(

b
p

)
.

(2) Multiplicative:
(

ab
p

)
=
(

a
p

)(
b
p

)
.

(3)
(

a2

p

)
= 1

(4)
(

1
p

)
= 1

(5)
(

−1
p

)
= (−1)

p−1
2 =

{
1 if p ≡ 1 (mod 4)

−1 if p ≡ 3 (mod 4).

(6)
(

2
p

)
= (−1)

p2−1
8

(7) Quadratic reciprocity law:
(

q
p

)(
p
q

)
= (−1)

p−1
2

· q−1
2 .

Example:
(
385
97

)
=
(
5·7·11
97

)
=
(

5
97

) (
7
97

) (
11
97

)
by multiplicity. Applying quadratic reci-

procity and periodicity,
(

5
97

)
= (−1)

5−1
2

·97−1
2
(
97
5

)
=
(
2
5

)
= −1 (the last equality is because

2 is ̸≡ 0 and not a quadratic residue (mod 5)). Similarly,
(

7
97

)
=
(
97
7

)
=
(
6
7

)
=
(
2
7

) (
3
7

)
=

1(−1) = −1. Likewise,
(
11
97

)
= 1. Therefore,

(
385
97

)
= (−1)(−1)1 = 1.

Definition 4.2. Kronecker symbol: Let n be a non-zero integer, with prime factorization
n = u · pe11 · · · pekk , where u is a unit (±1). Let a be an integer. Define the Kronecker symbol(
a
n

)
recursively as

(a
n

)
=
(a
u

) k∏
i=1

(
a

pi

)ei

For odd pi, the number
(

a
pi

)
is simply the usual Legendre symbol. When pi = 2, we define(

a
2

)
by (a

2

)
=


0, if a is even

1, if a ≡ ±1 (mod 8)

−1, if a ≡ ±3 (mod 8)

.

For u = 1,
(
a
1

)
= 1. For u = −1, we define as(

a

−1

)
=

{
−1, if a < 0

1, if a ≥ 0
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For n = 0, it is defined as (a
0

)
=

{
1, if a = ±1

0, otherwise

Here are some basic properties of the Kronecker symbol:

(1)
(
a
n

)
= ±1 if gcd(a, n) = 1, otherwise

(
a
n

)
= 0.

(2)
(
ab
n

)
=
(
a
n

) (
b
n

)
unless n = −1, one of a, b is zero and the other one is negative.

(3)
(

a
mn

)
=
(

a
m

) (
a
n

)
unless a = −1, one of m,n is zero and the other one has odd part

congruent to 3mod4.

(4) For n > 0, we have
(
a
n

)
=
(
b
n

)
whenever a ≡ b mod

{
4n, n ≡ 2 (mod 4),

n otherwise.
. If

additionally a, b have the same sign, the same also holds for n < 0.

(5) For a ̸≡ 3 (mod 4), a ̸= 0, we have
(

a
m

)
=
(
a
n

)
wheneverm ≡ n mod

{
4|a|, a ≡ 2 (mod 4),

|a| otherwise.

Kronecker symbol generalizes the Jacobi symbol and satisfies its own quadratic reciprocity
law.

Example: Applying Property 3 and Legendre symbols, we get
(

2
21

)
=
(

2
3·7

)
=
(
2
3

) (
2
7

)
=

(−1)1 = −1.

4.2. Dirichlet Character. When Euler proved (1748) that there are infinitely many primes,
he used the so-called Euler product

∞∑
1

1

n
=

∏
p prime

∞∑
k=0

1

pk
=

∏
p prime

(1− 1

p
)−1.

The first equality is because each integer n has a unique prime factorization that corresponds
to a unique term in the product expansion of the second expression. When Dirichlet proved
that there are infinitely many primes in the arithmetic progression

a, a+ q, a+ 2q, · · · ,where (a, q) = 1,

similar product
∏

p≡a (mod q)(1−
1
p
)−1 could not be directly used as there is no known equality

like the harmonic series. Dirichlet remedied the problem with the Dirichlet character.

Definition 4.3. Dirichlet Character: A complex-valued arithmetic function χ : Z → C
is a Dirichlet character of modulus m (where m is a positive integer) if for all integers a and
b:

(1) χ(ab) = χ(a)χ(b); that is, χ is completely multiplicative.

(2) χ(a)

{
= 0 if gcd(a,m) > 1

̸= 0 if gcd(a,m) = 1.

(3) χ(a+m) = χ(a); that is, χ is periodic with period m.

The simplest possible character, called the principal character, usually denoted χ0, exists

for all moduli: χ0(a) =

{
0 if gcd(a,m) > 1

1 if gcd(a,m) = 1.
. Real-valued characters are just Kronecker

symbols



14 WILLIAM ZHANG

4.3. Dirichlet L-function. With a character χ, Dirichlet defined the L-function:

Definition 4.4.

L(s, χ) =
∞∑
n=1

χ(n)

ns
=

∏
p prime

∞∑
k=0

(χ(p))k

(ps)k
=
∏
p

(
1− χ(p)

ps

)−1

(Re(s) > 1)

As with the Euler product, the second equality is because a character is multiplicative
and each integer n has a unique prime factorization that corresponds to a unique term in
the product expansion of the third expression.

4.4. Dirichlet Class Number Formula.

Theorem 4.1. (Dirichlet’s class number formula) [LD39] Let d < 0 be a fundamental
discriminant and χ be the (mod d) Kronecker symbol (χ(m) =

(
d
m

)
). Then

(4) h(d) =
w(d)

√
|d|

2π
L(1, χ),

(5) L(1, χ) = − π

|d| 32

|d|−1∑
m=1

m

(
d

m

)
.

Combining the two formulas above gives the following explicit finite sum of Kronecker
symbols for h(d) with d < 0:

h(d) = −w(d)

2|d|

|d|−1∑
m=1

m

(
d

m

)
,

known as the Dirichlet class number formula.
Examples

(1) d = −3, w(d) = 6, h(d) = − 6
2·3
∑2

m=1 m
(−3

m

)
= −1(1

(−3
1

)
+ 2

(−3
2

)
) = −1(1 · 1 + 2 ·

(−1)) = −1(−1) = 1. Therefore, the algebraic integers of Q(
√
−3) form a PID, and

its integers have unique factorizations.
(2) For Q(

√
−5), the fundamental discriminant d = −20 (−5 ≡ 3 (mod 4)), and simi-

larly h(−20) = 2, so the algebraic integers of Q(
√
−5) do not form a PID, and its

integers may have multiple factorizations. For example, 6 = 2·3 = (1+
√
5)(1−

√
−5).

4.5. Sketch Proof of the Dirichlet Class Number Formula. We follow [Dav13] for a
sketch proof of Dirichlet’s formula. There are two stages in Dirichlet’s proof. In the first
stage, the class number of quadratic forms of given (fundamental) discriminant d is related
to the value of L(1, χ), where χ is the real primitive character denoted by the Kronecker
symbol. This relation immediately implies that L(1, χ) > 0. In the second stage, the value
of L(1, χ) is expressed in terms of a finite sum, which is achievable with quadratic fields.
We first turn to the question of the total number of representations of a positive integer

n by a representative set of forms of given (fundamental) discriminant d. This question
was answered (implicitly, at least) in the classical theory of quadratic forms, developed by
Lagrange and further by Gauss. When d < 0, so that the forms are positive definite, the
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number of representations of n by any form is finite, which can be seen through elementary
completing the square technique:

n = ax2 + bxy + cy2 = a(x+
b

2a
y)2 +

4ac− b2

4a
y2

with all coefficients positive, which implies that both y and x+ b
2a
y are bounded by

√
n, thus

there are only finite number of solutions for x, y. We denote by R(n) the total number of
representations by the various forms of a representative set. The basic result of the theory
of quadratic forms is as follows:

Theorem 4.2. If n > 0 and (n, d) = 1, then

(6) R(n) = w(d)
∑
m|n

(
d

m

)
,

where w is given by 3 for d < 0.

Expressing R(n) in terms of the number of solutions of the congruence z2 ≡ d (mod 4n),
and then evaluating this number in terms of quadratic character symbols. The basic idea in
the first stage of Dirichlet’s work is to determine, from the above expression for R(n), the
average value of R(n) as n varies. It is convenient (and it suffices for the purpose in view)
to limit oneself to values of n that are relatively prime to d. We have

1

w

∑
n=1

(n,m)=1

R(n) =
∑

m1m2≤N
(m1m2,d)=1

(
d

m1

)

=
∑

m1≤
√
N

(
d

m1

) ∑
m2≤ N

m1
(m2,d)=1

1 +
∑

m2<
√
N

(m2,d)=1

∑
√
N<m1≤ N

m2

(
d

m1

)
,

since the first sum comprises all pairs m1, m2 for which m1 ≤
√
N and the second sum all

pairs for which m1 >
√
N . The first inner sum is

N

m1

ϕ(|d|)
|d|

+O[ϕ(|d|)].

so the first double sum is

N
ϕ(|d|)
|d|

∑
m1≤

√
N

1

m1

(
d

m1

)
+O(

√
N),

for fixed d and arbitrarily large N . Since
(

d
m1

)
is a non-principal character to the modulus

|d|, the sum of its values as m1 varies over any range is bounded. Hence the second double

sum is O(
√
N). Thus

1

w

∑
n=1

(n,m)=1

R(n) = N
ϕ(|d|)
|d|

∑
m≤

√
N

1

m

(
d

m

)
+O(

√
N).
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We can extend the sum over N to infinity, and the remainder is estimated by∑
m>

√
N

1

m

(
d

m

)
= O(

√
N)

on using partial summation. This again contributes an error O(
√
N) in the above asymptotic

expression. In particular, we conclude that

(7) lim
N→∞

1

N

N∑
n=1

(n,d)=1

R(n) = w
ϕ(|d|)
|d|

∞∑
m=1

1

m

(
d

m

)
.

Since ϕ(|d|)
|d| measures the density of the integers n for which (n, d) = 1, we can express the

result in the form: The average with respect to n of R(n) is wL(1, χ), where χ(m) =
(

d
m

)
.

The next step is to evaluate the average of R(n) from its original definition. Let R(n, f)
denote the number of representations of n by a particular form f of discriminant d. Then

(8) R(n) =
∑
f

R(n, f),

where the summation is over a representative set of forms (with a > 0), so that the number
of terms in the sum is h(d). We shall now evaluate

lim
N→∞

1

N

N∑
n=1

(n,d)=1

R(n, f),

and it will turn out to be independent of f . Comparison of the two limits will give the
relation between h(d) and L(1, χ). In the case of d < 0. Then

N∑
n=1

(n,d)=1

R(n, f)

is the number of pairs of integers x, y satisfying

0 < ax2 + bxy + cy2 ≤ N, (ax2 + bxy + cy2, d) = 1.

The second condition limits x, y to certain pairs of residue classes (mod |d|), and it is easily
proved that the number of these pairs is |d|ϕ(|d|). Hence it suffices to consider the number
of pairs of integers x, y satisfying

ax2 + bxy + cy2 ≤ N, x ≡ x0, y ≡ y0 (mod |d|).
The first inequality expresses that the point (x, y) is in an ellipse with center at the origin,
and as N → ∞ this ellipse expands uniformly.

The area of the ellipse is
2π√

4ac− b2
N =

2π√
|d|

N.

Intuition suggests-and a rigorous proof is easily given by dividing the plane into squares of
side length |d|-that the number of points is asymptotic to

1

|d|2
2π√
|d|

N as N → ∞.
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We have to multiply this by |d|ϕ(|d|) to allow for the various possibilities for x0, y0. Thus
the conclusion is that

lim
N→∞

1

N

N∑
n=1

(n,d)=1

R(n, f) =
1

|d|2
2π√
|d|

.

This combined with 7 and 8 gives

(9) h(d) =
w
√
|d|

2π
L(1, χ) for d < 0.

This completes the first stage of the work 4, and, as we said earlier, the result 9 render
visible the fact that L(1, χ) > 0. There remains the question of expressing L(1, χ) by means
of a finite sum. For that, we need to evaluate a slight extension of Gauss’ sum. This takes
the form

|d|∑
m=1

(
d

m

)
e(
mn

|d|
) =

(
d

n

)
i
√

|d| for d < 0,

which, when combined with 9, gives

(10) L(1, χ) = − π

|d| 32

|d|∑
m=1

m

(
d

m

)
= − π

|d| 32

|d|−1∑
m=1

m

(
d

m

)
for d < 0.

The last equality is due to
(

d
|d|

)
= 0 for any d with |d| > 1 because d ≡ 0 (mod p) for any

prime factor p of |d|. This completes the proof for the second part 5 of the Dirichlet’s class
number formula.

4.6. The General Class Number Formula. To briefly introduce the general class number
formula, we first define the following symbols:

K is an extension field over the rational field Q with [K : Q] = n = r1 + 2r2, where r1
denotes the number of real and complex embeddings of K, and 2r2 is the number of complex
embeddings of K. ζK(s) is the Dedekind zeta function of K. hK is the ideal class number,
the number of elements in the ideal class group of K. RegK is the regulator of K. wK is the
number of roots of unity contained in K. DK is the discriminant of the algebraic extension
K/Q. With these defined, we have:

Theorem 4.3. (Class Number Formula) [NN74] ζK(s) converges absolutely for Re(s) > 1
and extends to a meromorphic function defined for all complex s with only one simple pole
at s = 1, with residue

lim
s→1

(s− 1)ζK(s) =
2r1 · (2π)r2 · RegK ·hK

wK ·
√

|DK |
.

The finite limit is called the class number. This is the most general class number formula.
In particular cases, for example when K is a cyclotomic extension of Q or an imaginary
quadratic field as covered above, there are particular and more refined class number formulas.
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5. Siegel’s Theorem

In 1934, Heilbronn [Hei34] proved part of the Gauss class number conjecture:

lim
d→−∞

h(d) = ∞.

Heilbronn proved this under the assumption of falsity of the Generalized Riemann Hypothesis
while Hecke (1918) did it under the opposite assumption, thus proving it unconditionally.
Unfortunately, this method of proof was not effective, since if the Generalized Riemann
Hypothesis were false, the constant DM for whenever d < DM < 0, there is h(d) > M for a
given M > 0 would depend on an unknown zero of L(s, χ) located off the line Re(s) = 1

2
.

This presumably nonexistent zero is now known as Siegel’s zero.
In 1935, Siegel proved the following beautiful result about the growth rate of h(d).

Theorem 5.1. (Siegel) [Sie35] Let Q(
√
−d), d > 0 be a quadratic field, and h(d) denote its

class number. For every ϵ > 0, we have

h(d) > Cϵd
1
2
−ϵ

for some constant Cϵ > 0 .

Lemma 5.2. Let χ be any real primitive Dirichlet character (mod q), then for every ϵ > 0,

L(1, χ) > C(ϵ)
qϵ

where C(ϵ) is an ineffective constant [Sie35]. In particular, L(1, χ) >> q
1
2 ,

which is a consequence of Dirichlet’s class number formula.

Proof. We present the following short proof for 5.1 from Goldfeld [Gol74]:
Let

(11) f(s) = ζ(s)L(s, χ1)L(s, χ2)L(s, χ1χ2)

be a zeta function of a bi-quadratic field and let λ = L(1, χ1)L(1, χ2)L(1, χ1χ2) be the residue
at s = 1.

Lemma 5.3. For every ϵ > 0, there exists χ1 (mod q1) and 1−ϵ < β < 1 such that f(β) ≤ 0
independent of what χ2 (mod q2) may be.

This must be true since if there are no real zeros in [1− ϵ, 1] for any L(s, χ) then f(β) < 0
if 1− ϵ < β < 1, since ζ(β) < 0. On the other hand, if such real zeros do exist, let β be such
a zero and χ1 be the corresponding character so that f(β) = 0 independent of χ2.

It now follows that

1 <<
1

2πi

∫ 2+i∞

2−i∞
f(s+ β)

xs

s(s+ 1)(s+ 2)(s+ 3)(s+ 4)
ds

= λ
x1−β∏5

k=1(k − β)
+

f(β)

4!
+O

(
(q1q2)

1+ϵx−β

1− β

)
upon shifting the line of integration to σ = −β. But f(β) ≤ 0 by 5.3, and therefore

1 << λ
x1−β

1− β

if (q1q2)
2+ϵ << x since λ >> 1

q1q2
. Consequently, since

λ << L(1, χ2) log(q1q2) log(q1)
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we get

L(1, χ2) > C · q−(2+ϵ)(1−β)
2 log(q2)

−1

where constant C > 0 depends only on χ1, and therefore only on ϵ. This proves Siegel’s
theorem if (2 + ϵ)(1− β) < 1

2
ϵ and q2 sufficiently large. □

For a short analytical proof, see Eastermann (1948) [Est48].
Siegel’s theorem gives a landmark result on the lower bound of the class number with

respect to the magnitude of the discriminant. However, it has an ineffective constant Cϵ in
that, given ϵ, there is no way of computing a constant value that makes the inequality hold
even though it exists.

Therefore, even with these results and the Dirichlet class number formula, we were still
far from solving even the Gauss class number one problem.

Tazuzawa (1952) [Tat52] proved that Siegel’s theorem is true with an effectively com-
putable constant for all discriminants d < 0, except for at most one.

The first important milestones were obtained by Heegner (1952) [Hee52] , Stark (1967)
[Sta67] , Baker (1971) [Bak71] , and Stark (1972) [Sta72], whose work led to the solution of
the class number one and two problems.

6. Goldfeld-Gross-Zagier Theorem

The general Gauss class number problem was finally solved completely, at least theoret-
ically, by Goldfeld–Gross–Zagier (Goldfeld (1975) [Gol76] and (1985) [Gol85], Gross and
Zagier (1985) [GZ85] ) in 1985. Their results combined to reduce the problem of finding all
the d < 0’s with given h(d) to a finite amount of computation in applying the Dirichlet class
number formula.

Theorem 6.1. (Goldfeld-Gross-Zagier) For every ϵ > 0 there exists an effective computable
constant c > 0 such that h(d) > c(log(|d|)1−ϵ.

This theorem followed from Goldfeld’s result in 1975 that if the Hasse-Weil L-function
LE(s) associated with an elliptic curve E over Q has a triple zero at s = 1, then the theorem
holds and Gross-Zagier’s result in 1985 that such L-function does indeed have a triple zero
at s = 1.

Even though the Goldfeld-Gross-Zagier theorem reduces the order of magnitude of the
lower bound on the class number from almost |d| 12 to less than log(|d|), it gives an effective
constant, which can be computed given ϵ.
Its effectiveness can be seen in that it can be utilized to limit the possible d′s to a finite

number of choices, given a fixed class number.

7. The Current State

Oesterlé in 1985 solved the class number 3 problem after improving the result by Goldfeld-
Gross-Zagier to the following theorem.

Theorem 7.1. (Oesterlé) [Oes88] For (d, 5077) = 1,

h(d) >
1

55
log(|d|)

∏
p|d,p ̸=|d|

(
1−

⌊2√p⌋
p+ 1

)
.
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Arno (1992) [Arn92] solved the class number four problem, and subsequently, work with
Robinson and Wheeler (1998) [ARW98], and work of Wagner (1996) [Wag96] gave a solution
to Gauss’ class number problem for class numbers 5,6,7 and odd class numbers ≤ 23.
Watkins (2004) [Wat04] obtained the complete list of all imaginary quadratic fields with

class number ≤ 100. He adapted the Goldfeld-Oesterlé approach of using an elliptic curve
L-function with an order 3 zero at the central critical point to instead using Dirichlet L-
functions with low-height zeros near the real line, reducing the computational sieving by
about 99.9% and enabling him to complete the computation within seven months.

8. Conclusion and Discussion

The Gauss class number problem has been one of the main drivers in mathematical research
for over 200 years in number theory, with wide connection to algebra and analysis, etc.
Significant results such as Siegel’s theorem and Goldfeld-Gross-Zagier theorem have been
proven. Even though h(d) grows approximately in the order of |d| 12 by Siegel’s theorem,
its constant is uncomputable thus ineffective. The Goldfeld-Gross-Zagier theorem gives a
growth rate of approximately log(|d|) with a computable thus effective constant. Complete
lists of imaginary quadratic fields with class number ≤ 100 have been identified by Watkins.
For future work, theoretically, it would be interesting to investigate whether the order of

growth can be increased from log with an effective constant and/or whether the effective
constant of the lower bound can be increased. It would also be interesting to find efficient
algorithm, with or without theoretical advancement, for computing the d’s for h(d) > 100.

It is worth noting that the Generalized Riemann Hypothesis implies that the class number
h(d) is at least

(1 + o(1))
π

12eγ

√
|d|

log log |d|
by Littlewood (1928) [Lit28] (Paley (1932) [Pal32] has shown that this is best possible except
for a factor of two). In other words, if the Generalized Riemann Hypothesis were true, then
the best possible growth rate of the class number of imaginary quadratic fields with an

effective constant is

√
|d|

log log |d| .
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