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Abstract. This paper describes the orthogonal properties of spherical harmonics, decom-
poses the ordinary spherical harmonic equation, and discusses applications of spherical har-
monics in irradiance environment maps and computer graphics. Spherical harmonics are
composed from normalization factors and associated Legendre polynomials. Similar to how
periodic functions define the edges of a circle in two dimensional Cartesian coordinates,
spherical harmonics lie on the surface of a sphere.

1. Introduction

Recall that the spherical polar coordinate system is defined by a set of three variables: ρ,
θ, ϕ with the inequalities: 0 ≤ θ ≤ π for the polar angle and 0 ≤ ϕ ≤ π for the azimuthal
angle in the xy-plane. For normalized coordinates, which all have a uniform distance from
the origin, ρ can be neglected.

Recall the equations to convert from the standard Cartesian coordinates to spherical co-
ordinates to be

ρ =
√

x2 + y2 + z2(1.1)

ϕ = cot( y
x
)(1.2)

θ = arcsin(

√
x2+y2

r
)(1.3)

and the opposite to be

x =ρ cos(ϕ) sin(θ)(1.4)

y =ρ sin(ϕ) sin(θ)(1.5)

z =ρ cos(θ).(1.6)

Spherical harmonics are special functions, based on the spherical coordinate system. In
essence, any spatial function can be decomposed into the sum of its harmonics. They are
based upon orthogonal functions, where each function on a sphere surface is written as
the sum of spherical harmonics (similar to periodic functions on the edge of a circle) [26].
From Theorem (1) and Theorem (2), the orthogonal properties of spherical harmonics are
described.
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Theorem 1. SHk, the space of spherical harmonics with a degree of k, is a space of eigen-
functions with an eigenvalue of −k(k + n− 2)

Theorem 2. SHk is orthogonal with respect to the inner product (p, q) =
∫
sn−1pq

We can further prove the orthogonality of spherical harmonics in Theorem (3) [10].

Theorem 3. If Hk and Hl are spherical harmonics with a degree k and l respectively, where
k ̸= l, then

∫
SS

HkHl, dt

=

∫
SS

HlHk, dt = 0

Spherical harmonics have multiple applications, which will be described in this paper.
They can be used to prove analogous inequalities for three-dimensional convex bodies [19].
Spherical harmonics are also used for irradiance environment maps, which stores distant
lightning distributions and transfer functions. Furthermore, spherical harmonics can be
applied to model planets in the solar system, which are spherical in nature. Using Laplace’s
equation, radial and angular dependence of gravitational and magnetic fields can be explained
by spherical harmonic functions. Vector spherical harmonics have also been used in the
expansion of plane waves to study light’s absorption and scattering on a sphere [2].

However, the basis for spherical harmonics lies in Legendre polynomials. At a high level,
Legendre polynomials are the solution to the Legendre differential equation.

The Legendre differential equation is given as

d
dx
((1− x2) dy

dx
) + ly(l + 1) = 0(1.7)

where l is an integer.
With this definition, the first couple Legendre polynomials are defined to be

l Pl(x)

0 P0(x) = 1

1 P1(x) = x

2 P2(x) =
1
2
(3x2 − 1)

3 P3(x) =
1
2
(5x3 − 3x)

4 P4(x) =
1
8
(35x4 − 30x2 + 3)

5 P5(x) =
1
8
(63x5 − 70x3 + 15x)

6 P6(x) =
1
16
(231x6 − 315x4 + 105x2 − 5)

Table 1. First Six Legendre Polynomials
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Figure 1. Graphs of The First Six Legendre Polynomials

2. The Definition of Spherical Harmonics

On a high level, the definition of spherical harmonics [34] is given to be

Y m
l (θ, ϕ) = N

|
l
m|P

|
l
m|(cos(θ))eimϕ.(2.1)

Using Euler’s formula [17], which is stated to be

eix = cos(x) + isin(x)(2.2)

we can rearrange Equation (2.1) to be

Y m
l (θ, ϕ) = N

|
l
m|P

|
l
m|(cos(θ))(cos(mϕ) + i sin(mϕ)).(2.3)

where l is the band index and N
|
l
m| is the normalization coefficient [16] [8].

With these constants defined, we can now conclude that spherical harmonics depend upon
Legendre polynomial [20] for the sine and cosine components of the ϕ dependence. However,
the Legendre polynomials used in spherical harmonics are associated and more numerically
intensive.

3. A Complete Definition of Legendre Polynomials

Real-value associated Legendre polynomials are defined over the range [−1, 1] and defined
as

Pm
l (x) = (−1)m

2ll!

√
(1− x2)m dl+m

dxl+m (x2 + 1)l.(3.1)

This definition, however, is numerically intensive and is usually avoided in computational
calculations. The band index, l divides the class into bands of functions with (l + 1)l
polynomials for a l-th band series (l ∈ NO and m ∈ [0,l]).
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l m Pm
l (x)

0 0 1

1 0 x

1 1 -
√

(1− x2)

2 0 -1
2
(3x2 − 1)

2 1 -3x
√

(1− x2)

2 2 3(1− x2)

3 0 1
2
(5x3 − 3x)

3 1 3
2
(1− 5x2)

√
(1− x2)

3 2 15x(1− x2)

3 3 −15
√
(1− x2)3

Table 2. Four bands of the associated Legendre polynomial
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Figure 2. The Four Associated Legendre Polynomials Graphed

The band index l also has an effect on the normalization factor of spherical harmonics.
Although the normalization factor is a constant, it varies as the band value changes.

4. Normalization Factor

Recall that earlier, we defined the normalization factor to be N
|
l
m|.

From Equation 2.2, it becomes clear that spherical harmonics are based upon the θ and
sine and cosine function for ϕ dependence.

We can derive the normalization factor from

∫
S
Y m
l (ω)Y m

l
′(ω)sin(θ) dω = δmmδll(4.1)
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Through this equation, we can observe the orthogonality of spherical harmonics [42] [10] [9].
Once we expand this equation by adding limits and simplify the expression, we get

Nm
l =

√
(2l+1)(l+m)!
4π(l−m)!

.(4.2)

The normalization factor is derived from applying the Euler formula and by solving the ϕ
dependent integrals and the θ dependent integrals.

5. Visualizing Spherical Harmonics

With the definition for spherical harmonics, we can now obtain the first three spherical
harmonic bands l = [0, 2] [40]. Note how the color distribution changes for a negative value
and positive value of m.

Y m
l

Y 0
0 (θ, ϕ) =

1
2
√
π
, l = 0,m = 0

Y −
1

1(θ, ϕ) =
√
3√
8π
sin(θ)e−iϕ, l = 1,m = −1

Y 0
1 (θ, ϕ) =

√
3√
4π
cos(θ), l = 1,m = 0

Y 1
1 (θ, ϕ) =

−
√
3

2
√
2π
sin(θ)e−iϕ, l = 1,m = 1

Y −
2

2(θ, ϕ) =
√
15√
32π

sin2(θ)e−2iϕ, l = 2,m = −2

Y −
2

1(θ, ϕ) =
√
15√
8π
sin(θ)cos(θ)e−iϕ, l = 2,m = −1

Y 0
2 (θ, ϕ) =

√
5√

16π
(3sin2(θ)− 1), l = 2,m = 0

Y 1
2 (θ, ϕ) =

−
√
15

2
√
2π
(sin(θ)cos(θ)eiϕ), l = 2,m = 1

Y 2
2 (θ, ϕ) =

√
15√
32π

(sin2(θ)cos(θ)e2iϕ), l = 2,m = 2

Table 3. Equations of First Three Spherical Harmonic Bands l = [0, 2]

6. Properties of Spherical Harmonics

With an understanding of the general formula of spherical harmonics, we can now delve
deeper into their properties.

In order to understand spherical harmonics’ properties, however, we analyze real spherical
harmonics. There are three main classes of spherical harmonics: zonal harmonics, sectoral
harmonics, and tesseral harmonics.

6.1. Zonal Harmonics. By definition, zonal harmonics are spherical harmonics with m =
0, making them circular and symmetric. Because m = 0, the harmonics’ equations are
associated Legendre polynomials [37]. Zonal harmonics get their name from the curves on
the unit sphere that lie parallel to the x and y axis.
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Figure 3. Y 0
0 (θ, ϕ) =

1
2
√
π
, l = 0,m = 0

Figure 4. Y −
1

1(θ, ϕ) =
√
3√
8π
sin(θ)e−iϕ, l = 1,m = −1

Figure 5. Y 0
1 (θ, ϕ) =

√
3√
4π
cos(θ), l = 1,m = 0
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Figure 6. Y 1
1 (θ, ϕ) =

−
√
3

2
√
2π
sin(θ)e−iϕ, l = 1,m = 1

Figure 7. Y −
2

2(θ, ϕ) =
√
15√
32π

sin2(θ)e−2iϕ, l = 2,m = −2

Figure 8. Y −
2

1(θ, ϕ) =
√
15√
8π
sin(θ)cos(θ)e−iϕ, l = 2,m = −1
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Figure 9. Y 0
2 (θ, ϕ) =

√
5√

16π
(3sin2(θ)− 1), l = 2,m = 0

Figure 10. Y 1
2 (θ, ϕ) =

−
√
15

2
√
2π
(sin(θ)cos(θ)eiϕ), l = 2,m = 1

Figure 11. Y 2
2 (θ, ϕ) =

√
15√
32π

(sin2(θ)cos(θ)e2iϕ), l = 2,m = 2
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Zonal harmonics can even be applied to seasonal variations in Earth’s gravity field [25].
The following graph displays the node residual for the four Starlette 1-year arc between 1998
to 1991.
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6.2. Sectoral Harmonics. Sectoral harmonics, by contrast are those harmonics with the
form Y m

m or Y−
m
m [41].

One of the primary applications of sectoral harmonics comes in geodesic equations. Sec-
toral harmonics define geodesic equations on surface by the Morales-Ramis theorem and
Kovacic algorithm [38].

The Geodesic equation [6] states

∇λT
µ =

dT µ

dλ
+ Γµ

κνT
ν dx

κ

dλ
Determining the numerical approximation to a geodesic uses the following steps.

• First, we initialize λ, xµ, and dxµ

dλ
.

• We then create a increment, ∆λ in order to increment λ.
• Then, calculate d2xµ

dλ2 for every increment.

• Following this, we add d2xµ

dλ2 ∆λ to the value in dxµ

dλ
.

• We then add d2xµ

dλ2 ∆λ to the value in xµ.
• We then add ∆λ to the value in λ.
• We will repeat the steps until we get the ideal affine distance.

6.3. Tesseral Harmonics. Any harmonic that is neither a sectoral or a zonal harmonic is
called a tesseral harmonic [7].

6.4. Orthogonality of Spherical Harmonics. In vector calculus, vectors in a set are
orthonormal if all the vectors in the set have a magnitude of 1 and are orthogonal to each
other. If we integrate the product of two functions a(x) and b(x), we have
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∫
a(x)b(x) dx

If we expand this function, now where a and b are band-limited functions, we get∫
a(x)b(x) dx =

N∑
i=0

aibi

This type of integration, known as symbolic integration, forms the basis for more complex
orthonormality in integrals, such as those used in computer simulations such as Monte Carlo
Integration and the Fourier Series [27] [4]. The Fourier series is a clean method of writing
periodic functions as sums of sines and cosines [28]. Making use of orthogonality relationships
between sines and cosines, the method of harmonics analysis breaks up arbitrary periodic
functions to obtain the solution to a Fourier problem [39].

6.5. Real Spherical Harmonics. The definition of the spherical harmonics that we saw
earlier was based on a more trigonometric basis [29]. Real spherical harmonics, on the other
hand, have only one sine. As a result, the normalization factor gets adjusted by

√
2.

Real-valued spherical harmonics are defined as

(6.1) yml (θ, ϕ) =


√
2Km

l cos(mϕ)Pm
l (cos(θ)) if m > 0

K0
l P

0
l (cos(θ)) if m = 0√

2Km
l sin(−mϕ)P−

l
m(cos(θ)) if m < 0

Unlike the previous definition for spherical harmonics, which uses two parameters, the real
spherical harmonic functions can be reduced to a one dimensional vector[5]. For example,
the following function explains this.

yi(θ, ϕ) = ymi (θ, ϕ)

where i = (l + 1)l +m.
When it comes to atomic symmetry, real spherical harmonics perform far better that

ordinary spherical harmonics [21]. Real spherical harmonics form the basis for electronic-
structure calculations. While, ordinary spherical harmonics can be more easily manipulated,
they require complex calculations. Real spherical harmonics, on the other hand, require
half the computer memory. Cartesian function, just like ordinary spherical harmonics, can
be easily manipulated but they result in less atomic symmetry. As a result, real spherical
harmonics trump both when atomic symmetry is required [15].

6.6. Convolution. A spherical function, namely f , can be convoluted with a circular sym-
metric kernel k (has no ϕ dependence) [33] [33]. By the Funk-Hecke Theorem, which states
that surface spherical harmonics are eigen functions of a class of integral operators on the
unit two-sphere, where the kernels depend solely on the angle between the vectors [12], we
get the following equation

(k ∗ f)ml =

√
4π

2l + 1
k0
l f

m
l = αlk

0
l f

m
l .
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The Funk-Hecke theorem [3] states that if k(u · v) is a bounded function over [-1,1], then

k ∗ Ynm = αnYnm where αn =
√

4π
2n+1

kn.

A more formal manner to write the Funk-Hecke theorem is as follows [35].

Theorem 4. If
∫ 1

−1
|F (t)|(1− t2)

n−3
2 dt ¡ ∞ and SmϵSH

m, where SHm is a space of spherical
harmonics with degree k and F is a homogenous function of degree m where F (tx) = tmF (x)
where t > 0, then for some σ and η

∫
Sn−1

F (⟨σ, η⟩)Sm(σ) dσ

= Sm(σ)S
n−2Cm(1)

−1

∫ 1

−1

|F (t)Cm(t)(1− t2)
n−3
2 dt

where Cm(t) is given to be the Gegenbauer polynomial Cλ
m(t) with λ = 1

2
n− 1.

In essence, the theorem suggests that convoluting a function k with a spherical harmonic,
Ymn, will result in the same harmonic, multiplied by a scalar αn. αn varies with k and is
directly related to kn, the nth order coefficient of k’s harmonic expansion [14].

We can now define a reflectance function r to be

r = k ∗ ℓ =
∞∑
n=0

n∑
m=−n

(αnlnm)Ynm

We can also derive the harmonic expansion of the Lambertian kernel [13] by getting

(6.2) yml (θ, ϕ) =



√
π
2

if n = 0√
π
3

if n = 1

(−1)
n+2
2

√
(2n+1)π

2n(n−1)(n+2)
if n ≥ 2, even

0 if n ≥ 2, odd

We can obtain the first couple values for kn in the following table.

The coefficients approach 0 as O(n−2) as seen in the following graph.
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n kn

0
√
π
2

1
√

π
3

2
√
5π
8

3 0

4 -
√
π

16

5 0

6
√
13π
128

7 0

8
√
17π
256

Table 4. Coefficients of convolution kernel

0 2 4 6 8

0

0.5

1

n

k
n

6.7. Rotational Invariance of Spherical Harmonics. Amajor challenge in shape match-
ing is that a shape and its image under a transformation are considered to be the same [22].
Two solutions, normalization and invariance, are candidates to bring about efficient retrieval.

In normalization, shapes are assumed to be optimally aligned. The amount of similarity
for the shape can be found with a much less complex approach rather than attempting to
use all the available transformations [24].

Shapes that are defined in an invariant manner, on the other hand, have transformations
described in a similar way, but the greatest amount of similarity between the shape and its
transformation can be found at any transformation [30].

Rotational invariant descriptor computation for spherical harmonics uses the following
methodology:

• Decomposing the spherical function into its individual harmonics.
• Summing the harmonics and determining each frequency.
• Find the norm of each frequency component
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Knowing that spherical functions are the sum of their corresponding harmonics, we have
the following equation

f(θ, ϕ) =
∞∑
l=0

m=l∑
m=−l

(almY
m
l (θ, ϕ))

.

If we define l to be the frequency, we can define the subspace to be the following

Vl = Span(Y −
l

l, Y −
l

l+1, ..., Y l
l
−1, Y l

l )

There are two key notes about Vl.

• If a function f and rotation R exist such that f ∈ Vl, the R(f) ∈ Vl

• Vl cannot be reduced as a direct sum Vl = V
′

l

⊕
V

′′

l (V
′

l and V
′′

l are non-trivial
representations of the rotation group). If f is the function of a certain frequency l,
then another function with a frequency of l can still be expressed as a sum of rotations
of f . As a result, we cannot partition the space of spherical harmonic functions, and
rotations exist only in smaller subspaces.

Spherical harmonic representation, however, has key limitations.
When transitioning from a spherical shape to spherical harmonic, representation, infor-

mation is lost. To illustrate this, if we consider a spherical function f(θ, ϕ) with bandwidth
b, then we get the following equation

f(θ, ϕ) =
b∑

l=0

l∑
m=−l

(almY
m
l (θ, ϕ))

The space of spherical function with a bandwidth of b has a dimension O(b2). On the
other hand, spherical harmonic representation has a dimension of O(b). As a result, nearly
a full dimension of information gets lost from going to a spherical function to its harmonic
representation. This can happen in two different ways.

We can create frequency components f and g, such that

f =
b∑

l=0

fl

and

g =
b∑

l=0

Rl(fl)

Rl is defined to be the rotation. The spherical harmonic representation does not change
with different rotations or frequencies.

Furthermore, every frequency component, fl, the spherical harmonic representation will
only store the energy for that component.
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7. Applications of Spherical Harmonics

With an understanding of spherical harmonics, we can now move to studying the ap-
plications of harmonics. Spherical harmonics are used extensively in computer graphics:
irradiance environment maps, object recognition, and image relighting.

7.1. Irradiance Environment Maps. An environment map is used mainly to store a
lighting distribution, namely L [31]. The object being lighted will have no changes in lighting,
and all points on the surface of the object will be equally lit.

Using a normal vector n⃗, we can determine the light a particular point. This determination
depends on integrating the upper hemisphere Ω(n⃗).

The light model is said to be lambertian and is defined as∫
Ω(n⃗)

L(ω)(n⃗ · ω) dω = L ∗ A(n⃗) = E(n⃗)

E(n⃗) is the surface irradiance [31]. In essence, an environmental map maps a normal
vector n⃗ to E(n⃗).
In addition, the following theorem generalizes incoming distant illumination on convex-

curved Lambertian surfaces.

Theorem 5. It is not possible to recover odd-order spherical harmonic modes, with an order
greater than 1, from information about the irradiance at every surface point. Observing a
convex-curved Lambertian surface still does not determine the odd-order modes (order greater
than 1) of an incoming illumination field.

This approach, however, can be simplified with the use of spherical harmonics in frequency
space.

We first define the light function as

L(θ, ϕ) =
∑

Lm
l Y

m
l (θ, ϕ)

Whenm = 0 andmax(n⃗·ω1, 0) = max(cos(θ), 0) is the circular symmetric kernel function,
we have

A(n⃗) = max(cos(θ), 0) =
∑

AlY
0
l (n⃗)

and we can rewrite E(n⃗) to be

E(n⃗) =
∑

αlAlL
m
l Y

m
l (n⃗)

When we write down the first 9 spherical harmonics in Cartesian coordinates, we notice
that this computation can be performed easily on a modern fragment or vertex shader
hardware by solving the following polynomial equation [32].

E(x, y, z) =
2∑

l=0

l∑
m=−1

αlAlL
m
l Y

m
l (x, y, z)
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= c1L
2
2(x

2−y2)+c3L
0
2z

2−c5L
0
2+c4L

0
0+2c1(L

−
2
2xy+L1

2xz+L−
2
1yz)+2c2(L

1
1x+L−

1
1y+L0

1z)

Solving the constants we get

c1 = 0.429043

c2 = 0.511664

c3 = 0.743125

c4 = 0.886227

c5 = 0.247708

Spherical harmonic coefficients can be computed, which significantly brings down the time
for a scalar product of the vertex’s normal and irradiance components [1]. Furthermore, this
illustrates the aforementioned property that a spherical function can be decomposed into
the sum of its harmonics.

One of the most interesting applications of spherical harmonics in irradiance environment
maps comes in control variate sampling to render images. As seen in the following figure,
spherical harmonics control variate sampling allows one of render the production of fur.

Figure 12. Image copyright (2012) Pixar. All Rights Reserved.

We can also create tangent irradiance maps, which use tangent data from real datasets. In
Figure 13, image (a) shows the visualization of tangent fields corresponds to polar angles on
the figure’s plane. These tangents lie in concentric circles. Images (b) and (c) are constant
along the radial lines from the center. In Figure 13, we use use a real object to apply tangents.
This, in fact, allows one to visualize the object with realistic tangents in an environment
map.
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Figure 13. Image copyright Analytic Tangent Irradiance Environment Maps
for Anisotropic Surfaces

7.2. Spherical Harmonics in Computer Graphics. While irradiance heat maps provide
a strong baseline for computer graphics, spherical harmonic lighting is one method that
performs dynamic illumination with a high degree of efficiency.

The foundation of spherical harmonic lighting is the rendering equation.
The rendering equation states

L(x, ωv) = Le(x, ωv) +

∫
S

R(x,−ω, ωv)L(xω,−ω)G(x, xω)V (x, xω) dω.

Le(x, ωv) is the light emitted by a point x in the direction ωv, without the influence of any
other incident light ray. The function G(x, x′) describes how its two parameters are related
to one another. x′ is a point in the direction ω from x. V (x, x′) is the visibility relationship
between two points, measured by 0 or 1.

A new algorithm has been developed to divide the rendering equation into a light source
function, denoted by LI . This is given as follows

L(x, ωv) = Le(x, ωv) +

∫
S

LI(x,−ω, ωv)T (x,−ω, ωv) dω.

The transfer function T (x,−ω, ωv) provides a measure of how light from LI is redirected
in the direction ωv.

The previous equation describes the intensity when rendering a point on its surface [23]
[11]. Because these functions are based on spherical harmonics, the new equation for diffuse
is

L(x, ωv)− Le(x, ωv) +
∑
i

LI
iTi

.

and for view dependent light models, the equation is

L(x, ωv) = Le(x, ωv) +
∑
i

αiRi(
∑
j

TijL
I
j )y

i(ωv)
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j TijL

I
j is the linear transformation of the light coeffecient by the transfer function [18]

[36].

8. Conclusion

This paper gives a brief overview of spherical harmonics and their applications. These
harmonics, while complicated, provide a baseline for more complicated spherical functions.
Spherical harmonics have a plethora of application extending from computer graphics to
transfer functions.
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