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1 Introduction

Pell’s Equation has been one of the most important and interesting equations in
the Number Theory. Its history is as interesting as the equation itself. Although
it is believed that Pell's Equation was first studied by John Pell in the seven-
teenth century, the history of Pell’s Equation dates back to times of Indian math-
ematician Brahmagupta and Greek mathematician Pythagoras. Later, William
Brouncker became the first European to solve the equation, and Leonhard Euler
mistakenly attributed William Brouncker’s solution to John Pell, which explains
why the equation is named after John Pell . Pell’s Equation has other forms,
Generalized Pell’'s Equation and Negative Pell’s Equation. Although the Gen-
eralized Pell’'s Equation is not used as commonly as the Pell’s Equation, we still
provided definition, solutions, and explanations for it. However, the Negative
Pell’'s Equation is still subject to various different research and experiments.
Thus, finding absolute information on it is still relatively hard. Owing to this,
we did not talk about Negative Pell's Equation in this paper. Pell’'s Equation
can be solved through many different ways, such as through convergents and
fundamental solution via Continued Fractions or even through Quantum Algo-
rithms. We can solve it by using trial-and-error method, or we can benefit from
different theorems. In this paper, we mostly focused on solving it through con-
vergents, fundamental solutions, and Continued Fractions. Continued Fraction
is highly essential for mathematicians and understanding the mysteries behind
some special irrational numbers. Furthermore, if we need to make calculations
with the help of other irrational numbers such as /2, we take advantage of Con-
tinued Fractions without even realizing. Since we were aware of the fact that we
needed to introduce the Pell’s Equation, its othertypes, and its different solu-
tions, we gave detailed and articulable explanations and definitions. Moreover,
understanding the basics of the Continued Fraction is quite crucial to grasping
the concept of the Pell’s Equation. Due to this, we provided more than the
basics of Continued Fraction. Thus, the section Continued Fraction can be used
for other purposes, such as finding the best approximations to certain values,
separately from understanding and solving the Pell’s Equation. In this paper,
all the solutions and explanations were solved by us and calculators, and they
were explained, defined and written by us. The accuracy of the solutions and



2 CONTINUED FRACTIONS

Definition 2.1. (Olds, 1963) An expression of the following form

a; +
ag +-

is called as continued fraction where the ay,a,,as, ...b,by,by, ... are any real or
complex numbers, and the number of terms is finite or infinite.

The purpose of the present section is to acquaint with the so-called regular continued

fractions, that is, those of the form

a+-
ay +-

usually with the assumption that all the elements a,,a,,a,, . . ., are positive integers.

Definition 2.2. (Rosen, 1992) An expression of the form




is called as a finite continued fraction where a,,a,,a,, .. .,a, arc real numbers with
a,,a,, ...,a, positive. A finite continued fraction is denoted by [ao;a,,az, . .,a,,]
where the real numbers q,,4,, .. .,a, are called the partial quotients of the continued
fraction. The continued fraction is called simple if the real numbers a,,4;,4,, . . ..a, are

all integers.

A finite continued fraction can also be written as

[an;al,az, 5% .,an]=ao+[a > 1 p ]=|:a0;[al,a2, i .,an]] for n>0.
15525 *“n

Example 2.3. Express [2;1,3,1,4] as a rational number.

s f=gs—L -0

As can be seen, the value of any finite simple continued fraction is always a rational

number and every rational number can be represented by a finite simple continued
fraction (Rosen, 1992; Burton, 2010; Robbins, 1993).

Example 2.4. Express % as a finite simple continued fraction.

By the Euclidean Algorithm, we have

67=229+9
29=39+2
9=42+1
2=2.1+0,
it follows that
-6—7:2+i:2+ ]‘ =2+ l
29 29 29/9 34
=2+ 11 =2+ ll
34— 3+——
Y2 4+l
=[2;3,4,2].

Since 2=1+1, it can be written



29 3+ ll
44—

|
14—

Therefore, it can also be denoted as [2; 3,4, 1,1].
This explains the following theorem.
Theorem 2.5. (Long, 1987) If a, >1, then [ao;al,az, .. .,a,,]=[ao;a,,a2, R —1,1].

Definition 2.6. (Rosen, 1992) Let A=[ao;a,,a2, ...,a,,] where Va, e R with
a,,ay, ...a, positive. The continued fractions C, =[ay:a,.a,, ....a;|, where

keZwith 0<k<n, is defined as the Akth convergent of the continued fraction

A =[a(,;a|,az, == .,a,,] and it is denoted by C, .

Theorem 2.7. (Stein, 2008) If real numbers p;, and ¢, are defined as follows:

p2=0, p,=1, py=ay, p=aa+l, ... pp=qpr+pra ...
q,=1, q,=0, gqy=1, gq=a, .. q=aq;3+q_>, ...,
then the kzh convergent C, =[ao;al,a2, 4% .,ak] is given by C;, =P for o<k <n.

qi
Theorem 2.8. (Burton, 2011)

a. The convergents with even subscripts form a strictly increasing sequence; that is,
C5 <G <Cyikins.

b. The convergents with odd subscripts form a strictly decreasing sequence; that is,
G536y 3 € > s

¢. Every convergent with an odd subscript is greater than every convergent with an

even subscript.
In other words, this theorem briefly states that C; < C, < C; <...<C, <...< (s <y <.

Theorem 2.9. (Long, 1987) Let & =[a0;a,,a2, . .,a,,] with @, >1 so that & is the
p"

rational number == . Then, for 1<i < n, we have that
qll
(04 - <l|a _Pic
qi i1
and also

|a‘li - Pil < Iaqi—l —Piq| -



Let’s show what has been given so far on an example.
170 o . .
Example 2.10. Express —— as a finite simple continued fraction and compute the

convergents for this simple continued fraction. Also, show that its continued fraction

satisfies Theorem 2.5., Theorem 2.8. and Theorem 2.9.

By the Euclidean Algorithm, we have

170=4.39+14
390=2.14+11
14=1.11+3
11=33+2
3=12+1
2=2.1+0,
it follows that
m=-4+£=4+ 1 =4+ 111
39 39 39/14 24
14
| |
4+ . 0 =4+ I
14/11 1+i
11
=4+ L =4+ :
1 1
2+ 2+
| 1
e l+—2
11/3 32
=4+ ll =4+ 1]
2+ 2+
1 1
1+ ] 1+ I
34— 3+—
2 1+
=[4;2,1,3,1,2].

Since 2 =1+1, it can be written



170 1

Therefore, it can also be denoted as [4;2,1,3,1,1,1]. This satisfies Theorem 2.5.

The various convergents are

Gy =[4] g =fb=t oy
q 1
C =[42] oA WY
q 2
C, =[4:2,1] c, =22 -1 .4 3333333333
g, 3
Cy =[4:2,1,3] =2 B 43636363636
q3 1
Cy =[4;2,1,3,1] C4=ﬂ=6—1~4 3571428571
q, 14
Cs =[4:2,1,3,1,2] ;=25 170 4 358974359
q; 39
Itlsclearthati<2<ﬂ<170<4—8 2 . Thus P2 Ps Ps P P
1 3 14 39 112 ‘Io ‘12 9 95 493 4

Therefore, C, < C, < C, < C5 < C; < (. This satisfies Theorem 2.8.

Let us check that if Theorem 2.9 is satisfied.

170 170 1

—q, — Pa| =|—14-61|= ~(0,0256410256
' 39 qs — Ps|= 39 13‘9{

170 170 —2

= =|—11-48=[—=0,0512820513

39 13773739 ’ ‘39’

: . . (170 l70 i

From this we easily obtain —9q4 P4l < 39 — ps3|. It can be shown similarly for the

others p, and ¢, (1<k<5).

Theorem 2.11. (Koshy, 2007) Let C, = Pk e the kth con vergent of the simple continued
d

fraction [dg;a,,a,, .. ..a,] where 1<k <n.Then, pg;_ -G P =(—-1)k—| is valid.



The procedure of continued fraction can also be explained as follows.
Let xeR and
x=|x|+{x} =a,+{x}
where | x |€Z and 0<{x}<1.
If x € Z, then this is the end of the algorithm.

If x¢Z,ie. {x}#0, then we write x, =L. Therefore

B

.\r=|_xJ+i with x; > 1.
X

If x; € Z , then this is the end of the algorithm.

If x; ¢ Z , then we write x, = L Therefore,

)

x=|_xJ+;l with x, >1.
|_x,J+g
Set a, =|_xJ and q, =|_x,._] for i>1.
r=|x |+ g ——
| x |+ : a + :
| X, |+— ay+—

Consequently, x = [ao;al,az, .. ] The algorithm finishes after finitely many steps if
and only if x is rational.

Example 2.12. Let x=27—4. Then x=3+% i.e. @, =3 and {x} =;.

W | —

7 1
xl=—=§=2+§’so al=2 and {X2}=

Xy = 1 =%,so a,=3and {x;}=0.

%2}

Therefore, x = % = [3; 2. 3] .

Definition 2.13. (Burton, 1992) An infinite continued fraction is an expression of the
following form



a, + 1
a, + 1
a, +
Toayt
where a; a,,a,,ay, . .. are real numbers with a,,a,, .. .,a, positive and @, >0 and it is
denoted by [ao;a,,al, s .,a,,,...]. If the real numbers ay,a,,a,, .. ..a, are all integers,

then the continued fraction is called simple.

Theorem 2.14. (Rosen, 1992) Let ay,a;,a,, ... be an infinite sequence of integers with
a,,a,, ... positive, and let C;, =[a0;a,,a2. s .,ak]. Then, the convergents C;, tend to

alimit ¢, ie. limC, =a.
k—x

Definition 2.15. (Stein, 2008) A periodic continued fraction is a continued fraction of the
form [ao;al,az, s .,a,,,...] such that a, = a,,, for some fixed positive integer ¢ and all

sufficiently large n . Such a minimal ¢ is called as the period of the continued fraction.

If the continued fraction contains no initial non-periodic terms, then it is called purely

periodic.

Theorem 2.16. (Koshy, 2007) Let & = x, be an irrational number. Define the sequence

«© . .
{a;} o Of integers a; recursively as follows:

1
@ =[x |, xen Ty
k k

where k£ >0.Then a =[ay;a,,a,, .. ].

Continued fraction expansion can also be found in the above form if ¢ is an irrational

number. Let’s show this on an example.

Example 2.17. Express a = V19 as an infinite simple continued fraction.

a=L%]=|V9]=4,  x=—-=— _19+4

Xo—ay 19-4 3

1 I 1942

=

a=|x]=2, xZ:.rl—alzJE+4 , 5
e
sl 1, e _V19+3
- Xy —a, \/E+2_1 2
5
| 1 V1943
5=l =3, et
7
ay=L5) -1, SO SN . L
T Xy—ay \/6+3_ 3

1
5



19+4

- =2 Xs = = :
as—l_.l’5_,— ) 6 X —a \/54-2_
3
1 1 _V19+4

ag = x; | =8 *7 T r—as y19+4-8 3 =X

As it can be seen that x; = x;. So, the pattern continues. Thus,

V19 =[42,1,3,1,2,8,2,1,3,1,2,8,..] =[ 42,1,3,1,2,8].

As can be seen, every irrational number can be represented by an infinite simple continued
fraction (Koshy, 2007; Robbins, 1993).

Example 2.18. Express the purely periodic continued fraction « =[ﬁ] in the form
a+byJd ,where a,be () and d is a square-free integer greater than 1.

[21]=2+ 11
1+

24— 1
|
1+
2+...

Since a = [ﬁ] , 1t can be written

1 _3asxd
1 a+1
a

a=2+

1+

Thatis, @® —2a—-2=0,50 a=1++/3.

Every purely periodic continued fraction is an infinite continued fraction. As can be seen
from the example, the value of an infinite continued fraction is an irrational number. This

explains the following theorem.

Theorem 2.19. (Burton, 1992) The value of any infinite continued fraction is an irrational

number.

Theorem 2.20. (Mollin, 2008) If C, =ﬂ, for k e N, is the kth convergent of an
i

irrational number « , then the following holds

Pr
g

1
<_
‘IA

a—

For example, if Ja1= [6 2,2, 12] it is obvious that (s = ﬁ— 2049 I\/_ C5|
qs

where Cj is the 57h convergent in the infinite continued fraction representation of «/ )



3 PELL’S EQUATION

3.1. Pell’s Equation: Pell’s Equation is a Diophantine equation. Pell’s Equa-
tion are any equations where z and y are integers, and d is a positive integer
but not a perfect square. That is,

22 —dy’=1

The equation is extremely important in Number Theory since it comes with
investigation and solution of numbers that are figurate in more than one way.
Pell’'s Equation can give infinite number of solutions.

Definition 2.1. Diophantine equations are polynomial equations involving
only sums, powers, and products. All the constants are integers, and the only
solutions of interest are integers. That is,

22 —y? =22

where z,y, and z are integers.

Proposition 3.2. The reason why d cannot be a perfect square is that when
d becomes a perfect square, we can only get one fundamental solution that is
(£1, 0) for any positive integer d.
Proof. Let d be 4, a perfect square. Then, we have
2 -4y =1
?— (29 =1

The only perfect squares that are 1 apart are —1— and 0. Thus, the only
solution is (+1, 0).

Proposition 3.3. The reason why d cannot be a negative integer is that when
d becomes a negative integer, we cannot get infinite number of solutions. Proof.
Let d be -1, a negative integer. Then, we have

z? — (=1y%) =1

22+y? =1

Thus, the only solutions to this equation are (£1, 0) and (0, £1).

Proof. Let d be any negative integer that is smaller than -1. Thus, we will let
d be -2. Then, we have

z? - (2y)* =1

22 4+22 =1

Thus, the only solution to this equation is (£1, 0). That is, y cannot be greater
or smaller than 0 because if it becomes any integer other than 0, then both z?
and —dy? will become greater than 1, which cannot happen.

Definition 3.4. Fundamental solution refers to any solution which can solve
one or more root causes. Thus, the root of the problem is used to construct
theorems and problems based on them. That is, the fundamental solution of an



equation is the smallest solution to that equation.

3.2. Generalized Pell’s Equation: Generalized Pell’'s Equation is the equa-
tion where z and y are integers and d is any positive integer which is not a
perfect square, and the solution is any integer except 1. That is,

22 —dy*=n

Generalized Pell’'s Equation uses its fundamental solution and its Pell’s Equation
form’s fundamental solution to provide other solutions.

4 PELL’S EQUATION and CONTINUED FRAC-
TIONS

Theorem 5: Suppose d > 0 is not a perfect square. Then expansion of
Nd=lao; @i, @ -, @n1, an 2a0), where a,.,,= a, for j = 1,2, -, n (Olds
1963).

In other words, Jd=lao; a1, az, -, a=, ar, 2ao)

Proof
If Jd > 1 = — Jd <—1, then /7 is not reduced quadratic irrational.
Suppose 1
Vd =[aga,a--]=a,+———— &)
@t

a, +—

Since /7 > 1, is not a perfect square, then ao + Jqd > 1.
We have, 0 < /g ao <1 = —1 < ao Jd < O is a conjugate of
ao + \J/q that lies between — 1 and 0. So, ao + /g is a reduced quadratic
irrational and it has a purely periodic continued fraction

‘We add ao in (3)

a, +Jd = 2a, +

Since the expansion of a reduced quadratic irrational is purely
periodic. Then

au+\g=2a,_,+

:I:Zao;al,az,m,a":l

a, +

! 1
a, +

T+ 2a, +

a, +—




By theorem 2, gives

1

-1 -
a, _\/Z B \/Z—ao =|:a"""’al’2ao]

Also, by subtracting ao from equation (3), we have,

(4)
\/E—ao =0++1=[0;a,,az,---,an,2ao]
a, +

a?_+,—

By theorem 3, it gives

1 1 ()

=a,+ =[a|,a2,~-~,an,2a0]
\/c_i—ao a,+ L 1
03+?

Comparing equations (4) and (5), we have,
an = al’ an—l = aZ’ ) aZ = an—l’ al = an

Hence ﬁ=[ao,' a, a, ---, az, 4, 200].

Theorem 6: Let f=a,z" + a, ,z"' + --- + a,z + a, be an irreducible
polynomial with integral coefficients and degree of n > 3. Let us
consider the homogeneous polynomial

s

n n-1 n-1 n
=ax +a_x y+..taxy +ay

Then the equation F(x, y) = N has either no solution or only a finite
number of solutions in integers (Thue 1909).

In the theorem 6 is in contrast when the degree of F is n = 2
(Dickson 1957).

For instance, if F (x, y) = x> — d)?, where d > 1, is not a perfect square,
then for non-zero integer N, the quadratic Diophantine equation of the form



X -dyp=N ©6)

has either no integral solutions or infinitely many solutions, which is
known as the generalized Pell's Equation (Dickson 1957) after John Pell, a
Mathematician who studied in the /7" century to find the integer solutions
to equation (6).

Theorem 7: If d > 1, is not a perfect square integer, then /3 — dk3 = (—1)""!
Q.1 for every integer n > —1 (Kumundury & Romero 1998).

Theorem 7 gives us a solution to (6) for a given value of N. So, the
following theorem 8 establishes the connection between the convergence of
Jd and the solutions of equation (6) for 0 <N < /7 .

Theorem 8: Let 0 < N < /7 and (P, Q) be a solution of the equation
x2—dy>= N . Then -"; is convergent in the expansion of /7 (Niven e al.
1991).

Proof

Since (u, v) 1is a solution of the equation (6), then
N=w—adv’=u—-v Jg)u+vd)

Since 0<N<.d = Jd>N>0

Then, we have

u N Jd
O < e d) s i)

Sincevd<u=2v Ja<u+vqd

Then, we have

0<___\/— Jd Jd 1

(u+v\/—) \/_ 27

:>0<l—l—\/_

% 2v-

It follows that -fvf is a convergent of /4.



Theorem 9: If |[N] < /4, then the solutions of equation x> — d)’>= N are
7 A
X =u,,y=v,,where -~ is a convergent of Jd:

Problem: Observe Pell’s equation x* — 7y*= 2 . Since 2 < ﬁ , we know that
the solution (p,, g,) is a convergent z— of the continued fraction expansion
of /7 .So, continued fraction expansion of V7 =2 1,1,1,4].

When N =+ 1, the Diophantine equation (6) becomes
xX—dy*=+1 (7

It is known as Pell’s Equation, where d > 0 , is not a perfect
square. Pell's Equation uses a straightforward algebraic approach
with a finite number of solutions when d>1 and a perfect square. Pell's
Equation can be used to solve a variety of problems because it always
has the trivial solution (x, y) = (= 1, 0) and has an infinite number of
solutions. The Indian mathematicians Brahmagumpta and Bhaskara
developed techniques for resolving Pell's equations (Barbeau 2003).
Pell's Equation can be resolved using the Chakravala method, which
Brahmgupta first developed. These equations were used in the time of
Pythagoras to approximate the square root of 2 (Pang 2011). So, Pell’s
Equation is also known as the classical Pell's Equation (Barbeau 2003,
Niven et al. 1991) and Brahmagupta and Bhaskara were the first to study
Pell’s equation (Arya 1991).

The theory was developed by Lagrange, not Pell. Lagrange
was the first to establish that there are infinitely many solutions to Pell's
Equation, if d is a positive, not a perfect square (Legendre 1798). The
Indian mathematician Baudhayana discovered in the fourth century that the

equation x> — 2y?= 1 has a solution (x, y) = (577,408), and he used the ratio
377 to approximate /2 .
277 to app 2

577 2 :
But 708 =~ 1.4142156, while /2 = 1.4142135 Archimedes

estimated 3 = 1.7320508 by 39> ~ 17320261 and 1351 < 17320512, then

2 satisfy the equations x*> — 3y°= -2 and x> — 3y°= 1. The smallest solution

(x, ¥) = (1151,120) to Pell's Equation x> — 91)*= 1, was investigated by



Brahmagupta in the seventh century. Similarly the least-positive solution
(x, ¥) = (1776319049, 2261590) to Pell's equation x> — 61)*= 1 was given
by the Hindu mathematician Bhaskara in the twelve century.

Therefore, there are always infinitely many possible solutions to
Pell's Equation (7). They can be found by continued fraction expansion of
Jd. The fundamental solution of equation (7) is usually the least positive
solution. The following theorem 8 shows that if (x,, y,) is the fundamental
solution to equation (7) then there are infinitely many solutions, and they
are all generated from (x,, y,).

Another application of Pell's Equation is the approximation of
square roots. Suppose that (x, y)satisfies Pell's equation. We cannot write ,
Jd = % where x, y € Z, /4 is irrational.

But, if ¥ -dy’=1= —' = d+ =~ d . Therefore, Pell's solutlons
result in accurate rational appr0x1mat10ns of Jd. As aresult, for large y, 5 7
is a good approximation to /7. Therefore There are non-trivial solutions
and infinitely many solutions to Pell's equation x> — dy* = 1. The fundamental
solution, which is generated by Theorem 10, is at least one convergent of
Jd and yields all solutions.

Theorem 10: Suppose d > 0 is not a perfect square. Then the continued

fraction expansion of /7=[ao, ai, a, -, a1, 2a0) , where r is the length
of period, then the fundamental solution (\',, ) to Pell's equation (7) is
glven by the continued fraction expansion _/ [ao; @\, a2, -, ar1]. Define
= = [ao; @y, @3, -+, @nr1), then x, + y,\Jd = (x, + y,[d)", for integern>1,n €
Z (Hoffstein et al. 2008).

Theorem 11: If (x,, y,) is the fundamental solution to Pell's equation (7),
then n" positive solution is (x,, y,), where x, and y, are given by x, + y,/d
=(x; +y,/a)", for integer n > 1, n € Z (Waldschmidt 2016), which leads us
to the following explicit form;

%, = (540 + (v -3 ]

o= 5|+ ) (- |



In addition, the solutions (x,, y,) satisfy the recurrence relations
xl‘n=2xlxu_xnrla yl‘u=2xlyn—yn—l

xlm=xlxn+ylynds ylm=xlyu+ylxu

Theorem 12: Let d > 0, not a perfect square, and -";’ be the n” convergent

n

of Jg=[ao; a\, a3, -, a1, @] , where r is length of period.

All positive solutions of x* — dy? = lare given by

) (Pir-15961 ) k € N,if r is even
y)=
% (Potr13G241 ) k €NLif 1 is odd

All positive solutions of x* — dy* = —1 are given by

(= (Pi1s91 ).k eNif ris odd
' no solution if r is even

Moreover, (p, 1, ¢,,) is a fundamental solution of

x> —dy* =1,if ris even
x*—dy* =-1,if ris odd

and (p,,1, ¢».,) is the fundamental solution of x* — dy’= 1 if r is odd
(Niven et al. 1991).

We found a fundamental solution and used the fundamental
solution to find other positive integral solutions to Pell's Equation.

Problem: Solve Pell's equation x> —41y’= | using the method of continued

fractions.

We begin by computing the continued fraction expansion of
Ja1=[6; 2,2,12]. It has a length of period » = 3, which is odd. Therefore,
negative Pell’s Equation x* — 41y =—1 has a solution. So, 3"/ convergent is

B 1. . .2 32
G = 6+_2 1~ 6+§ 8- Thus, (x, y) = (32,5) is a solution to the
+ i
2

negative Pell’s Equation.



