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Abstract. The Galton Watson Process is enter definition here. In this paper, we go
over the general definition and discuss three applications insert applications here

1. Introduction

Galton-Watson (GW) branching processes, including the invariant Galton-Watson (IGW)
branching processes, have found applications in various fields, including biology, epidemi-
ology, physics, and social sciences. Here are some notable applications of Galton-Watson
(IGW) branching processes:

(1) Epidemic Modeling: GW branching processes have been used to model the spread
of infectious diseases in populations. Each infected individual generates offspring
(new infections) based on certain transmission rules. This modeling approach helps
understand the dynamics of disease propagation and assess the effectiveness of inter-
ventions.

(2) Species Extinction: In ecology and evolutionary biology, GW branching processes
have been employed to study the extinction of species. By considering population
dynamics and reproductive rates, these processes provide insights into the probability
of a species becoming extinct over time.

(3) Social Network Analysis: GW branching processes, especially the IGW variant, have
been used to model information diffusion and cascades in social networks. By simu-
lating the spread of information through branching processes, researchers can analyze
the patterns and dynamics of information propagation in online social platforms.

(4) Genealogy and Family Trees: Galton-Watson processes have been used in genealogy
research to model the growth and evolution of family trees. By considering repro-
ductive patterns, these processes help understand the distribution and structure of
family lineages.

(5) Particle Physics: In the study of particle physics, GW branching processes have
been applied to model the decay and fragmentation of particles. By considering
the branching behavior of particles, researchers can study the evolution of particle
showers and cascades in high-energy physics experiments.

(6) Financial Mathematics: Galton-Watson processes have been used in mathematical fi-
nance to model the growth and fluctuation of asset prices. By incorporating branching
mechanisms, these processes help analyze the risk and volatility of financial markets.
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(7) Queuing Theory: GW branching processes have been employed in queuing theory to
model the arrival and service of customers in a system. By considering the branching
nature of customer arrivals, researchers can analyze queue lengths, waiting times,
and system performance.

1. 2. 3. 4. 5. 6.

2. Background

The origin of this model can be traced back to F. Galton’s statistical investigation into the
disappearance of family names. During the nineteenth century, there was a concern among
the Victorians that aristocratic surnames were vanishing. In 1873, Galton initially raised
this question about the probability of such an occurrence in an edition of ”The Educational
Times.” The Reverend H. W. Watson later provided a solution in response. Subsequently,
they collaboratively authored a paper titled ”On the probability of the extinction of families”
for the Journal of the Royal Anthropological Institute in 1874. Over time, this model has
found diverse applications in biology (gene fixation, early evolution of bacterial colonies),
chemistry (chemical chain reactions), and physics (cosmic rays). However, it is important to
note that this model has limited usefulness in comprehending actual distributions of family
names, as such names can change for various reasons beyond the extinction of a male family
line.

3. Galton-Watson Process

A Galton-Watson (GW) Process is a more complex version of a Markov Chain. In simple
words, it begins with a population and then evolves in discrete time following these rules:

(1) Each nth generation individual produces a random number of offspring for the next
(n+ 1)st generation

(2) The offspring counts ξα, ξβ, ξγ for individuals α, β, γ are mutually independent and
are also independent from offspring counts or previous generations. These are also
identically distributed with the distribution pkk≥0

(3) the state Zn is the number of individuals in the nth generation at time n

Definition 3.1. The transition probabilities are PZn+1 = k|Zn = m = p∗mk where the

4. Social Networks

Branching processes serve as discrete-time stochastic processes employed to model the evolu-
tion of populations over time. Recently, these have been used for studying how information
spreads in large online user generated websites like Twitter and Reddit.

Understanding the factors that trigger information cascades holds significant implications
both in scientific and commercial contexts. From a scientific perspective, the viral spread of
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content on platforms such as Twitter manifests as a visible outcome of complex collective
behavior among uncoordinated and extensive masses.

Analyzing the propagation of information in-depth enables us to discern between content
that captures user attention and content that elicits indifference. From a practical stand-
point, users of web platforms often find themselves inundated with mostly unwanted content,
potentially causing relevant and timely information to get lost in the shuffle. Therefore, ac-
curately estimating which content will gain popularity becomes crucial in providing improved
ranking and personalization of content.

The computation of the SPG (Stochastic Process of Growth) associated with a given node
follows these steps:

(1) We begin with node i and assign its SPG a value of 1.
(2) For each neighboring node, denoted as j, a coin is tossed with a success probability of

k. If the coin toss results in success, we select (retain) node j; otherwise, we discard
it.

This process is repeated for each selected neighbor of i and is equivalent to drawing a sample
of neighbors from i, where the sample size follows a binomial distribution. The number of
trials equals the degree of i, and the success probability is k. The process restarts from
the selected nodes: if node j has been chosen, then with a decreased probability of p, we
continue the exploration into j’s neighborhood. We will demonstrate that with an appropriate
selection of nodes, the described process converges.

The SPG of node i is defined as the sum of all coefficients associated with the nodes in graph
G that have been selected during the network traversal process outlined above.

We refer to the stochastic processes described as a graph-driven branching process. The
primary contributions of this research are summarized as follows.

The graph-driven branching process represents a novel stochastic process. In standard
branching processes, the probability of extinction, which refers to the probability of no
individuals existing after a certain generation, solely depends on the expected number of
children an individual can have. In our case, the extinction of the exploration process is
jointly influenced by the function and the graph topology.

At generation k, a node j has an expected number of children equal to . Therefore, nodes
with high degrees can compensate for lower fertility levels, while high fertility can overcome
limitations stemming from nodes with low degrees, thereby averting early extinction of the
process.

Additionally, it is worth noting that classical branching processes assume a constant prob-
ability for an individual to have a particular number of children across generations. In
contrast, our model incorporates a fertility ratio that decreases as the generation counter k
increases.
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5. Earthquake Occurrence

Stochastic branching processes have been extensively employed for modeling earthquake
occurrence since the 1970s, with influential contributions by Kagan (1973), Kagan Knopoff
(1976), and Vere-Jones (1976). One widely used approach builds upon the self-exciting
Hawkes point process (Hawkes 1971; Adamopoulos 1976; Daley Vere-Jones 2003), which
is equivalent to a branching process with immigration (Hawkes Oakes 1974; Saichev et al.
2005; Baró 2020).

The earthquake population can be divided into clusters, each originating from an immigrant
event and including all subsequent offspring and their offspring.

These clusters can be represented as tree graphs, where the root corresponds to the initial
immigrant event, the other vertices represent triggered earthquakes, and the edges represent
triggering relationships dictated by the model (which may or may not align with actual
physical triggering if fitted to data).

The inclusion of immigrants (background events) ensures the population does not diminish
over time. From 1970 to 1990, powerful probabilistic tools were developed to handle space-
time-magnitude generalizations of branching processes, establishing a tradition of seismolog-
ical applications (Vere-Jones, Ogata, et al.).

In the context of earthquake modeling, each earthquake generates offspring according to a
modified Omori law (Omori 1894; Utsu 1970; Utsu et al. 1995). Specifically, an earthquake
with magnitude Mi occurring at time ti produces offspring, termed first-generation after-
shocks, according to a Poisson process with an intensity given by the following equations.

(5.1) ν(t|ti,Mi) =
K010

α(Mi−M0)

(t− to + c)p
t > ti

This equation incorporates positive constants κ0, α, c, and p > 1. Every new event, in
this case representing earthquakes, is assigned an independent magnitude Mi, independent
from any parents. These are typically calculated according to the Gutenberg-Richter law
(Gutenberg Richter 1944) expressed by equation (2).

Definition 5.1 (Gutenberg-Richter Law). The number of earthquakes with magnitude M
is proportional to 10−bM where b is a positive number that can vary but is overall equal to
b = 1

The overall earthquake flow consists of background events, their first-generation aftershocks,
second-generation aftershocks (offspring of the first generation), third-generation aftershocks
(offspring of the second generation), and so on. This combined flow can be represented as a
point process characterized by its conditional intensity (t|Ht) defined as.

(5.2) (t|Ht) = µ(t) +
∑
i:ti<t

ν(t|ti,Mi)
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Here, Ht denotes the process history, which comprises the events (ti,Mi) occurring before
time t. It is important to note that this modeling framework can include spatial components
by incorporating a point field with a background intensity (t, x) and a conditional space-time
distribution of offspring given by a density ν(t, x|ti, xi,Mi) (Ogata 1998, 1999).

A Galton-Watson (GW) stochastic branching process describes a population that starts
with a single progenitor at step s = 0 and evolves in discrete steps. At each time step, each
existing member independently gives birth to k = 0, 1, ... offspring according to a distribution
pk, without considering other members, and then terminates.

By focusing solely on parent-offspring earthquake relations in the ETAS model, without
considering time and space attributes, a single cluster that originates from an earthquake
of random magnitude and includes all generations of aftershocks can be described by a GW
process.

Definition 5.2 (Critical Process). If the average offspring number is unity (
∑

k pk = 1)

Definition 5.3 (Subcritical Process). If the average offspring number is less than unity
(
∑

k pk < 1)

A critical GW process exhibits a population size of unity on average at each step, while a
subcritical GW process experiences exponential decline in the average progeny.

Critical and subcritical GW processes generate finite populations with probability 1, al-
though the average size of a critical population is infinite.

Within the Epidemic Type Aftershock Sequence (ETAS) model framework, the offspring
distribution pk is obtained by considering the conditional Poisson distribution of offspring
numbers for a parent earthquake with a given magnitude and integrating it with respect to
the magnitude distribution (2).

The article proposes a theoretical modeling framework for earthquake clustering based on a
family of invariant Galton-Watson (IGW) branching processes.

IGW processes serve as rigorous approximations to imprecisely observed or inaccurately
estimated earthquake clusters modeled by GW branching processes, ETAS model. The the-
ory of IGW processes provides explicit distributions for various cluster attributes, including
magnitude-dependent and magnitude-independent offspring numbers, cluster size, and clus-
ter combinatorial depth. The study demonstrates the close fit between the IGW model and
observed earthquake clusters by analyzing seismicity in southern California. The estimated
IGW parameters and derived statistics prove robust, even when considering different lower
cut-off magnitudes in the earthquake catalog. The proposed model enables analysis of mul-
tiple seismicity quantities based on self-similar tree attributes and facilitates the assessment
of seismicity proximity to criticality.

Definition 5.4 (Invariant Galton-Watson Process (IGW)). A critical GW process with an
offspring distribution given by q1 = r and recursively defined
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qk = (1− r)
(1−q)(k− 1

q
)

q(2− 1
q
)k!

The power index 1+q
q

decreases from 3 to 2 with the model parameter q increases from 1
2
to

1.

In other words, the offspring distribution qk has generating function

(5.3) Q(z) =
∞∑
k=0

qkz
k = z + (1− r)q(1− z)

1
q

where q ∈ [1
2
, 1) and r ∈ [0, 1)

6. Conclusion

In conclusion, Galton-Watson (GW) branching processes, specifically the invariant Galton-
Watson (IGW) branching processes, offer a theoretical framework for understanding the
dynamics of information spread in social networks. These processes have gained popularity
as a tool for studying how information propagates in large online social networks such as
Twitter and Reddit. The IGW branching processes provide a mathematical description of
how information cascades occur in social networks. Each member of the population gen-
erates offspring based on predefined rules, leading to the formation of clusters or cascades
of information propagation. These cascades can be represented as tree graphs, where the
root corresponds to the initial information source, and subsequent vertices represent indi-
viduals who receive and propagate the information. By employing GW branching processes,
researchers can analyze various aspects of information spread, such as the factors trigger-
ing cascades, the patterns of attention and indifference among users, and the challenges of
content ranking and personalization. The model allows for a better understanding of the
complex collective behavior of uncoordinated masses in social networks and provides insights
into discriminating between attention-catching information and indifferent information. The
application of GW branching processes to social networks offers both scientific and practical
implications. At the scientific level, it helps uncover the mechanisms underlying information
propagation and the interplay between network topology and cascade dynamics. From a
practical standpoint, it aids in addressing the challenge of content overload and improving
the ranking and personalization of content for users. While the GW branching processes
provide valuable insights into information spread in social networks, it is important to note
that they have certain limitations. The applicability of these models in understanding ac-
tual information distribution patterns is limited because factors other than the extinction of
information cascades can lead to changes in the distribution of content in social networks.
In summary, Galton-Watson (IGW) branching processes serve as a useful tool for studying
information propagation in social networks. They offer insights into the factors triggering
cascades, user attention, and the challenges of content ranking. However, it is crucial to
consider the limitations of these models in capturing the complete dynamics of information
spread in real-world social networks.
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