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Abstract. This expository paper explores the intriguing world of Waring’s problem, a
classic mathematical conundrum that examines the representation of integers as sums of
integer powers. The paper delves into the historical context, statement, and significance
of Waring’s problem. Additionally, it investigates its practical application in modern cryp-
tography, focusing on the well-known RSA algorithm, which relies on number theory and
Waring’s problem to ensure secure data encryption.
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1. Introduction

Waring’s Problem, formulated by the British mathematician Edward Waring in 1770, is a
significant and intriguing problem in number theory. It addresses the fundamental question
of representing positive integers as the sum of a fixed number of k-th powers of smaller
positive integers. This problem has captured the interest of mathematicians for centuries
and continues to inspire research and exploration.

The essence of Waring’s Problem lies in finding the minimum number of k-th powers
required to express any positive integer. In other words, it seeks to determine the function
g(k), which represents this minimum number. For example, if g(k) is found to be 4, it means
that every positive integer can be expressed as the sum of four k-th powers.
The problem is particularly intriguing because it involves the interplay of various math-

ematical concepts and fields. By examining the properties of numbers and the patterns of
their representations as sums of powers, Waring’s Problem provides insights into the under-
lying structure and properties of positive integers. It touches upon additive number theory,
algebraic number theory, Diophantine equations, and modular forms, among other areas of
mathematics.
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One of the key motivations for studying Waring’s Problem is its connection to the concept
of perfect powers. A perfect power is a positive integer that can be expressed as an integer
raised to the power of k. For instance, 16 is a perfect fourth power because it can be
expressed as 24. Waring’s Problem investigates the minimum number of perfect k-th powers
required to represent any positive integer, generalizing the concept of perfect powers beyond
individual numbers.

Understanding the function g(k) has practical implications as well. It has applications in
cryptography, coding theory, and error detection. The study of Waring’s Problem has also
led to advancements in computational number theory, as researchers employ algorithms and
techniques to compute precise values for g(k) and study the asymptotic behavior of g(k) as
k tends to infinity.

Over the years, mathematicians have made significant progress in solving Waring’s Prob-
lem for specific values of k. Early solutions were established for small values of k, and
subsequent work has extended these solutions to larger values and explored generalizations
of the problem. Additionally, advancements in computational methods have provided nu-
merical evidence and insights into the behavior of g(k) for various k.

In conclusion, Waring’s Problem is a fascinating and important problem in number theory,
seeking to determine the minimum number of k-th powers required to express every positive
integer. Its study not only deepens our understanding of the structure of numbers but
also has practical applications. Through historical developments, approaches from different
mathematical fields, and computational advancements, researchers continue to explore and
make progress on this intriguing problem.

2. History of problem and context

This problem was first solved by Hilbert. A few years later, Hardy and Littlewood proved
that for any k there is an s so that every sufficiently large whole number is a sum of s k-th
powers — and moreover they gave an approximate formula for the number of ways in which
each whole number is a sum of s k-th powers. This formula gives better and better answers
for larger and larger numbers.

Historical Context:
The 18th century marked a significant period in the development of mathematics, with

many groundbreaking ideas and discoveries. It was during this time that Edward Waring
formulated the problem that came to be known as Waring’s Problem. To understand its
historical context, we must explore the mathematical landscape of the era and the ideas that
influenced Waring’s work.

During the 18th century, number theory was a vibrant area of research, attracting the
attention of prominent mathematicians. The study of prime numbers, factorization, and
properties of integers captivated the mathematical community. Additionally, the investiga-
tion of perfect powers and the representation of numbers as sums of powers were topics of
interest.

One influential figure who influenced Waring’s work was Joseph-Louis Lagrange. Lagrange
made significant contributions to number theory, including his work on the representation of
integers as sums of squares. His ideas on Diophantine equations and quadratic forms laid the
foundation for later developments in the field. Waring was likely influenced by Lagrange’s
work when formulating his own problem.
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Another mathematician who played a role in the context of Waring’s Problem was Leonard
Euler. Euler made remarkable contributions to various areas of mathematics, including
number theory. He explored the properties of perfect powers and the representation of
integers as sums of powers. Euler’s work on partitions, which dealt with expressing numbers
as sums of positive integers, also provided valuable insights that influencedWaring’s thinking.

While Waring’s Problem stands as a significant mathematical challenge, it was not the only
problem being investigated during the 18th century. Other related problems and conjectures
emerged in this era, stimulating mathematical exploration and debate. One notable problem
was Fermat’s Last Theorem, which conjectured that there are no three positive integers
satisfying the equation xn + yn = zn for n greater than 2. The pursuit of solutions to
Fermat’s Last Theorem and its connection to Waring’s Problem sparked interest and inspired
researchers to delve deeper into the properties of numbers and their representations.

In addition to Fermat’s Last Theorem, the study of perfect powers and the representation
of integers as sums of powers in general was an active area of research during the 18th
century. Mathematicians were eager to understand the patterns and structures underlying
these representations, leading to various conjectures and investigations.

In conclusion, the 18th century was a dynamic period in mathematics, with Waring’s
Problem emerging as a significant challenge in number theory. Influenced by mathematicians
like Lagrange and Euler, Edward Waring formulated the problem and sought to determine
the minimum number of kth powers required to express every positive integer. Alongside
Waring’s work, related problems and conjectures, such as Fermat’s Last Theorem and the
representation of integers as sums of powers, captured the attention of mathematicians during
this era. These historical influences and the intellectual climate of the time contributed to
the formulation and exploration of Waring’s Problem.

3. Problem Formulation

Waring’s Problem, formulated by Edward Waring in 1770, addresses the question of rep-
resenting positive integers as the sum of a fixed number of k-th powers of smaller positive
integers. Waring sought to determine the minimum number of k-th powers required to ex-
press any positive integer, thereby establishing a function g(k) that represents this minimum
number.

To formulate the problem, let’s consider an example using the case of k = 2. The problem
then becomes finding the minimum number of squares required to represent any positive
integer. For instance, can we express every positive integer as the sum of a fixed number of
squares? Waring’s Problem seeks to answer this question.

Waring’s Problem is intimately connected to additive number theory. Additive number
theory deals with understanding the properties and structure of numbers based on their
additive properties. By examining the representation of positive integers as sums of k-th
powers, Waring’s Problem contributes to our understanding of how numbers can be composed
additively.

To quantify the minimum number of k-th powers required to express any positive integer,
Waring introduced the function g(k). This function represents the smallest number such
that every positive integer can be expressed as the sum of that number of k-th powers. In
other words, g(k) is the minimum number of k-th powers needed to represent any positive
integer.
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Waring’s initial conjectures provided specific values for g(k) based on his observations
and computations. These conjectures served as hypotheses for the minimum number of k-th
powers needed to represent positive integers. For example, Waring conjectured that g(2) is 4,
suggesting that every positive integer can be expressed as the sum of four squares. Similarly,
he proposed that g(3) is 9, indicating that every positive integer can be expressed as the
sum of nine cubes.

These initial conjectures sparked interest and investigation into the properties of k-th
powers and their additive combinations. Mathematicians set out to prove or disprove these
conjectures, leading to significant advancements in understanding the representation of pos-
itive integers as sums of k-th powers.

In conclusion, Waring’s Problem, formulated by Edward Waring, seeks to determine the
minimum number of k-th powers required to express any positive integer. This problem is
connected to additive number theory, exploring how numbers can be represented as sums of
powers. Waring introduced the function g(k) to represent this minimum number, and his
initial conjectures proposed specific values for g(k) for various values of k. These conjectures
formed the basis for further investigations into the problem.

4. Warings problem for squares

Theorem 4.1. Prove that for any positive integer k, there exists g(k) such that every positive
integer can be expressed as the sum of g(k) perfect squares.

Proof. To prove Waring’s problem for squares, we can follow an inductive argument. Let’s
assume that for all positive integers n less than or equal to k, there exists a positive integer
g(k) such that every positive integer up to n can be written as the sum of g(k) perfect
squares.

Now, we need to show that for n = k+1, there exists a positive integer g(k+1) such that
every positive integer up to n can be expressed as the sum of g(k + 1) perfect squares.
Consider the base case, where n = 1. We can write 1 as 12, which is a perfect square.

Thus, the base case holds.
Now, let’s assume that every positive integer up to n = k can be expressed as the sum of

g(k) perfect squares. We need to prove that every positive integer up to n = k + 1 can also
be written in this way.

Since n = k + 1, we have two cases:
Case 1: n is a perfect square (n = m2, where m is a positive integer). In this case, we can

simply write n as the sum of one perfect square: n = m2. Thus, g(k + 1) = 1.
Case 2: n is not a perfect square. In this case, we can express n as the sum of two numbers:

n = a2 + b, where a is a positive integer and b is a positive integer less than or equal to
n− a2.

Since b ≤ n− a2 = k − a2 + 1, the number b can be expressed as the sum of g(k) perfect
squares, by our assumption. Additionally, a2 is a perfect square, so we can write it as the
sum of one perfect square.

Hence, n = a2 + b can be expressed as the sum of g(k) + 1 perfect squares.
Therefore, by induction, we have shown that for any positive integer k, there exists a

positive integer g(k) such that every positive integer can be written as the sum of g(k)
perfect squares. This completes the proof of Waring’s problem for squares.

■
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Now let’s go deeper into this case and show precise value of g(k).

Theorem 4.2. Prove that g(k) = 4 for Warings Problem for squares.

Proof. Firstly we will prove three lemmas.

Lemma 4.3. For any integers a, b, c, d, w, x, y, z,
(a2 + b2 + c2 + d2)(w2 + x2 + y2 + z2) = (aw + bx + cy + dz)2 + (ax − bw − cz + dy)2+

+(ay + bz − cw − dz)2 + (az − by + cx− dw)2

This is the Euler four-square identity, with different notation.

Lemma 4.4. If 2m is a sum of two squares, then so is m.

Proof. Say 2m = x2+y2. Then x and y are both even or both odd. Therefore, in the identity

m =

(
x− y

2

)2

+

(
x+ y

2

)2

both fractions on the right side are integers. ■

Lemma 4.5. If p is an odd prime, then a2 + b2 + 1 = kp for some integers a, b, k with
0 < k < p.

Proof. Let p = 2n+ a. Consider the sets
A = {a2|a = 0, 1, . . . , n} and B = {−b2 − 1|b = 0, 1, . . . , n}.
We have the following facts:

(1) No two elements in A are congruent (mod p), for ir a2 ≡ c2 (mod p), then either
p|(a− c) or p|(a+ c) by unique factorization of primes. Since a− c, a+ c ≤ 2n < p,
and 0 ≤ a, c, we mush have a = c.

(2) Similarly, no two elements in B are congruent (mod p).
(3) Furthermore, A ∩ B = ∅ since elements of A are all non-negative, while elements of

B are all negative.
(4) Therefore, C := A ∩B has 2n+ 2, or p+ a elements.

Therefore, by the pigeonhole principle, two elements in C must be congruent (mod p).
In addition, by the first two facts, the two elements must come from different sets. As a
result, we have the following equation:

a2 + b2 + a = kp

for some k. Clearly k is positive. Also, p2 = (2n + 1)2 > 2n2 + 1 ≥ a2 + b2 + 1 = kp, so
p > k. ■

Basically, Lemma 4.5 says that for any prime p, some multiple 0 < m < p of p is a sum of
four squares, since a2 + b2 + 1 = a2 + b2 + a1 + 02.
Proof of Theorem. By Lemma 4.3 we need only show that an arbitrary prime p is a sum

of four squares. Since that is trivial for p = 2, suppose p is odd. By Lemma 4.5, we know

mp = a2 + b2 + c2 + d2

for some m, a, b, c, d with 0 < m < p. If m = 1, then we are done. To complete the proof, we
will show that if m > 1 then np is a sum of four squares for some n with 1 ≤ n < m.

If m is even, then none, two or all four of a, b, c, d are even; in any of those cases, we may
break up a,b,c,d into two groups, each group containing elements of the same parity. Then
Lemma 4.4 allows us to take n = m

2
.
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Now assume m is odd but > 1. Write

w ≡ a (mod m)

x ≡ b (mod m)

y ≡ c (mod m)

z ≡ d (mod m)

where w, x, y, z are all in the interval (−m/2,m/2). We have

w2 + x2 + y2 + z2 < 4 ·m2/4 = m2

w2 + x2 + y2 + z2 < 4 ≡ 0 (mod m).

So w2+x2+y2+z2 = nm for some integer non-negative n. Since w2+x2+y2+z2 < m2, n <
m. In addition, if n = 0, then w = x = y = z = 0, so that a ≡ b ≡ c ≡ d ≡ 0 (mod m),
which implies mp = a2 + b2 + c2 + d2 = mq, or that m|p. But p is prime, forcing m = p, and
contradicting m < p. So 0 < n < m. Look at the product (a2+b2+c2+d2)(w2+x2+y2+z2)
and examine Lemma 4.3. On the left is nm2p. One the right, we have a sum of four squares,
Evidently three of them

ax− bw − cz + dy = (ax− bw) + (dy − cz)

ay + bz − cw − dx = (ay − cw) + (bz − dx)

az − by − cx+ dw = (az − dw) + (cx− by)

are multiplies of m. The same is true of the other sum on the right in Lemma 4.3:

aw + bx+ cy + dz ≡ w2 + x2 + y2 + z2 ≡ 0 (mod m).

The equiation in Lemma 4.3 can therefore be divided through by m2. The result is an
expression for np as a sum of four squares. Since 0 < n < m, the proof is complete. ■

5. Examples

Example. Express the number 23 as a sum of four squares using Lagrange’s four-square
theorem.

By Lagrange’s four-square theorem, p = a20 + a21 + a32 + a23.
That means p = 23. And if we consider a0 = 1, a1 = 2, a2 = 3, a3 = 3
Then, 23 = 1 + 4 + 9 + 923 = 23. This is true.
So, 23 can be expressed as

23 = 12 + 22 + 32 + 32

Example. How will you write 2012 as a sum of four squares using Lagrange’s four-square
theorem?

By Lagrange’s four-square theorem, p = a20 + a21 + a32 + a23.
That means p = 2012.And if we consider,
a0 = 44, a1 = 6, a2 = 6, a3 = 2 Then, 2012 = 1936+ 36+ 36+ 4, 2012 = 2012.This is true.

So, 2012 can be expressed as

2012 = 442 + 62 + 62 + 22.
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Example. Show that 7839 can be written as the sum of four squares.
Using Lagrange’s four-square theorem, we can say that 7839 can be written as sums of

four squares p = a20 + a21 + a32 + a23.
Using Lagrange’s four-square theorem,
That means p=7839. Consider a0 = 77, a1 = 31, a2 = 30, a4 = 7
Then,
7839 = 5929 + 961 + 900 + 49
7839 = 7839 This is true.
So, 7839 can be expressed as

7839 = 772 + 312 + 302 + 72.

6. Number of ways a number can be written as a sum of squares

The number of representations of a natural number n as the sum of four squares is denoted
by r4(n). Jacobi’s four-square theorem states that this is 8 times the sum of the divisors of
n if n is odd and 24 times the sum of the odd divisors of n if n is even , i.e.
If n is odd

r4(n) = 8
∑
m|n

m.

If n is even

r4(n) = 24
∑
m|n

m.

Equivalently, it is 8 times the sum of all its divisors which are not divisible by 4, i.e

r4(n) = 8
∑

m:4∤m|n

m.

We may also write this as

r4(n) = 8σ(n)− 32σ(n/4),

where the second term is to be taken as zero if n is not divisible by 4. In particular, for a
prime number p we have the explicit formula r4(p) = 8(p+ 1).

Some values of r4(n) occur infinitely often as r4(n) = r4(2
mn) whenever n is even. The

values of r4(n)/n can be arbitrarily large: indeed, r4(n)/n is infinitely often larger than
8
√
logn

7. Application in cryptography

Firstly, we need to prove some theorems.

Theorem 7.1. ∑
n≤x

r3(n) =
4

3
πx

3
2

From the above theorem it can easily be proved that

Theorem 7.2.

r3(n) = 2πn
1
2



8 TOMIRIS KURMANALINA

Proof. The proof is quite straight forward. We will use the previous theorem and try to
express r3(n) as the difference of two sums. So, if we set F (x) =

∑
n≤x r3(n) then obviously:

F (x+ 1)− F (x) =
∑

n≤x+1

r3(n)−
∑
n≤x

r3(n) = r3(x+ 1)

By replacing now F (x) and F (x+ 1) we have that

F (x+ 1)− F (x) =
∑

n≤x+1

r3(n)−
∑
n≤x

r3(n)

=
4

3
π(x+ 1)

3
2 − 4

3
πx

3
2 =

4

3
π((x+ 1)

3
2 − x

3
2 )

=
4

3
π
(x+ 1)

3
2 − x

3
2

(x+ 1)
3
2 + x

3
2

((x+ 1)
3
2 + x

3
2 )) =

=
4

3
π
(x+ 1)3 − x3

(x+ 1)
3
2 + x

3
2

=
4

3
π
x3 + 3x2 + 3x+ 1− x3

(x+ 1)
3
2 + x

3
2

=
4

3
π
3x2 + 3x+ 1

(x+ 1)
3
2 + x

3
2

If x is big enough, then we have that

3x2 + 3x+ 1 = 3(x+ 1)2

thus
(x+ 1)

3
2 + x

3
2 = 2(x+ 1)

3
2

So,

F (x+ 1)− F (x) =
4

3
π
3(x+ 1)2

2(x+ 1)
3
2

= 2π(x+ 1)
1
2 = r3(x+ 1)

Finally, we have that

r3(n) = 2πn
1
2

■

8. Definition of SETUPs

Definition 8.1. Let C be an honest black box cryptosystem that conforms to a public
specification. Let C ′ be a dishonest version of C that contains a publicly known cryptotrojan
algorithm, that was implemented by an attacker A, and that may contain secret seeding
information that is not publicly known. Cryptosystem C ′ constitutes a SETUP version of
C if the following properties hold:

(1) C and C ′ run in polynomial time.
(2) The outputs of C and C ′ are indistinguishable to all efficient probabilistic algorithms,

except for the attacker who can always distinguish and ...
(3) The outputs of C are confidential to all efficient probabilistic algorithms and do not

compromise the cryptosystem that C implements.
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(4) The outputs of C ′ are confidential to all efficient probabilistic algorithms except for
the attacker A and do not compromise the cryptosystem that C ′ implements.

(5) With overwhelming probability the attacker A can decrypt, forge or otherwise crypt-
analyze at least one private output of given sufficient number of public outputs of
C ′.

The above definition is not as insightful as to what a SETUP is really like, so it is more
than appropriate to give an elementary example. Let’s suppose that we want to create a
SETUP for RSA. The attacker should be able to find the private key d efficiently, when all
that he can get from the client is his public key pair (e, n). Let’s suppose that the attacker
has a secure keyed hash function H, then he can alter the key generation of the private key
pair as follows.

(1) Create two large prime numbers p and q.
(2) Calculate values n = pq and ϕ(n) = (p− 1)(q − 1).
(3) Set d = H(k, n), where k is the attacker’s key. While gcd(d, ϕ(n)) ̸= 1
(4) Calculate e, the inverse of d mod ϕ(n), that is ed mod ϕ(n) = 1.

It is more than obvious from their definition, that e, d may switch places. The key generation
procedure above creates a random n of arbitrary length and two random looking exponents
e and d, with ed mod ϕ(n) = 1. The attacker can now easily find the private key d,
by calculating H(k, n). If this is not the case, he tries a few more times with H(k, n +
1), H(k, n+ 2) etc.

Figure 1

This SETUP, despite its simplicity, has an inherent flaw that does not allow it to be used.
The SETUP can only work with e and d that it creates and not with fixed e, as it happens in
many applications. It is clear, that this hashing technique can easily be ported to ElGamal
encryption algorithm, creating a secure SETUP. In this case, we have the same key generation
procedure with the original one, with only one alternation. Instead of picking a random x,
the attacker uses his secure hash function H to pick x = H(p||g), where || denotes the
concatenation operator. Several SETUPs have been proposed for the public key algorithms.
The beginning was made with Anderson [2] in 1993, which Kaliski proved to be prone to
attacks later the same year [20]. Young and Yung, apart from setting formal definitions and
setting the new grounds for the foundations of kleptography, introduced improved methods
for SETUP with PAP (Pretty-Awful-Privacy) [32, 33]. A simpler method has been proposed
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by Crepeau and Slakmon [11]. A revised SETUP of Young and Yung is given in [30]. For
more on the applications of kleptography and generaly of malicious cryptography the reader
may refer to [32, 31, 35, 14]. The two new SETUPs that are being presented in this work
show the high dependability of SETUPs on number theory. Moreover, by studying possible
attacks, we are able to detect and defend ourselves from other similar attacks.

9. The four square method

The SETUP that is presented in this section tries to take advantage of the Euler’s identity
we stated in a previous section. According to it, we have an identity which may lead us to
a factorization of a big integer, under certain restrictions. The restriction is to bound the
values of certain variables in the Euler’s identity, up to a certain value. Then if we decompose
the product properly, its prime factorization will be easily found. Before presenting this
SETUP, it is necessary to make a reference to Rabin and Shallit, who propose in [29] two
randomized algorithms for decomposing integers as sum of squares. The first algorithm aims
to the decomposition of integers as sum of two squares and has complexity of O(log2n).
The second one has complexity O(log2nloglogn) and it is made for decomposing integers
as sum of four squares. Both of them are randomized algorithms, hence we shall use three
keyed pseudo-random number generators namely Gen1, Gen2 and Gen3, with keys k1, k2 and
k3 respectively. This way, we create a keyed algorithm for the decomposition of an integer
as sum of four squares which we call RSK , Figure 2. This means that each key triplet
K = (k1, k2, k3) decomposes differently an integer.

Figure 2. RSA keys creation time with SETUP.

The SETUP is the following. Let’s suppose that we have a mechanism M that honestly
creates primes. M provides us with p and q, that their product n conforms to every standard
of RSA encryption referred above. From Lagrange’s theorem we have that n can be written
as a sum of squares of four integers. We apply RSK to n to finda, b, c and d, thus:

n = a2 + b2 + c2 + d2

We can now form the following system of equations:

(x2
1 + x2

2 + x2
3 + x2

4)(x
2
2 + x2

2 + x2
2 + x2

2) = a2 + b2 + c2 + d2

a = x1y1 + x1y1 + x1y1 + x1y1
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b = x1y2 − x2y1 + x3y4 − x4y3

c = x1y3 − x3y1 + x4y2 + x2y4

d = x1y4 − x4y1 + x2y3 − x3y2

p = x2
1 + x2

2 + x2
3 + x2

4

q = y21 + y22 + y23 + y24

Of course this is a non-linear system of 7 equations and 8 variables. In order to simplify
it, we set a base B = (b1, b2, b3) which determines the maximum values of variables x1, x2

and y1respectively. By using every possible value of x1, x2 and y1 from base B, we can
solve the remaining equations for x3, x4, y2, y3 and y4 efficiently. For the sake of simplicity,
the equations to be checked have been omitted, yet they can easily be produced using a
mathematical application like Mathematica or Matlab. If the system of equations is not
solvable, a new pair of p and q is generated from M and the procedure is repeated until a
proper pair is found. It may seem that setting a threshold to values x1, x2 and y1 would
eliminate many decompositions, yet there are plenty such forms that meet our constrains.
Let’s suppose that we have a big prime q and set 0 ≤ y1 ≤ 100 then q−1002 = q and
we want to count how many representations as sum of three squares q − 1002 has. From
the proved theorem, there are about 2π

√
q such representations. So totally we have about

200π
√
q representations for which

q = y21 + y22 + y23 + y24

0 ≤ y1 ≤ 100

and we have n = pq. A base B = (100, 1000, 100) suggests that when prime p is expressed
as a sum of four squares, then the square of an integer of at most 100 and a square of an
integer of at most 1000 appear. On the same time, q in its sum of squares representation has
the square of an integer of at most 100. The restrictions of this base can be easily fulfilled,
applying in worst case scenario 1001000100 = 10000000 calculations for solving the system
of equations, which can be thought in many cases an affordable cost.

The attack is quite obvious again, the attacker finds the client’s public key and decomposes
it with RSK . Knowing that for this decomposition, the restrictions of B are met,

Figure 3

he tries to solve the system of equations for every possible triplet of the bounded values
x1, x2 and y1
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10. conclusion

In conclusion, the exploration of Waring’s problem, the Lagrange Four Square theorem,
and its proof has provided valuable insights into number theory and its applications. Waring’s
problem, formulated by Edward Waring, examines the representation of integers as sums of
integer powers. The Lagrange Four Square theorem, proved by Joseph-Louis Lagrange,
states that every positive integer can be expressed as the sum of four squares. This elegant
proof utilizes quadratic forms and induction. Beyond number theory, the theorem finds
practical applications in cryptography, signal processing, and computer science. The study
of these concepts has deepened our understanding of numbers and their representations,
while showcasing the broad impact of number theory across various fields.
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