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SVANIK GARG

Abstract. This paper will focus on the Stokes theorem, envisioned in 1850 by William
Thomson. The aim is to progress from calculations involving double integrals to line and
surface integrals. The paper will also highlight the fundamental theorem of calculus and
the existence of the Stokes theorem and Green’s theorem. The discussion will also involve
a proof of Faraday’s law through the stokes theorem, establishing one of its application in
physics.
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1. Fundamental theorem of Calculus

The fundamental theorem of calculus, establishes the basis of integration and anti-derivatives
such that the theorem comes into use when integrating in different forms, and using various
methods, much like those discussed in this paper.

Theorem 1.1. Let f(x) be a continuous function on the interval [a, b], and let F (x) be
an antiderivative of f(x), i.e., F ′(x) = f(x). Then, we have∫ b

a

f(x) dx = F (b)− F (a)

2. Double Integrals

Double integrals are second-order integrals, which refer to integrals of any two variables,
as opposed to one in a simple integral. They are used to calculate the total bounded area of
the average value part of a function in a defined two-dimensional area (given there are two
variables). In this paper, we consider the case for general regions.

Firstly, we must establish the types of regions one can consider.

Defination 2.1 A region P in the (x, y) plan is a Type 1 region if it lies between the
graph of two continuous functions and two verticl lines, with the following parametrization

D = {(x, y) | a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x)}
A region P in the (x, y) plan is a Type 1 region if it lies between the graph of two con-

tinuous functions and two horizontal lines, with the following parametrization:

D = {(x, y) | c ≤ y ≤ d, h1(y) ≤ x ≤ h2(y)}

Theorem 2.1 To calculate a double integral over a general region R, we can use an iterated
integral. Let f(x, y) be a function defined on R. The double integral can be expressed as:∫∫

R

f(p, q) dA =

∫ b

a

∫ d

c

f(p, q) dp dq

a and b represent the limits of integration for the variable p, and c and d are used to

present the limits of integration for q. The inner integral
∫ d

c
f(p, q) dq is evaluated with p

held constant, and the outer integral
∫ b

a

∫ d

c
f(p, q) dp dq integrates the subsequent result over

the specified range.

Example 2.1

V =

∫ 1

0

∫ 2

0

(8x+ 6y) dx dy =

∫ 1

0

(4x2 + 6xy

∣∣∣∣x=2

x=0

) dy =

∫ 1

0

(4 + 6y) dy = 4y + 3y2
∣∣∣∣1
0

= 20

After establishing the basics of double integrals over a general region, we can use it to
calculate an average over general functions, and similar applications including a density func-
tion with information about mass (m)
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Let us now consider the case of double integrals over polar coordinates, a case where it
helps in calculating the integrals due to the geometric defination of the curve/area

Theorem 2.2 The double integral of the function f(r, θ) over the same general region
described in Theorem 2.1, D, in the r − θ plane is defined as,∫∫

D

f(x, y) r dx dy =

∫ θ2

θ1

∫ r2(θ)

r1(θ)

f(r cos(θ), r sin(θ)) r dr dθ

Integration over polar co-ordinates has wide scale applications in helping calculate the
volume and area of radial structures/surfaces, being much easier than doing it through the
method we discussed in Theorem 1.11

Example 2.2 Following is an example of double integrals through polar co-ordinates over
a trigonometric function.

∫∫
R

(r2 sin(θ)) r dr dθ =

∫ π
4

0

∫ 2

0

(r3 sin(θ)) dr dθ

=

∫ π
4

0

(
r4

4
sin(θ)

∣∣∣∣2
0

)
dθ =

∫ π
4

0

16

4
sin(θ) dθ

= 4

∫ π
4

0

sin(θ) dθ = 4

(
− cos(θ)

∣∣∣∣π4
0

)

= 4
(
− cos

(π
4

)
+ cos(0)

)
= 4

(
− 1√

2
+ 1

)
= 4− 2

√
2

Double integrals over polar co-ordinates are also useful in calculating masses, weighted av-
erage and moments of inertia.

Example 2.2 Calculating moments of inertia
A moment of inertia is defined as the equivalent of mass for any rotational motion, with the
rotation calculating inertia through polar co-ordinates becomes easier.

To find the moment of inertia about an axis for a solid with density δ, denoted as I0,
we can use the formula I0 =

∫∫
R
r2δ dA, where R represents the region of integration.

Let’s consider the case of a disk with radius a around its center (δ = 1). To find the
moment of inertia about the x-axis, we can set up the integral as follows:

Ix =

∫∫
R

y2δ dA
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We then change variables to polar coordinates with the origin at a point. Assuming the
diameter of the disk is along the x-axis, the polar equation of the circle is r = 2a cos(θ).
Therefore, the integral becomes:

I0 =

∫∫
R

r2 r dr dθ = . . . = 2πa4

With these double integrals we can understand that there are various applications for
integrals as we increase the area we define the integrand on. Further we must understand
the existence of vector fields to better understand the space these areas exist in.

3. Vector Fields

Moving further into the applications we can look at an extension of integral concepts, in
the form of vector fields.

A vector field is the definition of a vector to each point in any given space space, most
commonly an Euclidean space.

Definition 3.1 A vector field F in R2 is a two-dimensional vector with relation F(x, y)
to each point (x, y) of a smaller subset D of R2. The subset D acts as the domain of the
vector field.

A vector field F in R3 is an assignment of a three-dimensional vector F(x, y, z) to each
point (x, y, z) of a subset D of R3. The subset D is the domain of the vector field.

In both cases, the vector field assigns a vector to each point in the given subset, repre-
senting the magnitude and direction of the field at that point. The domain D specifies the
region in which the vector field is defined and can be any subset of the respective coordinate
space.

Figure 1. Sample Vector Field
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Examples of common applications of vector fields, include calculating the air flow around an
airfoil and ocean currents. To calculate the airflow we represent the velocity of the airflow
at each point in space as a vector, and construct a vector field that describes the airflow
pattern, simmilar to the example 3.1.2 3.1

3.1. In R2. A vector field in R2 is a function F that to each point (x, y) is a vector F (x, y)

F(x, y) = P (x, y)i+Q(x, y)j

= ⟨P (x, y), Q(x, y)⟩

Example 3.1.1
The vector field F(x, y) = (3x2 + 2y, sin(y)) is a continuous vector field in R2.

To find the vector associated with the point (2,−1), we substitute the coordinates into
the components of the vector field:

F(2,−1) = (3(2)2 + 2(−1), sin(−1)) = (12,− sin(1))

Example 3.1.2
Application of R2 vector fields in calculating the velocity of a fluid. We must consider the
vector field that models its velocity and consider a specific point, to calculate its instanta-
neous velocity, in this case at point (2,-2)

Suppose that v(x, y) = (−2yx2 + y2)i+ (2x3 + y2)j is the velocity field of a fluid.
To find the velocity at point (2,−2), insert the point into v:

v(2,−2) =
(
−2(−2)(2)2 + (−2)2

)
i+
(
2(2)3 + (−2)2

)
j = i+ j.

The velocity of the fluid at this point is the calculated value of this vector. Therefore,
it is ∥i+ j∥ = 40m/s.

3.2. In R3. We can represent vector fields in R3 with component functions, simply needing
an extra component function for the extra dimension, represented by:

F(x, y, z) = ⟨P (x, y, z), Q(x, y, z), R(x, y, z)⟩
They have similar applications to vector fields in R2, simply in a 3d space in this case.

3.3. Gradient fields. A vector field F in R2 or in R3 is a gradient field if there exists a
scalar function f such that ∇f = F.

∂f

∂x
= P (x, y) and

∂f

∂y
= Q(x, y)
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∂f

∂x
= P (x, y, z),

∂f

∂y
= Q(x, y, z), and

∂f

∂z
= R(x, y, z)

These equations identify the requirements for a vector field to be a gradient field

4. Line Integrals

In the various integrals discussed above, we have been integrating over line segments.
However, if we aim to integrate over any curve in the plane, and not just a line segment in
one axis, we must use line integrals.

Line Integrals allow for integration over a vector field or curve in a plane or 3 dimensional
space. Simmilarly, Surface Integrals 5 allow for integration over an entire surface rather than
a path, which is the case with line integrals.

Definition 4.1 The line integral of a given function f(x, y) along C is denoted by:∫
C

f(a, b) ds

ds refers to the movement along the curve rather than an axis, making it the line integral
of the function f over the arc length of C:∫

C

f(a, b) ds =

∫ b

a

f(h(t), g(t))

√(
da

dt

)2

+

(
db

dt

)2

dt

Example 4.1 If we consider the line integral
∫
C
xy4ds where C is the right part of the

function x2 + y2 = 4, we must parameterize it through polar coordinates:

x = r cos(θ) = 4 cos(θ)

y = r sin(θ) = 4 sin(θ)

To solve ds,

dx = −4 sin(θ) dθ

dy = 4 cos(θ) dθ

Substituting these values into the line integral, we have:∫
C

xy4 ds =

∫ π

0

(2 cos(θ))(2 sin(θ))4

=
√

(−2 sin(θ))2 + (2 cos(θ))2 dθ

Simplifying the integrand, we get:∫
C

xy4 ds =

∫ π

0

(2 cos(θ))(2 sin(θ))4

=
√
4 sin2(θ) + 4 cos2(θ) dθ
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0

16 cos(θ) sin4(θ) dθ

= 8π2 − 4π4 +
16

6
π6

Theorem 4.1 Line integrals are calculated over a parametrization, however, can be cal-
culated individually and their sum is considered in the case of a piecewise curve, like the one
below:

∫
C

f(x, y) ds =

∫
C1

f(x, y) ds+

∫
C2

f(x, y) ds+

∫
C3

f(x, y) ds+

∫
C4

f(x, y) ds

This process makes it much easier to calculate line integrals, even those in a 3 dimensional
space.

Line integrals have various applications including calculating the mass of a wire, or the
flux in a vector field. They are very important in understanding the Stokes Theorem ??, as
these integrals establish the basis of vector calculus. An extended form of line integrals is
surface integrals which will be discussed next.

5. Surface Integrals

Surface integrals are a generalization of multiple integrals to integrate over entire surfaces.
Unlike, line integrals the integration in this case is done over the entire surface as opposed
to a simple path, due to which we must parametrize the surface.

Definition 5.1 Given the parameterization of the surface D(a, b) = ⟨x(a, b), y(a, b), z(a, b)⟩,
the parameter domain is the set of points in the ab-plane that can be substituted into D.

Theorem 5.1 For any given surface z = g(x, y), following is the formula for the surface
integral.

(5.1)

∫∫
S

f(x, y, z) dS =

∫∫
D

f(x, y, g(x, y))

√(
∂g

∂x

)2

+

(
∂g

∂y

)2

+ 1 dA

There is a clear difference between line integrals and surface integrals, and while the aspect
of parametrization might not be easy to understand, a visualisation of both will certainly
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help. The following figure gives a clear understanding of both, with the region on the left
representing a line integral, and the right representing a surface integral.

Figure 2. Line and Surface Integrals

Example 5.1
To better understand the concept of surface integrals and their difference to line integrals,

let us explore an example: ∫∫
S

6xy dS

Let’s calculate the given integral over an octant of the plane x+ y + z = 1
This area/surface on the plane can be visualized as the following

This gives us the following limits in the y and z plane, we then input in the formula 5.1:
0 ≤ y ≤ 1
0 ≤ z ≤ 1− u ∫∫

S

6xy dS =

∫ 1

0

∫ 1−u

0

6uv
√
3 dv du.

Integrating with respect of v and inserting limits gives:

√
3 · 6u

[
(1− u)2

2
− 0

]
=

√
3 · 6u · (1− u)2

2
.

Integrating with respect to u and simplifying:

√
3 · 3

∫ 1

0

u(1− u)2 du.

To solve this integral, we can use basic integration:

√
3 · 3

[∫ 1

0

u du− 2

∫ 1

0

u2 du+

∫ 1

0

u3 du

]
=

√
3 · 3

[
1

12

]
=

√
3

4
.

The example above clearly shows the implementation of theorem 5.1 and the difference
between a surface integral and line integral. In theory, this difference is also the major
difference/relation between The Green’s Theorem 6 and The Stokes Theorem ??
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5.1. Divergence and Curl. To understand the theorem we will explore further in this pa-
per, we must accustom ourselves to the concepts of divergence and curl, which are operators
and are used to describe behaviour of integrals in vector fields.

Definition 5.1.1 Divergence is an operator which defines how a vector field behaves towards
or away from a point. Eg: In electromagnetism, the divergence of the electric field vector
represents the presence of electric charges, and their movement away/towards a certain point.

Theorem 5.1.1 The divergence of a vector field F = (Fx, Fy, Fz) is:

(5.2) div(F ) =
∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z

or can be alternatively be written using a gradient field 3.3

(5.3) divF = ∇ · F

Definition 5.1.2 Curl is an operator which helps define the rotation of a vector field about
a certain point. Eg: It helps describe the rotational behavior of the vector field and as such
can be used to determine the circulation of any fluid or the presence of vortices in a flow.

Theorem 5.1.2 The curl of a vector field F = (A, ,B,C) in R3 whereAx, Ay, Az, Bx, By, Bz, Cx, Cy, Cz

all exist, is:

(5.4) curl F =

(
∂C

∂y
− ∂B

∂z
,
∂A

∂z
− ∂A

∂x
,
∂B

∂x
− ∂C

∂y

)
Both these concepts will be extremely useful as we move forward and explore 6 and 7.

6. The Green’s Theorem

As discussed earlier, green’s theorem is an extension of the fundamental theorem of calcu-
lus in a higher dimension. Green’s theorem basically relates a line integral around a simply
closed plane curve C and a double integral over the region enclosed by C.

It also allows us to calculate line integrals discussed earlier, by converting them into double
integrals, this makes calculations much simpler compared to the cumbersome method de-
scribed in 4

Theorem 6.1 Let C be a positively oriented, piecewise-smooth, simple closed curve in
the plane, and let D be the region bounded by C. If P (x, y) and Q(x, y) have continuous
partial derivatives on an open region containing D, then∮

C

(P (x, y) dx+Q(x, y) dy) =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dx dy
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where
∮
C
represents the line integral around the curve C, and

∫∫
D
represents the double

integral over the region D. Curve C:

Green’s theorem can be used only for a two-dimensional vector field F .∫
C

P dx+Qdy =

∫
C

F · T ds

where
∫
C
represents the line integral around the curve C, P and Q are the components

of the vector field F , dx and dy are the differentials of x and y respectively, T is the unit
tangent vector to C, and ds is the differential arc length along C.

Example 6.1 Let us calculate the line integral with radius 2, using Green’s theorem∮
C

(3x2 + 4xy) dx+ (2y + x2) dy

.

x

y

R = 2
T

Using Green’s theorem, we have:

∮
C

(3x2 + 4xy) dx+ (2y + x2) dy =

∫∫
D

(
∂(2y + x2)

∂x
− ∂(3x2 + 4xy)

∂y

)
dx dy

=

∫∫
D

(2− 4x) dx dy,

where D is the region enclosed by the circle C. Since the region D is symmetric, we can
simplify to:
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∫∫
D

(2− 4x) dx dy = 2

∫∫
D

dx dy − 4

∫∫
D

x dx dy

= 2× Area(D)− 4× 0

= 2× πR2

= 2π(22)

= 8π.

To understand the concept better, on can try the following Example 6.2 :∫
C

2y dx+ 3x dy

As shown in the first example 6this calculation becomes much simpler because we use the
green’s theorem if we were to solve it directly, the calculation would be much longer. A
similar case for surface integrals is seen when we move onto the stokes theorem.

7. The Stokes Theorem

The theorem was initially developed by Lord Kelvin, who communicated the result to
George Stokes in a letter (1850), however, is named after the latter to honour his work in
the field of fluid dynamics and mathematical analysis.

Theorem 7.1 If there is a surface S with n number of pieces with a closed boundary of the
curve C and if F is a vector field with components that have continuous partial derivatives
on an open region containing S, then:∫

C

F · dr =
∫∫

S

curlF · dS.

where
∫
C
represents the line integral along the curve C,

∫
S
represents the surface integral

over the surface S, F is the vector field, dr is the differential displacement vector along the
curve, curlF is the curl of the vector field F, and dS is the differential surface area vector
on the surface.

Note: As mentioned above, the stokes theorem relates the curl operator and the vector
field F .

Let us look at a proof for the stokes theorem, we do this by examining the concept of
line and surface integrals 4,5

First, let us look at the LHS of the stokes theorem 7∫
C

F · dr.

Parametrizing the curve C: ∫
C

F · dr =
∫∫

S

curl,F · n, dS,
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where n is the outward unit normal vector to the surface S and dS represents the differential
element of the equation Now, recall that the curl of a vector field is defined as 5.1. Using
the this, we can rewrite the surface integral as a volume integral:∫∫

S

curl,F · n, dS =

∫∫∫
V

(∇× F) · dV,

where V is the region enclosed by the surface S. Now, let’s consider the RHS:∫∫
S

curl,F · dS.

We can now rewrite the surface integral as a line integral:∫∫
S

curl,F · dS =

∫
C

F · dr.

We end up with the same result on both sides, giving us a logical proof for the Stokes
theorem. While there is a longer and more comprehensive proof for the Stokes theorem,
it is beyond the scope of this paper, and can be further researched upon. Stokes theorem
has various applications which make it extremely useful in both math and physics, one such
application is of that in proving the faraday’s law.

7.1. Proof for Faraday’s Law. Faraday’s law relates the curl of an electric field to the
rate of change of the corresponding magnetic field (the negative rate of change). If we are to
use the stokes theorem to prove Faraday’s law, we must first recall its mathematical relation.∮

C

E · dr = − d

dt

∫∫
S

B · dS,

This relates the line integral of electric field E along closed loop C to negative time
derivative of surface integral of magnetic field B over surface S.
By applying Stokes’ theorem, we equate the line integral to the surface integral:∮

C

E · dr =
∫∫

S

(∇× E) · dS,

where ∇× E = curl.
Now, we equate this to magnetic flux (negative in the case of faraday’s law):

− d

dt

∫∫
S

B · dS.

Since this equation holds for any surface S bounded by the closed loop C, we can equate
the integrands:

∇× E = −∂B

∂t
.

This equation relates the curl of the electric field to the rate of change of the magnetic
field with respect to time, which is the purpose of Faraday’s Law. With a simple set of
calculations we were able to derive the relation using the stokes theorem, highlighting the
strength of its applications.
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Conclusion

This paper focused on building the foundational concepts leading up to the Stokes’ the-
orem. There are several additional topics regarding Stokes’ theorem and its applications
which should be interesting to explore for the reader, such as using the theorem to relate
integration and mappings. The Stokes’ theorem has many applications in physics, other
than the discussion of faraday’s theorem in this paper, and this paper provided a basis to
understand these powerful applications.
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